Abstract

Let $S = k[x_1, x_2, \dots, x_n]$ and M be a graded module over S. Lex of binomial coefficients, for the rate at which the Hilbert function **H** direct sums of monomial spaces. This is normally done when **M** is claim a similar process can be done when **M** is an ideal. These two properties, namely our main result that the induced Macaulay coef variables form a set partition of $\{0, 1, \ldots, n + \delta - 2\}$.

Macaulay's Theorem

Macaulay's theorem shows why lex ideals are of interest in the stud

Theorem. (Macaulay) Let $\mathcal{I} = \bigoplus_i I_i$ be a graded ideal of **S**. Then such that $H_{\mathcal{L}} = H_{\mathcal{I}}$. In particular, if $S_1 = (x_1, \dots, x_n)$, we have the

 $\dim S_1L_i \leq \dim I_{i+1} \qquad \dim S/(S_1L_i) >$

Macaulay Representations and Coefficients

We refer to a standard combinatorial result.

Theorem. Let *s* and *p* be positive integers. Then there exists a un non-negative integers $s_p > s_{p-1} > \cdots > s_1$ such that

$$s = {\binom{s_p}{p}} + {\binom{s_{p-1}}{p-1}} + \cdots +$$

The expression (1) is called the p^{th} Macaulay representation of s, called the **p**th Macaulay coefficients of **s**.

Computing the Dimension of a Lex Quotient

The quotient S/\mathcal{L} by a lex ideal \mathcal{L} may be written as a direct sum quotient of smaller degree, treating each as a k-vector space over **k[a, b, c, d]**:

$$\Omega^4(b^2cd) = b\Omega^3(bcd) \oplus (c,$$

where Q⁴(*b²cd*) is the space spanned by all degree-4 monomials Q³(bcd) is the space spanned by all degree-3 monomials strictly lex-smaller than bcd. We may repeat the decomposition for $\Omega^3(bcd)$ and continue to obtain a full decomposition of the lex quotient $\Omega^4(b^2cd)$:

$\mathcal{Q}^4(b^2cd) = (c,d)^4 \oplus b(c,d)^3 \oplus b^2(d)^2 \oplus b^2c(0)^1.$

The dimension is thus

$$\dim \Omega^4(b^2cd) = \binom{5}{4} + \binom{4}{3} + \binom{2}{2} + \binom{0}{1} = 10.$$

Macaulay Coefficients and Decomposing Lex Segments

Reid Buchanan Oklahoma State University

	Computing the Dime
ideals allow us to give a bound, in terms \mathbf{M}_{M} of \mathbf{M} grows by decomposing them into s a quotient of \mathbf{S} by an ideal, but we no processes have interesting dual efficients of a degree- δ monomial in \mathbf{n}	The decomposition for lex i direct sum of a monomial s space over bases of monor
	now considering the monor
	\mathfrak{I}_{4}
udy of Hilbert functions.	The dimension is thus
there exists a lex ideal $\mathcal{L} = \bigoplus_i L_i$ of S e following bounds for all i :	
$\geq \dim(S/\mathfrak{I})_{i+1}.$	
	Formulas for the Indu
nique decreacing coguence of	The dimensions of Q ⁴ (<i>b</i> ² <i>c</i>) these decompositions. Thu the monomial in question ra
nique decreasing sequence of $ \begin{pmatrix} s_1 \\ 1 \end{pmatrix}. $ (1)	Definition. Let $m = x_1^{\alpha_1} \cdots i^{th}$ coarse tail of m to be ct, nondecreasing, define the
and the integers $s_p, s_{p-1}, \ldots, s_1$ are	Theorem. Let $\mathfrak{I}_n(m)$ ($\mathfrak{Q}^{\delta}(m)$ lex-larger (-smaller) than m
	$\mathbf{s}_i = \mathbf{i} + \mathbf{d}_i$
of a monomial space and another lox	for each <i>i</i> .
of a monomial space and another lex r bases of monomials. For example, in	We will call the integers s _i m .
(<i>d</i>) ⁴ ,	Example
	Let $m = b^2 cd$ in $k[a, b, c, b]$
s strictly lex-smaller than b²cd and lex-smaller than bcd . We may repeat	$s_1 = 1 + deg($

which matches our earlier computations. Observe that the 3^{rd} ideal coefficients of $b^2 cd$ are not only disjoint from its 4th quotient coefficients, but together they partition the set {0, 1, 2, 3, 4, 5, 6}. This property holds in general.

Main Result

of *m*, respectively. Then $\{S, \mathcal{T}\}$ forms a set partition of $\{0, 1, \ldots, n + \delta - 2\}$.

ension of a Lex Ideal

ideals is less-studied than that of lex quotients. A lex ideal may be written as a space and another lex ideal with fewer variables, treating each as a *k*-vector omials. For example, in **k[a, b, c, d]**:

$$\mathfrak{I}_{4}(b^{2}cd) = a^{1}(a, b, c, d)^{3} \oplus a^{0}\mathfrak{I}_{3}(b^{2}cd),$$

omials strictly lex-larger than **b²cd**. The full decomposition is

$$a_{i}(b^{2}cd) = a(a, b, c, d)^{3} \oplus b^{3}(b, c, d)^{1} \oplus b^{2}c^{2}(c, d)^{0}.$$

dim
$$\mathfrak{I}_4(b^2cd) = \binom{6}{3} + \binom{3}{2} + \binom{1}{1} = 24.$$

uced Macaulay Coefficients

cd) and $\mathcal{I}_4(b^2 cd)$ are naturally written in their Macaulay representations via us, it would be much nicer to determine their Macaulay coefficients directly from rather than from the corresponding decompositions.

 $\cdot \mathbf{x}_{n}^{\alpha_{n}}$ be a degree- δ monomial in $\mathbf{k}[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}]$. For $\mathbf{0} \leq \mathbf{i} \leq \mathbf{n} - \mathbf{1}$, define the $\mathbf{x}_{i}(m) := \mathbf{x}_{i+1}^{\alpha_{i+1}} \mathbf{x}_{i+2}^{\alpha_{i+2}} \cdots \mathbf{x}_{n}^{\alpha_{n}}$. If we write $m = \mathbf{x}_{j_1} \mathbf{x}_{j_2} \cdots \mathbf{x}_{j_{\delta}}$ where \mathbf{j}_p is i^{th} fine tail of **m** to be $ft_i(m) := x_{i_{i+1}} x_{i_{i+2}} \cdots x_{i_{\delta}}$ for $0 \le i \le \delta - 1$.

(m)) be the lex space spanned by the degree- δ monomials in n variables that are **m**. Let $s_i(t_i)$ be the $(n-1)^{\text{th}}(\delta^{\text{th}})$ Macaulay coefficients of its dimension. Then

 $deg(ct_{n-i}(m)) - 1$ and $t_i = n - min(ft_{\delta-i}(m)) + i - 1$

the n^{th} ideal coefficients of m and the integers t_i the δ^{th} quotient coefficients of

, **d**]. Then we have $s_1 = 1 + \deg(d) - 1 = 1$ $s_2 = 2 + \deg(cd) - 1 = 3$ $s_3 = 3 + \deg(b^2 cd) - 1 = 6$

t 1	$= 4 - \min(d) + 1 - 1 = 0$	
t ₂	$= 4 - \min(cd) + 2 - 1 = 2$	
t 3	$= 4 - \min(bcd) + 3 - 1 = 4$	4
t 4	$= 4 - \min(b^2 c d) + 4 - 1 =$	5

Theorem. Let $m \in k[x_1, \ldots, x_n]$ be a monomial of degree δ . Let S, \mathcal{T} be the sets of n^{th} ideal and δ^{th} quotient coefficients

