Real Matroid Schubert Varieties and Zonotopes

Li, Yu (University of Toronto) Joint work with Leo Jiang

CAAC 2025

Introduction

- 2 Matroid Schubert varieties
- 3 Zonotopes
- 4 The homeomorphism
- 5 Topological consequences
- 6 Coxeter arrangements

Open questions

Introduction

A matroid Schubert variety is a certain compactification of a vector space in $(\mathbb{P}^1)^n$, n = 1, 2, 3, ...

Introduction

Matroid Schubert varieties

- were first defined by Ardila and Boocher [AB16];
- are a "trendy" subject in combinatorial algebra and algebraic combinatorics, partly due to the successful resolution of Dowling and Wilson's *top-heavy conjecture* by Braden, Huh, Martherne, Proudfoot and Wang [BHM⁺22], [BHM⁺23] using the geometry of matroid Schubert varieties;
- were rediscovered from the Poisson geometric perspective by Evens and Li [EL24], as a Poisson subvariety of *the variety of Lagrangian* subalgebras of g κ g*;
- have representation theoretical significance, e.g. Ilin, Kamnitzer, Li, Przytycki and Rybnikov proved that they are intimately related to the moduli space of *"cactus flower curves"*, the *virtual cactus and symmetric groups* and *Gaudin subalgebras* [IKL⁺24];
- lead to an additive/tropical analogue of the theory of *toric varieties* [Cro23].

Definition

 \mathbb{F} : any field, $A \in \operatorname{Mat}_{n \times d}(\mathbb{F})$: matrix of rank $d \rightsquigarrow$ Get embeddings

$$\mathbb{F}^d \stackrel{A}{\longrightarrow} \mathbb{F}^n \hookrightarrow (\mathbb{P}^1(\mathbb{F}))^n \quad \rightsquigarrow$$

Will regard \mathbb{F}^d as a locally closed subvariety of $(\mathbb{P}^1(\mathbb{F}))^n$ via the composition of the two embeddings.

Definition

The matroid Schubert variety Y associated with A is the closure of \mathbb{F}^d in $(\mathbb{P}^1(\mathbb{F}))^n$.

Goal

Understand combinatorially the topology of Y in the case where $\mathbb{F} = \mathbb{R}$.

5/38

An example

Take $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$. \rightsquigarrow The embeddings above are given by

$$\mathbb{F}^{2} \xrightarrow{A} \mathbb{F}^{3} \xrightarrow{((\mathbb{P}^{1}(\mathbb{F})))^{3}} (a, b) \longmapsto (a, b, a + b) \longmapsto ([1:a], [1:b], [1:a+b]). \quad \rightsquigarrow$$

If $([x_0 : x_1], [y_0 : y_1], [z_0 : z_1])$ are the homogeneous coordinates on $(\mathbb{P}^1(\mathbb{F}))^3$, then Y is cut out in $(\mathbb{P}^1(\mathbb{F}))^3$ by

$$x_1y_0z_0 + x_0y_1z_0 - x_0y_0z_1 = 0.$$
 \rightsquigarrow

An example

Hence, Y has an affine paving given by

$$\begin{split} Y &= \mathbb{F}^2 \sqcup \left(\mathbb{F} \times \{\infty\} \times \{\infty\} \right) \sqcup \left(\{\infty\} \times \mathbb{F} \times \{\infty\} \right) \\ & \sqcup \left(\{\infty\} \times \{\infty\} \times \mathbb{F} \right) \sqcup \{(\infty, \infty, \infty) \}. \end{split}$$

The zonotope associated with A

From now on we assume that $\mathbb{F} = \mathbb{R}$. Let A_1, \ldots, A_n be the row vectors of the matrix A.

Definition

The zonotope Z associated with A is the Minkowski sum

$$Z := \sum_{i=1}^{n} [-A_i, A_i] = \left\{ \sum_{i=1}^{n} c_i A_i : c_i \in [-1, 1] \ \forall i \in [1, n] \right\}$$

The zonotope associated with A

Z is a d-dimensional convex polytope sitting in \mathbb{R}^d , equipped with the Euclidean topology.

In particular, it makes sense to speak of two faces of Z being parallel.

Definition

Let $p, q \in Z$. We say that p is equivalent to $q, p \sim q$, if there exist faces \mathcal{F}, \mathcal{G} of Z and a vector $x \in \mathbb{R}^d$ such that

$$p \in \mathcal{F}, \quad q \in \mathcal{G}, \quad \mathcal{F} + x = \mathcal{G} \quad \text{and} \quad p + x = q.$$

The set of equivalence classes in Z, equipped with the quotient of the Euclidean topology, will be denoted by Z/\sim .

Example, cont'd

Back to the example where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$. \rightsquigarrow

The zonotope Z, as well as its parallel faces, is depicted as follows

Figure: The zonotope for the Coxeter arrangement of type A_2

Example, cont'd

From the above it is clear that Z/\sim is the 2-dimensional torus with two points identified.

Moreover, Z/\sim has a CW complex structure (one cell for each equivalence class of parallel faces of Z) with

- 1 cell of dimension 2;
- 2 3 cells of dimension 1;
- I cell of dimension 0.

Recall that the number of cells of dimensions 2, 1, 0 in the affine paving of \boldsymbol{Y} are also 1, 3, 1!

The homeomorphism

 $f:[-\infty,\infty]\rightarrow [-1,1]:$ any increasing homeomorphism. \rightsquigarrow Get a map

$$\mathbb{R}^d \longrightarrow \operatorname{Int}(Z)$$

 $x \longmapsto \sum_{i=1}^n f(A_i x) A_i,$

where Int(Z) stands for the interior of Z.

The homeomorphism

Theorem (Jiang-L.)

There exists a unique continuous map $\varphi: Y \to Z/\sim$ making the diagram

$$\begin{array}{c} \mathbb{R}^d \longrightarrow \operatorname{Int}(Z) \\ \downarrow \qquad \qquad \downarrow \\ Y \xrightarrow{\varphi \longrightarrow Z/\sim} Z/\sim \end{array}$$

commutative.

Moreover, the map $\varphi:Y\to Z/\!\!\sim$ is a homeomorphism and respects the CW complex structures.

Example, cont'd

To convince ourselves that the theorem is correct, let us consider again the example where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$. Take $f : [-\infty, \infty] \to [-1, 1], \ x \mapsto \frac{2}{\pi} \arctan(x)$. \rightsquigarrow Get a homeomorphism $(\mathbb{P}^1(\mathbb{R}))^3 \to [-1, 1]^3$ /parallel faces. \rightsquigarrow

Example, cont'd

The image of Y under this map is

Figure: Image of Y

Flats of A

Definition

A flat of A is a subset $F \subseteq [1, n]$ which is maximal, with respect to inclusion, among all subsets $G \subseteq [1, n]$ that satisfy the condition

$$\operatorname{Span}\{A_i: i \in F\} = \operatorname{Span}\{A_i: i \in G\}.$$

The rank rk(F) of a flat F of A is

```
\operatorname{rk}(A) := \dim \operatorname{Span}\{A_i \colon i \in F\}.
```

The join $F \lor G$ of two flats F, G of A is the minimal, with respect to inclusion, flat of A that contains both F and G.

Fact

The flats of A are in natural bijection with the equivalence classes of parallel faces of Z.

16/38

Example, cont'd

The matrix
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 has
1 flat of rank 2: $\{1, 2, 3\}$;
3 flats of rank 1: $\{1\}$, $\{2\}$ and $\{3\}$;
1 flat of rank 0: \emptyset .

Cohomology

Let $(C^*(Z/\sim; \mathbb{Z}), d)$ be the cellular complex of Z/\sim defined by the CW complex structure explained above.

For a flat F of A, write ξ_F for the cellular cochain which is dual to equivalence class of parallel faces of Z that corresponds to F, so

$$C^*(Z/\sim;\mathbb{Z}) = \bigoplus_{F: \text{ flat of } A} \mathbb{Z} \cdot \xi_F.$$

Cohomology

Theorem (Jiang-L.)

- The cellular differential d is zero;
- 2 As graded \mathbb{Z} -modules, we have

$$H^*(Z/\sim;\mathbb{Z})\cong \bigoplus_{F: \text{ flat of } A} \mathbb{Z} \cdot [\xi_F],$$

where $[\xi_F]$ is placed in degree rk(F);

So For flats F, G of A, up to a sign, the cup product of [ξ_F] and [ξ_G] is given by

$$[\xi_F] \smile [\xi_G] = \begin{cases} [\xi_{F \lor G}] & \text{if } \operatorname{rk}(F) + \operatorname{rk}(G) = \operatorname{rk}(F \lor G) \\ 0 & \text{otherwise.} \end{cases}$$

Remarks

- The last theorem is true for the complex locus of Y equipped with the Euclidean topology, except that [ξ_F] is placed in degree 2rk(F);
- 2 Let X be a projective variety defined over ℝ. It is very rare that H*(X(ℝ); Z) is isomorphic to H*(X(C); Z) with degrees halved. In fact, the projective space P^m, for m ≥ 2, does not have this property.

$\mathbb{Z}/2$ -equivariant cohomology ($\mathbb{Z}/2$ coefficients)

The group $\mathbb{Z}/2$ acts on $(\mathbb{P}^1(\mathbb{R}))^n$, where the nontrivial element acts by multiplying each component by -1.

It is evident that Y is stable under this action.

Theorem (Jiang-L.)

$$H^*_{\mathbb{Z}/2}(Y;\mathbb{Z}/2)\cong H^*(Y;\mathbb{Z}/2)\otimes_{\mathbb{Z}/2}(\mathbb{Z}/2)[s]$$

of $(\mathbb{Z}/2)[s]$ -modules;

2 For flats F, G of A, we have

$$([\xi_F] \otimes s^0) \smile ([\xi_G] \otimes s^0) = [\xi_{F \lor G}] \otimes s^{\operatorname{rk}(F) + \operatorname{rk}(G) - \operatorname{rk}(F \lor G)}$$

$\mathbb{Z}/2$ -equivariant cohomology (\mathbb{Z} coefficients)

Theorem (Jiang-L.)

- $H^*_{\mathbb{Z}/2}(Y;\mathbb{Z})$ is concentrated in even degrees;
- 2 For each $k \in \mathbb{Z}_{\geq 0}$, we have

$$H^{2k}_{\mathbb{Z}/2}(Y;\mathbb{Z}) \cong H^{2k}(Y;\mathbb{Z}) \oplus \bigoplus_{i=1}^{2k} \frac{H^{2k-i}(Y;\mathbb{Z})}{2H^{2k-i}(Y;\mathbb{Z})} s^i;$$

● For flats F, G of A and $a, b \in \mathbb{Z}_{\geq 0}$ with $rk(F) + a, rk(G) + b \in 2\mathbb{Z}$, we have

$$([\xi_F] \otimes s^a) \smile ([\xi_G] \otimes s^b) = [\xi_{F \lor G}] \otimes s^{\operatorname{rk}(F) + \operatorname{rk}(G) - \operatorname{rk}(F \lor G) + a + b}.$$

Theorem (Jiang-L.)

The space Y, with the stratification given by the skeleta of its CW complex structure, is a *topological pseudomanifold*. Moreover, the structure of the link at each point can be described combinatorially.

Example cont'd

For $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$, the variety Y is smooth except at the point (∞, ∞, ∞) .

From the picture below it is evident that the link at (∞, ∞, ∞) is $S^1 \sqcup S^1$.

Figure: Neighborhood of (∞, ∞, ∞)

Coxeter arrangements

From now on we assume that A is a *Coxeter arrangement*, i.e. the rows of A are indexed by the roots of a root system Φ , the columns by a base $\{\alpha_1, \ldots, \alpha_d\}$ of Φ , and for $\alpha \in \Phi$ with

$$\alpha = c_1 \alpha_1 + \dots + c_d \alpha_d,$$

the row of A indexed by α is $[c_1 \ldots c_d]$.

In this case, the matroid Schubert variety Y is also called the *wonderful* compactification of a Cartan subalgebra [EL24].

Let W be the Weyl group of Φ . It is evident that the W-action on $(\mathbb{P}^1)^{\Phi}$ by permuting the components leaves Y stable. Hence, W acts on Y.

W-equivariant fundamental group

 $G \curvearrowright X$: group action on a topological space, $x_0 \in X$: base point \rightsquigarrow

Definition

The G-equivariant fundamental group of (X, x_0) is

 $\pi_1^{\mathcal{G}}(X, x_0) := \{(g, p) \colon p \text{ is a homotopy class of paths } x_0 \longrightarrow g \cdot x_0\}.$

The multiplication in $\pi_1^G(X, x_0)$ is given by

 $(g_1, p_1) \cdot (g_2, p_2) = (g_1g_2, p_1 * (g_1 \cdot p_2)).$

 $n \in \mathbb{Z}_{>0} \rightsquigarrow$ S_n : symmetric group (with generators s_i), Br_n: braid group (with generators σ_i) \rightsquigarrow

Definition

The *virtual braid group* VB_n is the free product $S_n * Br_n$ modulo the relations

$$\begin{aligned} s_i s_{i+1} \sigma_i &= \sigma_{i+1} s_i s_{i+1} \quad \forall i \in [1, n-1] \\ s_i \sigma_j &= \sigma_j s_i \quad \forall i, j \in [1, n-1] \text{ with } |i-j| > 1. \end{aligned}$$

The virtual symmetric group VS_n is $VB_n/\langle \sigma_i^2 = 1 : i \in [1, n-1] \rangle$. The pure virtual symmetric group PVS_n is

$$\ker \left(\mathrm{VS}_n \longrightarrow S_n, \ s_i, \sigma_i \longmapsto s_i \right).$$

Theorem (BEER [BEER06], IKLPR [IKL⁺24])

If A is of type A_n , then

$$\pi_1^{\mathcal{S}_{n+1}}(Y)\cong \mathrm{VS}_n$$
 and $\pi_1(Y)\cong \mathrm{PVS}_n.$

Theorem (Jiang-L.)

Let A be a Coxeter arrangement, then

$$\pi_1^W(Y) \cong VW$$
 and $\pi_1(Y) \cong PVW$.

Remark

It is proved in [BEER06], [IKL⁺24] that, if A is of type A_n , the space Y is a CAT(0) space, hence a $K(\pi, 1)$ space. However, this is **NOT** true in general.

28/38

Definition

The totally nonnegative part $Y_{\geq 0}$ of Y is

$$\{(x_i)_{i=1}^n \in Y \subseteq (\mathbb{P}^1(\mathbb{R}))^n \colon x_i \in \mathbb{R}_{\geq 0} \sqcup \{\infty\} \ \forall i \in [1, n]\}.$$

Theorem (IKLPR [IKL⁺24])

Let A be a Coxeter arrangement. The totally nonnegative part $Y_{\geq 0}$ is combinatorially isomorphic to a d-dimensional cube.

Positive geometry

Theorem (Jiang-L.)

Let A be a Coxeter arrangement. The triple

$$(Y, Y_{\geq 0}, \Omega := \frac{dx_1}{x_1} \wedge \cdots \wedge \frac{dx_d}{x_d})$$

is a positive geometry in the sense of Lam [Lam22].

Generalization to oriented matroids

Matrices with entries in \mathbb{R} are precisely the *realizable oriented matroids*. For an arbitrary oriented matroid M, da Silva and Moulton [DM98] defined the *crinkled zonotope* Z_M associated with M.

We were able to generalize the equivalence relation \sim on Z to this more general setting. Although the notion of matroid Schubert variety for a general oriented matroid is undefined, the quotient space Z_M/\sim still makes sense.

Theorem (Jiang-L.)

All results above hold for Z_M/\sim .

In view of the last theorem, it is reasonable to call Z_M/\sim the matroid Schubert variety associated to the (not-necessarily-realizable) oriented matroid M.

Figure: Crinkled zonotope for the oriented matroid of type A_2

Wilf's conjecture

 $n, k \in \mathbb{Z}_{\geq 0} \rightsquigarrow S(n, k)$: Stirling number of the second kind (number of partitions of [1, n] into k nonempty parts) $\rightsquigarrow B(n) := \sum_{k \geq 0} (-1)^k S(n, k)$: the *n*th alternating Bell number \rightsquigarrow

Wilf's conjecture

For any $n \in \mathbb{Z}_{\geq 0} \setminus \{2\}$, $B(n) \neq 0$.

Theorem (Jiang-L.)

Let A be the Coxeter arrangement of type A_n . We have

$$h^k(Y;\mathbb{Z}) = S(n+1, n-k+1) \quad \forall k \in \mathbb{Z}_{\geq 0}.$$

In particular, Wilf's conjecture holds if the Euler characteristic $\chi(Y)$ of Y is nonzero for all $n \in \mathbb{Z}_{\geq 0} \setminus \{1\}$.

A mysterious duality

The Orlik-Solomon algebra associated with A is the cohomology of

$$\mathbb{C}^d \setminus \bigcup_{i=1}^n (\ker(A_i) \otimes_{\mathbb{R}} \mathbb{C}).$$

For $k \in \mathbb{Z}_{\geq 0}$, let w_k (resp. W_k) be the Whitney number of the first (resp. second) kind of A.

The two kinds of Whitney numbers are combinatorially dual to each other.

Theorem

For any
$$k \in \mathbb{Z}_{\geq 0}$$
,
• $h^k \left(\mathbb{C}^d \setminus \bigcup_{i=1}^n (\ker(A_i) \otimes_{\mathbb{R}} \mathbb{C}); \mathbb{Z} \right) = |w_k|;$
• (Jiang-L.) $h^k(Y; \mathbb{Z}) = W_{n-k}.$

Question

Find geometric/topological relations between Y and

 $\mathbb{C}^d \setminus \bigcup_{i=1}^n (\ker(A_i) \otimes_{\mathbb{R}} \mathbb{C})$ that explains the combinatorial duality between

the two kinds of Whitney numbers.

Koszulity of the cohomology of Y

Characterize those matrices A such that $H^*(Y; \mathbb{Q})$ is a Koszul algebra.

With the exception of the root system of type F_4 , we have proved the following result.

Theorem (Jiang-L.)

Let A be a Coxeter arrangement. The following are equivalent

- $H^*(Y; \mathbb{Q})$ is Koszul;
- $H^*(Y; \mathbb{Q})$ has a quadratic Gröbner basis;
- A is supersolvable;
- A is of types $A_n (n \ge 1)$, $B_n (n \ge 2)$ or G_2 .

More open questions

Questions

- Compute the intersection cohomology of Y;
- 2 Characterize those matrices A such that Y is a $K(\pi, 1)$ space;
- <u>3</u> . . . <u>.</u>

Federico Ardila and Adam Boocher. The closure of a linear space in a product of lines. *Journal of Algebraic Combinatorics*, 43, 02 2016.

Laurent Bartholdi, Benjamin Enriquez, Pavel Etingof, and Eric Rains. Groups and Lie algebras corresponding to the Yang–Baxter equations. *Journal of Algebra*, 305:742–764, 11 2006.

Tom Braden, June Huh, Jacob Matherne, Nicholas Proudfoot, and Botong Wang.

A semi-small decomposition of the chow ring of a matroid. *Advances in Mathematics*, 409:108646, 11 2022.

Tom Braden, June Huh, Jacob P. Matherne, Nicholas Proudfoot, and Botong Wang. Singular bodge theory for combinatorial geometries, 2023

Singular hodge theory for combinatorial geometries, 2023.

Colin Crowley.

Hyperplane arrangements and compactifications of vector groups, 2023.

37 / 38

Crinkled zonotopes.

Workingpaper, Mathematics Dept, Mid Sweden University, 1998.

Sam Evens and Yu Li.

Wonderful compactification of a Cartan subalgebra of a semisimple Lie algebra, 2024.

Aleksei Ilin, Joel Kamnitzer, Yu Li, Piotr Przytycki, and Leonid Rybnikov.

The moduli space of cactus flower curves and the virtual cactus group, 2024.

Thomas Lam.

An invitation to positive geometries, 2022.

Thank you!