

KOHNERT POSETS

Definition 1. A diagram D is a finite subset of $\mathbb{N} \times \mathbb{N}$. A Kohnert move on a diagram moves the rightmost cell in a row to the first empty space below it. **Definition 2.** The Kohnert poset of a diagram D, denoted $\mathcal{P}(D)$, is the set of all diagrams that can be obtained from D via a sequence of Kohnert moves, with $D_1 > D_2$ if D_2 can be obtained from D_1 via a sequence of Kohnert moves.

Example: $\mathcal{P}(D)$ (top on left, bottom on right)

Kohnert moves and posets originated in Kohnert's Ph.D. thesis [5]. Colmenarejo, Hutchins, Mayers, and Phillips initiated the study of boundedness and rankedness of Kohnert posets and classified those of key diagrams [2].

KOHNERT POLYNOMIALS

Definition 3 ([1, Definition 2.2]). The Kohnert polynomial of a diagram D is

$$\mathfrak{k}_D = \sum_{T \in \mathcal{P}(D)} x_1^{\operatorname{rwt}(T)_1} \cdots x_n^{\operatorname{rwt}(T)_n}$$

Example: For *D* above, $\Re_D = x_2^2 x_3^2 + x_1 x_2 x_3^2 + x_1^2 x_3^2 + x_1^2 x_2 x_3 + x_1 x_2^2 x_3 + x_1 x_2^2 x_3 + x_1^2 x_2^2$.

Assaf and Searles showed that if $\{D_{\alpha}\}$ is any set of diagrams indexed by weak compositions such that $\operatorname{rwt}(D_{\alpha}) = \alpha$, then $\{\mathfrak{K}_{D_{\alpha}}\}$ is a basis of the polynomial ring [1]. Key diagrams yield Demazure characters and Rothe diagrams yield Schubert polynomials. Criteria for monomial multiplicity-freeness of these families of polynomials were given by Hodges and Yong in [4], and Fink, Mészáros, and St. Dizier in [3], respectively.

NORTHEAST DIAGRAMS

Definition 4. A diagram D is **northeast** if for all pairs $(r,c), (r',c') \in D$, $(\max(r, r'), \max(c, c')) \in D$ as well.

Definition 5. For a weak composition $\alpha = (\alpha_1, \ldots, \alpha_n)$, the lock diagram $\mathbb{Q}(\alpha)$ is the right-justified diagram with exactly α_i cells in row i.

Lock diagrams are a subclass of northeast diagrams. They are the natural analog of the well-studied, left-justified key diagrams. Wang initiated the study of lock polynomials and a crystal structure that intertwines with that of keys [6].

A northeast diagram

The lock diagram $\mathbb{I}(0, 1, 3, 2)$

KOHNERT POSETS AND POLYNOMIALS OF NORTHEAST DIAGRAMS

Aram Bingham¹, Beth Anne Castellano², Kimberly P. Hadaway³, Reuven Hodges⁴, Yichen Ma⁵, Alex Moon⁶, Kyle Salois⁷ ¹IIT Bombay, ²Dartmouth College, ³Iowa State University, ⁴University of Kansas, ⁵Cornell University, ⁶University of Wisconsin-Milwaukee, ⁷Colorado State University

BOUNDEDNESS

Theorem 6. If D is northeast, then $\mathcal{P}(D)$ is bounded if and only if D does not contain $x_1 = (r_1, c_1), x_2 = (r_2, c_2)$, and $x_3 = (r_3, c_3)$ such that:

(a) $r_1 \le r_2 < r_3$ (b) $c_1 < c_2 = c_3$

- (c) for all $c_1 \le c < c_2$, $\operatorname{cwt}(D)_c < \operatorname{cwt}(D)_{c_2}$
- (d) for each column $c \ge c_1$, there is at least one empty position (r, c) where $r < r_1$
- (e) for each $r_1 < r \leq r_3$, the cell (r, c_1) is not in D_0

Forbidden configuration:

Corollary 7. $\mathcal{P}(\mathbb{I}(\alpha))$ is bounded if and only if the nonzero entries of α after the first zero are weakly increasing.

RANKEDNESS

Theorem 8. If D is northeast, then $\mathcal{P}(D)$ is ranked if and only if D does not contain $x_1 = (r_1, c_1), x_2 = (r_2, c_2)$, and $x_3 = (r_3, c_3)$ such that:

- (a) $r_1 < r_2 \le r_3$
- (b) $c_1 = c_2 < c_3$
- (c) for each $c_1 \leq c < c_3$ there is at least one empty position (r, c) where $r < r_1$
- (d) for each $c \ge c_3$, the number of $r < r_3$ such that $(r, c) \in D$ is less than r_1

Forbidden configuration:

Corollary 9. $\mathcal{P}(\mathbb{I}(\alpha))$ is ranked if and only if for every pair $\alpha_i, \alpha_{i+k} \geq 2$ with $\alpha_{i+j} \in \{0,1\}$ for all $1 \le j < k$, we have $\#\{j : 1 \le j < k \text{ and } \alpha_{i+j} = 1\} \ge \#\{j : j < k \}$ $j < i \text{ and } \alpha_{j} = 0 \}.$

 $\mathcal{P}(\mathbb{I}(3,2,0,1,0,1,3))$ is ranked and bounded

MONOMIAL MULTIPLICITY-FREENESS

Theorem 10. If D is a northeast diagram, then the Kohnert polynomial \Re_D is monomial multiplicity-free if and only if D does not contain $x_1 = (r_1, c_1)$ and $x_2 = (r_2, c_2)$ such that:

(a) $r_1 < r_2$

(b) $c_1 < c_2$

(c) there exists $s_1 < r_1$ such that the position (s_1, c_1) is empty (d) for each $c > c_1$, there are at least two empty positions (r, c) where $r \leq r_1$

Forbidden configuration:

Corollary 11. The lock polynomial $\Re_{\square(\alpha)}$ is monomial multiplicity-free if and only if α does not contain a subcomposition of the form $(0, 0, \alpha_i, \alpha_j)$ for $\alpha_i > 1$ and $\alpha_i > 0$.

> × × $\mathfrak{K}_{\mathrm{II}(0,1,2,2,0,1)}$ is monomial multiplicity-free

ACKNOWLEDGEMENTS

This project began during the 2024 GRWC, supported by the University of Wisconsin-Milwaukee, the Combinatorics Foundation, and the NSF (DMS-1953445). We thank Kim Harry, Joakim Jakovleski, Chelsea Sato, and Nick Mayers for early contributions and helpful discussions. B. A. Castellano is supported by an NSF Graduate Research Fellowship.

[1] Sami Assaf and Dominic Searles. "Kohnert Polynomials". In: Experimental Mathematics **31.1 (2022)**, pp. 93–119. DOI: 10.1080/10586458.2019.1588180. [2] Laura Colmenarejo et al. On ranked and bounded Kohnert posets. 2023. arXiv: 2309. 07747.

[3] Alex Fink, Karola Mészáros, and Avery St. Dizier. "Zero-one Schubert polynomials". In: *Math. Z.* 297.3-4 (2021), pp. 1023–1042. DOI: 10.1007/s00209-020-02544-2.

[4] Reuven Hodges and Alexander Yong. "Multiplicity-Free Key Polynomials". In: Annals of *Combinatorics* 27.2 (June 2023), pp. 387–411. DOI: 10.1007/s00026-022-00574-7.

Combinatorics 24 (2020), pp. 767–789. DOI: 10.1007/s00026-020-00513-4.

[5] Axel Kohnert. "Weintrauben, Polynome, Tableaux". PhD thesis. Universität Bayreuth, 1991. [6] George Wang. "Locks fit into keys: a crystal analysis of lock polynomials". In: Annals of

REFERENCES