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The Cambrian lattices, introduced by Reading, generalize the Tamari lattice to any choice of Coxeter element in any finite Coxeter group. They are further generalized to the m-Cambrian lattices.
[Reading, 2006, Stump et al., 2020, Tamari, 1962] We propose a new definition for m-Cambrian lattices, where the objects are m-multichains in the noncrossing partition lattice, with an explicit comparison criterion.

Noncrossing partitions and Cambrian lattice
Definition
A (standard) Coxeter element in a Coxeter group W is a product
of all simple reflections in some order. Coxeter elements are always
maximal in the absolute order Abs(W ).
The noncrossing partition lattice NCL(W , c) is the interval [e, c] in
the absolute order Abs(W ).
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Example
The absolute order on S3 (left) and the noncrossing partition lattice
NCL(S3, (123)) (right).

Proposition [C. Athanasiadis, T. Brady, and C. Watt, ’07]

The choice of a Coxeter element c gives a total order R(c) on all re-
flections. Each c-noncrossing partition possesses a unique R-word
whose letters appear in increasing order. They are thus in bijection
with subwords of the word R(c)2 which are reduced R-words for c,
which we call 1-factorizations of c.

s u t s u t
(12) (13) (23) (12) (13) (23)

e x x
(23) x x
(123) x x
(12) x x
(13) x x︸ ︷︷ ︸

w︸ ︷︷ ︸
c

Definition
A rotation of a 1-factorization of c consists in moving a cross in the
first copy of R(c) to the second copy, conjugating every cross in be-
tween.
The Cambrian lattice Camb(W , c) is the poset on 1-factorizations
obtained as the transitive closure of rotations.
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Example
The Cambrian lattice Camb(S3, (123)).

The m-Cambrian lattices
Definition
An m-factorization of a Coxeter element c is a subword of R(c)m+1

which is a reducedR-word for c.

Proposition [D. Armstrong, ’09]

Multichains with m elements in NCL(W , c) are in bijection with m-
factorizations of c.
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Example
Two 4-noncrossing partitions in NCL(S3, (123)).

Definition
For two m-noncrossing partitions w(m) and w′

(m)
, we set w(m) ⩽(m)

w′
(m)

if
1. Vertical condition: For all 1 ⩽ i ⩽ m, wi ⩽ w′

i in Camb(W , c);
2. Diagonal condition: For all 1 ⩽ i < m, wi ⩽R w′

i+1 in
NCL(W , c).
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Example
Since e ⩽ (13), (12) ⩽ (13), (12) ⩽ (123), and (12) ⩽ (123) in
Camb(S3, (123)), the vertical condition is satisfied.
Since e ⩽R (12), (13) ⩽R (13), and (13) ⩽R (123) in NCL(S3, (123)),
the diagonal condition is also satisfied.

Theorem [C., Fang, Henriet, ’24+]
The binary relation ⩽(m) is a partial order on m-noncrossing parti-
tions, which is isomorphic to the m-Cambrian lattice Camb(m)(W , c).
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Example
The 2-Cambrian lattice Camb(2)(S3, (123)).

c-increasing chains and greedy algorithm

Definition
If w ⋖ w′ is a covering relation, define the flip reflection r(w,w′) as
the selected letter of w that is sent to the next copy.
A saturated chain w0 ⋖ w1 ⋖ . . . ⋖ wm is an c-increasing chain if
r(wi,wi+1) is smaller than r(wi+1,wi+2) in R(c) for all i.

Proposition: Unicity
If w ⩽ w′ in the m-Cambrian lattice, if there exists a c-increasing
chain from w to w′, then the smallest letter of w that is not a letter of
w′ is the smallest flip reflection in any saturated chain from w to w′.
Thus, a c-increasing chain from w to w′ is unique.

Proposition: Existence
If w ⩽ w′ in them-Cambrian lattice, there exists a c-increasing chain
from w to w′.

Local reordering lemma
Let w0 ⋖ w1 ⋖ w2 in Camb(m)(W , c) with r(w0,w1) > r(w1,w2) =
r ′. Then r ′ ∈ w0 and setting w′

1 the upper cover of w0 such that
r(w0,w′

1) = r ′, we have w′
1 ⩽ w2.

w0

w1

w2

w′
1

rr ′

r ′⩽

Proposition
There is a greedy algorithm to decide comparability in the m-
Cambrian lattice. It consists of reading the letters of R(c)m+1 from
left to right, and try to flip each letter in turn.

Proposition
If the flip root of a covering relation appears in the i-th copy of R(c),
then only the entry wm−i of the m-noncrossing partition is modified.

Corollary
The existence of such an increasing c-chain is equivalent to the com-
parison scheme of ⩽(m).

Further direction and open questions
Corollary
Since the unique c-increasing chain of each interval is lexicogra-
phy smaller than all other chains, the m-Cambrian lattices are EL-
shellable.

Corollary
We can easily generate the Cambrian lattices thanks to the greedy al-
gorithm, and all m-Cambrian lattices thanks to the new comparison
criterion.

Corollary
We can define a binary relation on Cambrian intervals, such that
[w1,w′

1] ⩽ [w2,w′
2] if w1 ⩽R w2, w1 ⩽R w′

2, and w2 ⩽R w′
2 in the

noncrossing partition lattice NCLW , c.
It is transitive and antisymmetric, and its m-multichains are in bijec-
tion with intervals in the m-Cambrian lattice.

w1 w2
⩽R

w′
1 w′

2
⩽R

⩽ R

⩽ ⩽

Question
Can we use this ’almost’ poset on Cambrian chains to under-
stand the conjecture stating that theere are as many intervals in
the linear type A m-Cambrian lattice as in the m-Tamari lattice?
[Bousquet-Mélou et al., 2012, Stump et al., 2020]

Question
The noncrossing partition lattice corresponds to the shard order (or
core label order) of the Cambrian lattice. Can we mimic this m-
construction by replacing the Cambrian lattice by some other lattices,
e.g. semidistributive (and trim?) lattices?
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