The classical inverse Kostka matrix

- $h_k = \sum_{1 \le i_1 \le \dots \le i_k} x_{i_1} \cdots x_{i_k}$ $h_\lambda = h_{\lambda_1} \cdots h_{\lambda_\ell}$
- Jacobi–Trudi formula $s_{\lambda} = \det(h_{\lambda_i+j-i})_{i,j=1}^{\ell(\lambda)}$
- The **inverse Kostka matrix** K^{-1} is the transition matrix from $\{s_{\lambda}\}_{\lambda \vdash n}$ to $\{h_{\lambda} \vdash n\}$ in **Sym**.
- **Eğecioğlu and Remmel**: fill partition diagrams with special rim hooks and assign signed weights to these fillings to obtain the inverse Kostka matrix entries.

Problem (Eğecioğlu and Remmel '90)

Provide a combinatorial proof that $K^{-1}K = I$.

Into the world of NSym

• $\{H_1, H_2, \ldots\}$ =algebraically independent functions that don't commute. For any composition $\alpha = (\alpha_1, \ldots, \alpha_\ell)$

$$H_{\alpha} = H_{\alpha_1} H_{\alpha_2} \cdots H_{\alpha_{\ell}}$$

- **NSym** is generated by H_1, H_2, \ldots (with no relations) • Immaculate functions (Berg et al 14')
 - $\mathfrak{S}_{\alpha} = \mathfrak{det}(H_{\alpha_i+j-i})$

where $\partial \mathfrak{et}$ is the **NSym** determinant.

- Immaculate tableau filling of composition diagram with weakly increasing rows and strictly increasing first column.
- NSym Kostka matrix $K_{\alpha,\beta}$ =number of immaculate tableau of shape α and content β .

Main results

We solve Eğecioğlu's and Remmel's problem by first solving the analogous problem in NSym and then using this to solve the original problem.

Tunnel hook coverings (Allen–Mason '23)

Let $\alpha = (\alpha_1, \ldots, \alpha_\ell)$ be a composition. Draw this diagram in English notation. A **tunnel hook covering** of α is a disjoint collection $T = (\tau_1, \ldots, \tau_\ell)$ of **tunnel hooks** such that

- 1 There is a tunnel hook τ_i starting in each row $i \in [\ell]$ and proceeding down and to the left.
- 2 τ_i starts in column

if the row is not totally covered by $\tau_1, \ldots, \tau_{i-1}$ $lpha_i$ if the row is exactly covered by $\tau_1, \ldots, \tau_{i-1}$ $\langle \alpha_i + 1 \rangle$ $\alpha_i + 2k \quad \tau_1, \ldots, \tau_{i-1}$ cover k cells in row i outside of α

- Weight $\Delta(\tau_i) = \# \{ \text{cells in } \tau_i \}$ -#{cells in row *i* outside of α covered by some τ_i }
- Content $\alpha(T) = flat((\Delta(\tau_1), \ldots, \Delta(\tau_\ell)))$ where *flat*
- removes any 0's
- Sign $\operatorname{sgn}(\tau_i) = (-1)^{j-i}$ if τ_i ends on row j. $\operatorname{sgn}(T) = \prod_{i=1}^{\ell} \operatorname{sgn}(\tau_i).$

How to prove that

Edward E. Allen¹ Kyle Celano¹ Sarah K. Mason¹

¹Department of Mathematics, Wake Forest University

Theorem (Allen–Mason 2023)

Let $\mathrm{THC}_{\beta,\alpha}$ be the set of THC's of content β and shape α . For $\alpha, \beta \vdash n$, we have

$$\tilde{K}_{\beta,\alpha}^{-1} = \sum_{T \in \mathrm{THC}_{\beta,\alpha}} \mathrm{sgn}(T).$$

Note: Allen–Mason extend this to all integer sequences.

NSym Eğecioğlu and Remmel problems

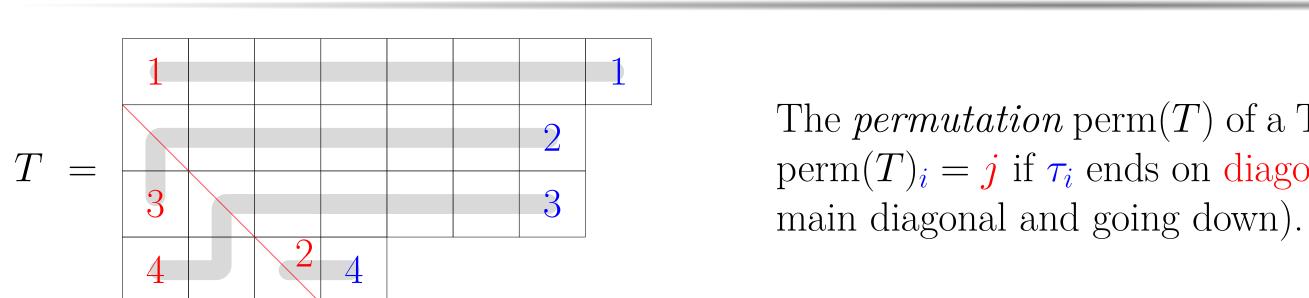
Provide **sign-reversing involutions** to establish the following identities

$$\delta_{\alpha,\beta} = (\tilde{K}\tilde{K}^{-1})_{\alpha,\beta} = \sum_{(S,T)} \operatorname{sgn}(T)$$

where the sum is over all (S, T) of

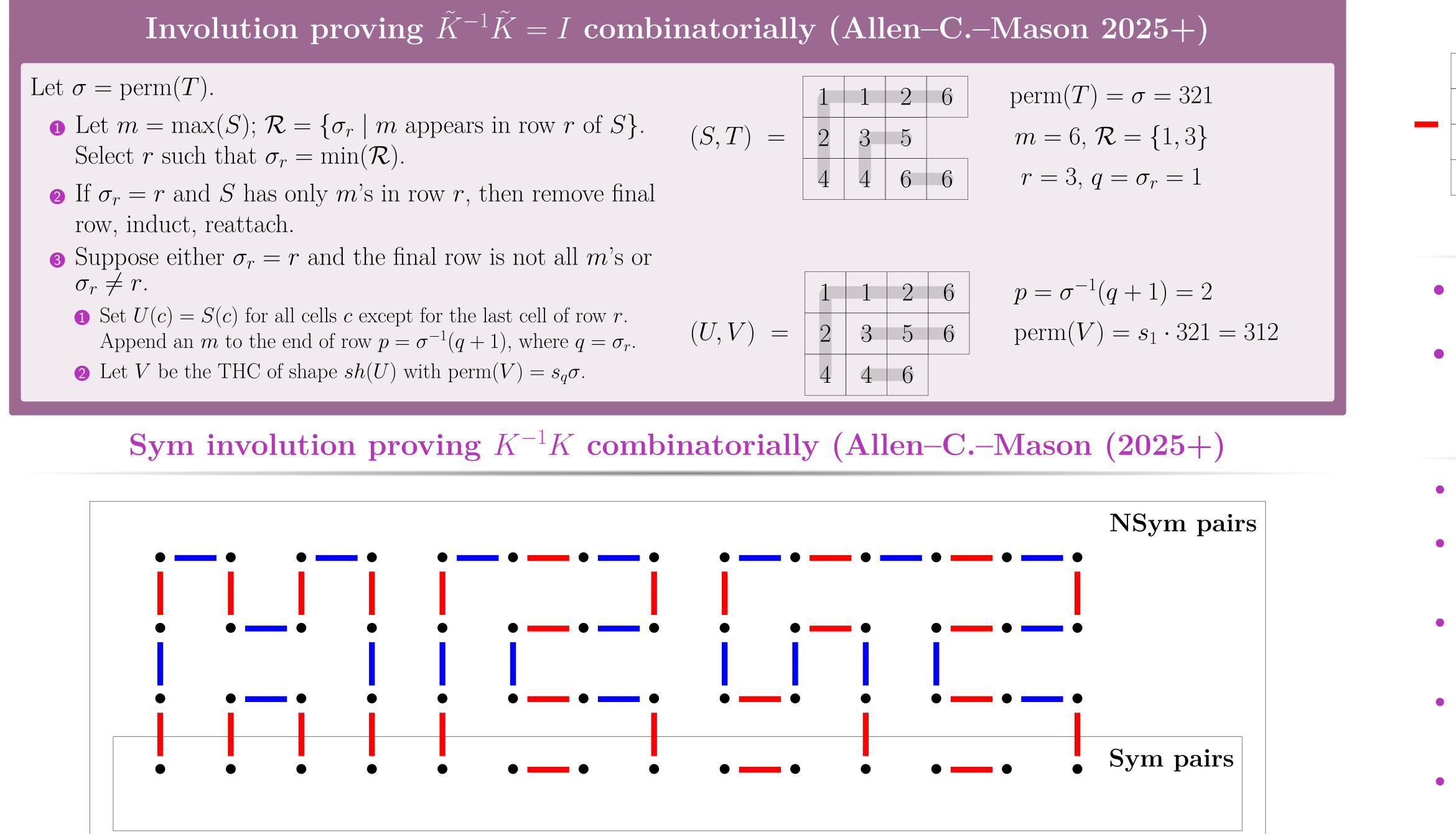
- S=immaculate tableau shape α
- T=tunnel hook covering of shape β
- S and T have same content

Note: We focus on $\tilde{K}^{-1}\tilde{K} = I$ for this poster. See full paper for $\tilde{K}\tilde{K}^{-1}$ **Permutations and tunnel**

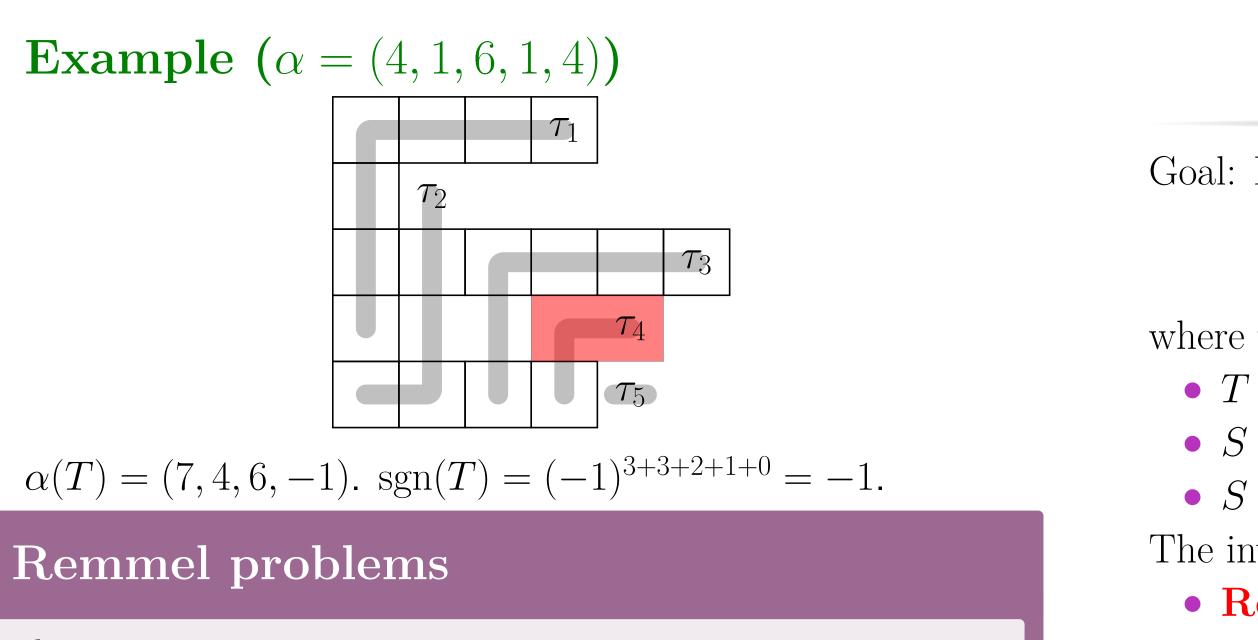


If $\beta = (\beta_1, \ldots, \beta_\ell), T \mapsto \operatorname{perm}(T)$ is a bijection $\bigsqcup_{\alpha} \operatorname{THC}_{\alpha,\beta} \to \mathfrak{S}_\ell$ such

- Select r such that $\sigma_r = \min(\mathcal{R})$.
- row, induct, reattach.
- $\sigma_r \neq r$.
- Append an m to the end of row $p = \sigma^{-1}(q+1)$, where $q = \sigma_r$.



at
$$K^{-1}K = I$$



$$\delta_{\alpha,\beta} = (\tilde{K}^{-1}\tilde{K})_{\alpha,\beta} = \sum_{(T,S)} \operatorname{sgn}(T)$$

where the sum is over all (T, S) of • T=tunnel hook covering of content α • S=immaculate tableau content β • S and T have same shape

$$I^{-1} = I.$$

The *permutation* perm(T) of a THC T is defined by $\operatorname{perm}(T)_i = j$ if τ_i ends on diagonal j (starting with $\operatorname{perm}(T) = j$

that
$$\operatorname{sgn}(\operatorname{perm}(T)) = \operatorname{sgn}(T)$$

2 | 2

3 3

(1 2 3 4)

1342

Sym involution (explanation)

Goal: Provide a sign reversing involution proving

$$\delta_{\lambda,\mu} = (K^{-1}K)_{\lambda,\mu} = \sum_{(T,S)} \operatorname{sgn}(T)$$

where the sum is over all (T, S) of

• T = THC of content α that rearranges to λ

• S =semistandandard Young tableau of content μ

• S and T have same shape

The involution is comprised of two parts:

• **Red**: Our **NSym** involution

• Blue: Gasharov-style involution on NSym pairs

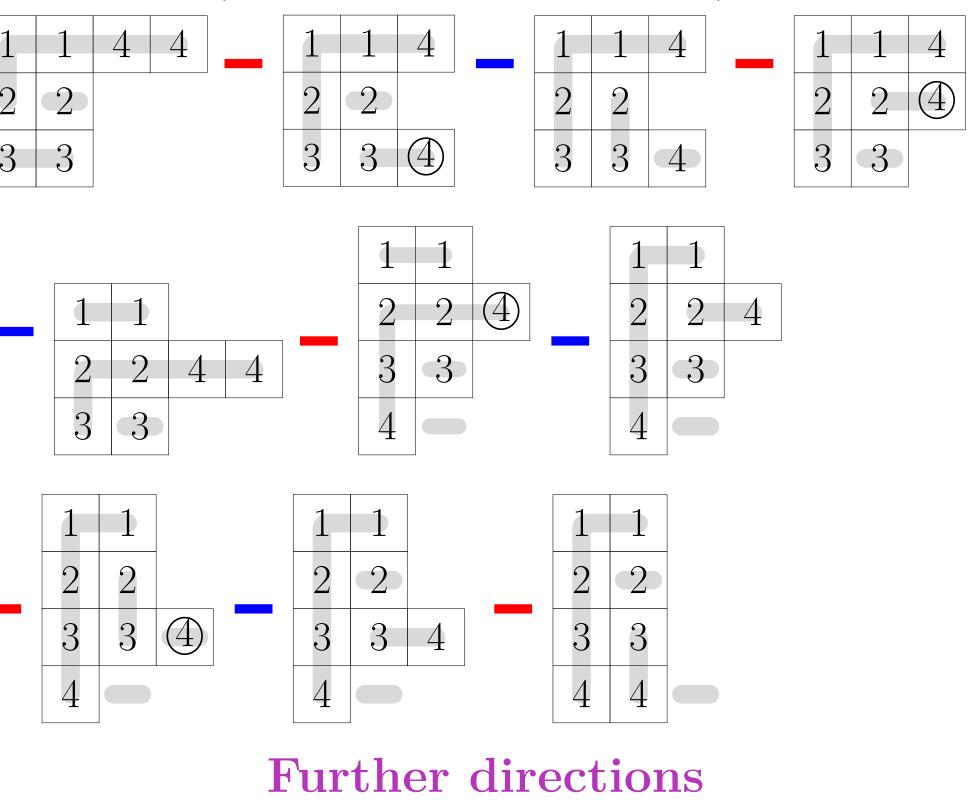
(T, S) that are not **Sym pairs**, meaning that S is an immaculate tableau that is NOT a SSYT.

We prove that

1 Red and **Blue** are distinct sign–reversing involutions **2 Blue** never produces a **Sym pair**

Therefore, the set of **NSym pairs** decomposes into a set of **Red**–**Blue** paths that are all of *odd length* with each endpoint a **Sym pair**. Since this is the composition of an odd number of sign-reversing maps, it is sign-reversing.

Example (Red-Blue involution)



• Understand the relationship between our involution and that of Sagan–Lee ('06) for $(K^{-1}K)_{\lambda,1^n} = \delta_{\lambda,1^n}$ • Construct **Red-Blue** involutions for other tableau-like objects.

For Further Information

• Allen, E. and Mason, S. A combinatorial interpretation of the noncommutative inverse Kostka matrix. arXiv:2207.05903 (2023) • E. E. Allen, K. Celano, S. K. Mason. Proof of an inverse Kostka matrix problem posed by Eğecioğlu and Remmel and related identities in Sym and NSym. 2025+. In preparation. • Berg, C., Bergeron, N., Saliola, F., Serrano, L., and Zabrocki, M. A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions. Canad. J. Math., 66 (2014) 3:525-565.

• Eğecioğlu, Ö. and Remmel, J. A combinatorial interpretation of the inverse Kostka matrix. Linear and Multilinear Algebra, 26 (1990) 1-2:59-84.

• J. Lee, B.E. Sagan, An algorithmic sign-reversing involution for special rim-hook tableaux, J. Algorithms 59 (2) (2006) 149–161.