DG-Sensitivity: Matching and Pruning

Henry Potts-Rubin

https://arxiv.org/abs/2502.00591

(joint with Hugh Geller & Des Martin)

Resolution

•
$$Q = \Bbbk[x_1, \ldots, x_n]$$

Resolution

•
$$Q = \Bbbk[x_1, \ldots, x_n]$$

• I = ideal of Q

Resolution

- $Q = \Bbbk[x_1, \ldots, x_n]$
- I = ideal of Q

A (Q-free) resolution $(\mathbb{F},\partial^{\mathbb{F}})$ of Q/I is an exact sequence

$$\cdots \to \mathbb{F}_{i} \xrightarrow{\partial_{i}^{\mathbb{F}}} \mathbb{F}_{i-1} \to \cdots \to \mathbb{F}_{1} \xrightarrow{\partial_{1}^{\mathbb{F}}} Q \to Q/I \to 0$$

in which each \mathbb{F}_i is a free *Q*-module.

Resolution

- $Q = \Bbbk[x_1, \ldots, x_n]$
- I = ideal of Q

A (Q-free) resolution $(\mathbb{F},\partial^{\mathbb{F}})$ of Q/I is an exact sequence

$$\cdots \to \mathbb{F}_{i} \xrightarrow{\partial_{i}^{\mathbb{F}}} \mathbb{F}_{i-1} \to \cdots \to \mathbb{F}_{1} \xrightarrow{\partial_{1}^{\mathbb{F}}} Q \to Q/I \to 0$$

in which each \mathbb{F}_i is a free *Q*-module.

Minimality

Since each $\partial_i^{\mathbb{F}}$ is a map between free modules, it may be represented as a matrix.

Resolution

- $Q = \Bbbk[x_1, \ldots, x_n]$
- I = ideal of Q

A (Q-free) resolution $(\mathbb{F},\partial^{\mathbb{F}})$ of Q/I is an exact sequence

$$\cdots \to \mathbb{F}_{i} \xrightarrow{\partial_{i}^{\mathbb{F}}} \mathbb{F}_{i-1} \to \cdots \to \mathbb{F}_{1} \xrightarrow{\partial_{1}^{\mathbb{F}}} Q \to Q/I \to 0$$

in which each \mathbb{F}_i is a free *Q*-module.

Minimality

Since each $\partial_i^{\mathbb{F}}$ is a map between free modules, it may be represented as a matrix. If the entries of each $\partial_i^{\mathbb{F}}$ are in (x_1, \ldots, x_n) , call \mathbb{F} minimal.

```
Let Q = \Bbbk[x, y, z, w] and I = (xy, xz, yz, zw).
```

Example

Let $Q = \Bbbk[x, y, z, w]$ and I = (xy, xz, yz, zw). A resolution of Q/I over Q is

$$0 \to Q \xrightarrow{\begin{bmatrix} 1 & w & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 1 & 1 \\ 0 & 0 & 0 & -x \\ 0 & 0 & -x & 0 \\ 0 & 0 & 0 & -x \\$$

Example

Let $Q = \Bbbk[x, y, z, w]$ and I = (xy, xz, yz, zw). A resolution of Q/I over Q is

$$0 \to Q \xrightarrow{\begin{bmatrix} -w \\ 1 \\ -1 \\ 1 \end{bmatrix}} Q^4 \xrightarrow{\begin{bmatrix} 1 & w & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & y & 0 & -y \\ 0 & 0 & x & x \end{bmatrix}} Q^6 \xrightarrow{\begin{bmatrix} z & -z & -zw & 0 & 0 & 0 \\ y & 0 & 0 & -y & -w & 0 \\ 0 & x & 0 & x & 0 & -w \\ 0 & 0 & xy & 0 & x & y \end{bmatrix}} Q^4 \xrightarrow{\begin{bmatrix} xy & xz & yz & zw \end{bmatrix}} Q \to 0$$

Not minimal.

Example

Let $Q = \Bbbk[x, y, z, w]$ and I = (xy, xz, yz, zw). A resolution of Q/I over Q is

$$0 \to Q \xrightarrow{\begin{bmatrix} -w \\ 1 \\ 1 \\ 1 \end{bmatrix}} Q^4 \xrightarrow{\begin{bmatrix} 1 & w & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & y & 0 & -y \\ 0 & 0 & x & x \end{bmatrix}} Q^6 \xrightarrow{\begin{bmatrix} z & -z & -zw & 0 & 0 & 0 \\ y & 0 & 0 & y & -y \\ 0 & x & 0 & x & 0 & -y \\ 0 & 0 & xy & 0 & x & y \end{bmatrix}} Q^4 \xrightarrow{\begin{bmatrix} xy & -z & -zw & 0 & 0 & 0 \\ 0 & x & 0 & x & 0 & -y \\ 0 & 0 & xy & 0 & x & y \end{bmatrix}} Q^4 \xrightarrow{\begin{bmatrix} xy & -zz & -zw & 0 & 0 & 0 \\ 0 & xy & 0 & x & y \\ 0 & 0 & xy & 0 & x & y \end{bmatrix}} Q^4$$

Not minimal. The minimal Q-free resolution of Q/I is

$$0 \to Q \xrightarrow{\begin{pmatrix} 0 \\ w \\ -x \\ y \end{pmatrix}} Q^{4} \xrightarrow{\begin{pmatrix} -x & -x & -w & 0 \\ z & 0 & 0 & 0 \\ 0 & y & 0 & -w \\ 0 & 0 & y & x \end{pmatrix}} Q^{4} \xrightarrow{\begin{bmatrix} yz & xy & xz & zw \end{bmatrix}} Q \to 0$$

Taylor Resolution (Taylor, 1966)

 $Q = \Bbbk[x_1, \ldots, x_n]$

Taylor Resolution (Taylor, 1966)

 $Q = \Bbbk[x_1, \dots, x_n]$, $I = (f_1, \dots, f_t)$ is a monomial ideal of Q

Taylor Resolution (Taylor, 1966)

 $Q = \Bbbk[x_1, \ldots, x_n], I = (f_1, \ldots, f_t)$ is a monomial ideal of Q"<" = total order on the f_j

Taylor Resolution (Taylor, 1966)

 $Q = \Bbbk[x_1, \ldots, x_n], I = (f_1, \ldots, f_t)$ is a monomial ideal of Q"<" = total order on the f_j

The **Taylor resolution** (Taylor, 1966) of Q/I is the complex \mathbb{T} given by

$$\mathbb{T}_i = Q^{\binom{t}{i}},$$

which has basis $\{e_F\}$, where F is an *i*-element subset of $\{f_1, \ldots, f_t\}$.

Taylor Resolution (Taylor, 1966)

 $Q = \Bbbk[x_1, \ldots, x_n], I = (f_1, \ldots, f_t)$ is a monomial ideal of Q"<" = total order on the f_j

The **Taylor resolution** (Taylor, 1966) of Q/I is the complex \mathbb{T} given by

$$\mathbb{T}_i = Q^{\binom{t}{i}},$$

which has basis $\{e_F\}$, where F is an *i*-element subset of $\{f_1, \ldots, f_t\}$.

Differential:

$$\partial(e_F) = \sum_{f_j \in F} (-1)^{\sigma(j,F)} \frac{m_F}{m_{F_j}} e_{F_j},$$

where $F_j := F \setminus \{f_j\}$, $m_F = \operatorname{lcm}\{f_k : f_k \in F\}$, and $\sigma(j, F) = |\{f_k \in F \mid k < j\}|$.

Taylor Resolution (Taylor, 1966)

 $Q = \Bbbk[x_1, \ldots, x_n], I = (f_1, \ldots, f_t)$ is a monomial ideal of Q"<" = total order on the f_j

The **Taylor resolution** (Taylor, 1966) of Q/I is the complex \mathbb{T} given by

 $\mathbb{T}_i = Q^{\binom{t}{i}},$

which has basis $\{e_F\}$, where F is an *i*-element subset of $\{f_1, \ldots, f_t\}$.

Differential:

$$\partial(e_F) = \sum_{f_j \in F} (-1)^{\sigma(j,F)} \frac{m_F}{m_{F_j}} e_{F_j},$$

where $F_j := F \setminus \{f_j\}$, $m_F = \operatorname{lcm}\{f_k : f_k \in F\}$, and $\sigma(j, F) = |\{f_k \in F \mid k < j\}|$.

The Taylor resolution is indeed a resolution (nontrivial).

Taylor Resolution (Taylor, 1966)

 $Q = \Bbbk[x_1, \ldots, x_n], I = (f_1, \ldots, f_t)$ is a monomial ideal of Q"<" = total order on the f_j

The **Taylor resolution** (Taylor, 1966) of Q/I is the complex \mathbb{T} given by

 $\mathbb{T}_i = Q^{\binom{t}{i}},$

which has basis $\{e_F\}$, where F is an *i*-element subset of $\{f_1, \ldots, f_t\}$.

Differential:

$$\partial(e_F) = \sum_{f_j \in F} (-1)^{\sigma(j,F)} \frac{m_F}{m_{F_j}} e_{F_j},$$

where $F_j := F \setminus \{f_j\}$, $m_F = \operatorname{lcm}\{f_k : f_k \in F\}$, and $\sigma(j, F) = |\{f_k \in F \mid k < j\}|$.

The Taylor resolution is indeed a resolution (nontrivial). Minimality: $\frac{m_F}{m_{F_i}}$

Let $Q = \Bbbk[x, y, z, w]$ and I = (xy, xz, yz, zw), where xy < xz < yz < zw.

Let $Q = \Bbbk[x, y, z, w]$ and I = (xy, xz, yz, zw), where xy < xz < yz < zw. The Taylor resolution of Q/I is

$$0 \to Q \xrightarrow{\begin{bmatrix} \frac{1}{v} \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}} Q^{4} \xrightarrow{\begin{bmatrix} 1 & w & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & w \\ 0 & 0 & x & x \end{bmatrix}} Q^{6} \xrightarrow{\begin{bmatrix} -z & -z & -zw & 0 & 0 & 0 \\ y & 0 & 0 & -y & -w & 0 \\ 0 & x & 0 & -x & 0 & -w \\ 0 & 0 & xy & 0 & x & y \end{bmatrix}} Q^{4} \xrightarrow{\begin{bmatrix} xy & xz & yz & zw \end{bmatrix}} Q \to 0$$

Differential Graded Algebra

Idea: make a complex into a ring

Differential Graded Algebra

Idea: make a complex into a ring

$$\cdots \to A_n \stackrel{\partial_n^A}{\to} A_{n-1} \to \cdots \to A_1 \stackrel{\partial_1^A}{\to} A_0 \to 0$$

Differential Graded Algebra

Idea: make a complex into a ring

$$\cdots \to A_n \xrightarrow{\partial_n^A} A_{n-1} \to \cdots \to A_1 \xrightarrow{\partial_1^A} A_0 \to 0 \rightsquigarrow A := \bigoplus_{i=0}^\infty A_0$$

Differential Graded Algebra

Idea: make a complex into a ring

$$\cdots \to A_n \xrightarrow{\partial_n^A} A_{n-1} \to \cdots \to A_1 \xrightarrow{\partial_1^A} A_0 \to 0 \rightsquigarrow A := \bigoplus_{i=0}^\infty A_0$$

Differential Graded Algebra

Idea: make a complex into a ring

$$\cdots \to A_n \xrightarrow{\partial_n^A} A_{n-1} \to \cdots \to A_1 \xrightarrow{\partial_1^A} A_0 \to 0 \rightsquigarrow A := \bigoplus_{i=0}^\infty A_0$$

(i)
$$A_i A_j \subseteq A_{i+j}$$

Idea: make a complex into a ring

$$\cdots \to A_n \stackrel{\partial_n^A}{\to} A_{n-1} \to \cdots \to A_1 \stackrel{\partial_1^A}{\to} A_0 \to 0 \rightsquigarrow A := \bigoplus_{i=0}^{\infty} A_0$$

(i)
$$A_i A_j \subseteq A_{i+j}$$

(ii) $\partial^A(a_i a_j) = \partial^A(a_i) a_j + (-1)^i a_i \partial^A(a_j)$ "Leibniz rule

Idea: make a complex into a ring

$$\cdots \to A_n \stackrel{\partial_n^A}{\to} A_{n-1} \to \cdots \to A_1 \stackrel{\partial_1^A}{\to} A_0 \to 0 \rightsquigarrow A := \bigoplus_{i=0}^{\infty} A_0$$

(i)
$$A_i A_j \subseteq A_{i+j}$$

(ii) $\partial^A(a_i a_j) = \partial^A(a_i)a_j + (-1)^i a_i \partial^A(a_j)$ "Leibniz rule"
(iii) $a_i a_j = (-1)^{ij} a_j a_i$

Idea: make a complex into a ring

$$\cdots \to A_n \stackrel{\partial_n^A}{\to} A_{n-1} \to \cdots \to A_1 \stackrel{\partial_1^A}{\to} A_0 \to 0 \rightsquigarrow A := \bigoplus_{i=0}^{\infty} A_0$$

(i)
$$A_i A_j \subseteq A_{i+j}$$

(ii) $\partial^A(a_i a_j) = \partial^A(a_i)a_j + (-1)^i a_i \partial^A(a_j)$ "Leibniz rule"
(iii) $a_i a_j = (-1)^{ij} a_j a_i$
(iv) $a_i^2 = 0$ if *i* is odd

Idea: make a complex into a ring

$$\cdots \to A_n \stackrel{\partial_n^A}{\to} A_{n-1} \to \cdots \to A_1 \stackrel{\partial_1^A}{\to} A_0 \to 0 \rightsquigarrow A := \bigoplus_{i=0}^{\infty} A_0$$

Call *A* a **differential graded (dg) algebra** if we can impose a unitary, associative multiplication on *A* such that

(i)
$$A_i A_j \subseteq A_{i+j}$$

(ii) $\partial^A(a_i a_j) = \partial^A(a_i)a_j + (-1)^i a_i \partial^A(a_j)$ "Leibniz rule"
(iii) $a_i a_j = (-1)^{ij} a_j a_i$
(iv) $a_i^2 = 0$ if *i* is odd

Big Question

When does a resolution of a module admit the structure of a dg algebra?

Notice: $V, W \subseteq V \cup W$

When does a resolution of a module admit the structure of a dg algebra?

When does a resolution of a module admit the structure of a dg algebra?

Partial Answer

Examples of complexes that admit the structure of a dg algebra:

When does a resolution of a module admit the structure of a dg algebra?

Partial Answer

Examples of complexes that admit the structure of a dg algebra:

• Length \leq 3 resolutions of cyclic modules (Buchsbaum-Eisenbud, 1977)

When does a resolution of a module admit the structure of a dg algebra?

Partial Answer

Examples of complexes that admit the structure of a dg algebra:

- Length ≤ 3 resolutions of cyclic modules (Buchsbaum-Eisenbud, 1977)
- The Koszul complex (exterior algebra)

When does a resolution of a module admit the structure of a dg algebra?

Partial Answer

Examples of complexes that admit the structure of a dg algebra:

- Length ≤ 3 resolutions of cyclic modules (Buchsbaum-Eisenbud, 1977)
- The Koszul complex (exterior algebra)
- The Taylor resolution of a monomial ideal (Gemeda, 1976)

When does a resolution of a module admit the structure of a dg algebra?

Partial Answer

Examples of complexes that admit the structure of a dg algebra:

- Length ≤ 3 resolutions of cyclic modules (Buchsbaum-Eisenbud, 1977)
- The Koszul complex (exterior algebra)
- The Taylor resolution of a monomial ideal (Gemeda, 1976)

Example of a complex that *does not* admit the structure of a dg algebra:

When does a resolution of a module admit the structure of a dg algebra?

Partial Answer

Examples of complexes that admit the structure of a dg algebra:

- Length \leq 3 resolutions of cyclic modules (Buchsbaum-Eisenbud, 1977)
- The Koszul complex (exterior algebra)
- The Taylor resolution of a monomial ideal (Gemeda, 1976)

Example of a complex that *does not* admit the structure of a dg algebra:

• The minimal $\mathbb{k}[x, y, z, w]$ -free resolution of $\frac{\mathbb{k}[x, y, z, w]}{(x^2, xy, yz, zw, w^2)}$ (Avramov, 1981)

Refined Question

When does the *minimal* free resolution of a module admit the structure of a dg algebra?

Refined Question

When does the *minimal* free resolution of a module admit the structure of a dg algebra?

Related Question

Given a dg algebra resolution \mathbb{F} of Q/I, what processes can we perform on \mathbb{F} to *construct a new resolution* \mathbb{F}' (possibly of a *different module*, possibly over a *different ring*) such that \mathbb{F}' admits the structure of a dg algebra?

Refined Question

When does the *minimal* free resolution of a module admit the structure of a dg algebra?

Related Question

Given a dg algebra resolution \mathbb{F} of Q/I, what processes can we perform on \mathbb{F} to *construct a new resolution* \mathbb{F}' (possibly of a *different module*, possibly over a *different ring*) such that \mathbb{F}' admits the structure of a dg algebra? And when does such a process preserve/yield minimality?

Process: Matching

$$I = (xy, xz, yz, zw)$$

Process: Matching

Example

I = (xy, xz, yz, zw)

(arrows identify non-minimality)

Example

I = (xy, xz, yz, zw), Morse matching

Theorem (Batzies-Welker, 2002)

 \mathbb{T}/\mathbb{J} is a resolution

Theorem (Batzies-Welker, 2002)

 \mathbb{T}/\mathbb{J} is a resolution

Theorem (Geller-Martin-P, 2025+)

If the collection of blue sources is closed under taking supersets, then \mathbb{T}/\mathbb{J} admits the structure of a dg algebra.

Theorem (Batzies-Welker, 2002)

 \mathbb{T}/\mathbb{J} is a resolution

Theorem (Geller-Martin-P, 2025+)

If the collection of blue sources is closed under taking supersets, then \mathbb{T}/\mathbb{J} admits the structure of a dg algebra.

Theorem (Geller-Martin-P, 2025+)

Let G be a graph such that Q/I_G is minimally resolved by a Lyubeznik resolution, where I_G is the edge ideal of G. Then, the minimal free resolution of Q/I_G admits the structure of a differential graded algebra.

 $Q = \Bbbk[x, y, z, u, v, w]$

$$Q = \Bbbk[x, y, z, u, v, w], I = (xv, uv, yw, yzu, xzw)$$

$$Q = \Bbbk[x, y, z, u, v, w], I = (xv, uv, yw, yzu, xzw)$$

$$0 \rightarrow Q^{3} \xrightarrow{\begin{pmatrix} 0 & yw & 0 \\ 0 & 0 & -w \\ -v & 0 & 0 \\ 0 & 0 & v \\ -z & -u & 0 \\ y & 0 & 0 \\ 0 & x & z \\ \end{pmatrix}} Q^{7} \xrightarrow{\begin{pmatrix} -u & 0 & 0 & 0 & -yw & -zw & 0 \\ x & -yz & 0 & 0 & 0 & 0 & -yw \\ 0 & 0 & -xz & -zu & xv & 0 & uv \\ 0 & v & 0 & w & 0 & 0 & 0 \\ 0 & 0 & y & 0 & 0 & v & 0 \\ \end{pmatrix}} Q^{5} \xrightarrow{\left[xv \ uv \ yw \ yzu \ xzw \right]}} Q \rightarrow Q/I \rightarrow 0$$

$$Q = \mathbb{k}[x, y, z, u, v, w], I = (xv, uv, yw, yzu, xzw), \text{ prune } w$$

$$0 \rightarrow Q^{3} \xrightarrow{\begin{pmatrix} 0 & yw & 0 \\ 0 & 0 & -w \\ -v & 0 & 0 \\ 0 & 0 & v \\ -z & -u & 0 \\ y & 0 & 0 \\ 0 & x & z \\ \end{pmatrix}} Q^{7} \xrightarrow{\begin{pmatrix} -u & 0 & 0 & 0 & -yw & -zw & 0 \\ x & -yz & 0 & 0 & 0 & 0 & -yw \\ 0 & 0 & -xz & -zu & xv & 0 & uv \\ 0 & v & 0 & w & 0 & 0 & 0 \\ 0 & 0 & y & 0 & 0 & v & 0 \\ \end{pmatrix}} Q^{5} \xrightarrow{\left[xv \ uv \ yw \ yzu \ xzw \right]}} Q \rightarrow Q/I \rightarrow 0$$

$$R = \Bbbk[x, y, z, u, v], I' = (xv, uv, yzu)$$
, prune w

$$0 \to R^{3} \xrightarrow{\begin{pmatrix} 0 & yw & 0 \\ 0 & 0 & -w \\ -v & 0 & 0 \\ 0 & 0 & v \\ -z & -u & 0 \\ y & 0 & 0 \\ 0 & x & z \end{pmatrix}} R^{7} \xrightarrow{\begin{pmatrix} -u & 0 & 0 & 0 & -yw & -zw & 0 \\ x & -yz & 0 & 0 & 0 & 0 & -yw \\ 0 & 0 & -xz & -zu & xv & 0 & uv \\ 0 & 0 & y & 0 & 0 & v & 0 \\ 0 & 0 & y & 0 & 0 & v & 0 \\ \end{pmatrix}} R^{5} \xrightarrow{\left[xv \ uv \ yw \ yzu \ xzw \right]}} R \to R/I' \to 0$$

$$R = \Bbbk[x, y, z, u, v], I' = (xv, uv, yzu)$$
, prune w

$$R = \Bbbk[x, y, z, u, v], I' = (xv, uv, yzu)$$
, prune w

$$0 \rightarrow R^{3} \xrightarrow{\begin{pmatrix} 0 & yw & 0 \\ 0 & 0 & -w \\ -v & 0 & 0 \\ 0 & 0 & v \\ -z & -u & 0 \\ y & 0 & 0 \\ 0 & x & z \end{pmatrix}} R^{7} \xrightarrow{\begin{pmatrix} -u & 0 & 0 & 0 & -yw & -zw & 0 \\ x & -yz & 0 & 0 & 0 & 0 & -yw \\ 0 & v & 0 & w & 0 & 0 & 0 \\ 0 & v & 0 & w & 0 & 0 & 0 \\ \end{pmatrix}} R^{3} \xrightarrow{[xv & uv & yzu]} R \rightarrow R/I' \rightarrow 0$$

$$R = \Bbbk[x, y, z, u, v], I' = (xv, uv, yzu)$$
, prune w

$$0 \rightarrow R^{3} \xrightarrow{\begin{pmatrix} 0 & yw & 0 \\ 0 & 0 & -w \\ -v & 0 & 0 \\ 0 & 0 & v \\ -z & -u & 0 \\ y & 0 & 0 \\ 0 & x & z \end{pmatrix}} R^{7} \xrightarrow{\begin{pmatrix} -u & 0 & 0 & 0 & -yw & -zw & 0 \\ x & -yz & 0 & 0 & 0 & 0 & -yw \\ 0 & v & 0 & w & 0 & 0 & 0 \\ 0 & v & 0 & w & 0 & 0 & 0 \\ \end{pmatrix}} R^{3} \xrightarrow{[xv \ uv \ yzu]} R \rightarrow R/I' \rightarrow 0$$

R = k[x, y, z, u, v], I' = (xv, uv, yzu), prune w

$$0 \to R^3 \xrightarrow{\begin{bmatrix} 0 & yw & 0 \\ 0 & 0 & -w \end{bmatrix}} R^2 \xrightarrow{\begin{bmatrix} -u & 0 \\ x & -yz \\ 0 & v \end{bmatrix}} R^3 \xrightarrow{\begin{bmatrix} xv & uv & yzu \end{bmatrix}} R \to R/I' \to 0$$

 $R = \Bbbk[x, y, z, u, v], I' = (xv, uv, yzu)$

$$0 \to R^{2} \xrightarrow{ \begin{bmatrix} -u & 0 \\ x & -yz \\ 0 & v \end{bmatrix}} R^{3} \xrightarrow{ \begin{bmatrix} xv & uv & yzu \end{bmatrix}} R \to R/I' \to 0$$

Theorem (Boocher, 2012)

For a monomial ideal I of a polynomial ring Q, (iteratively) pruning the minimal Q-free resolution of Q/I obtains the minimal R-free resolution of R/I'.

Theorem (Geller-Martin-P, 2025+)

For squarefree monomial ideals, (iteratively) pruning the minimal free resolution of Q/I is DG-sensitive.

Main Result

Theorem (Geller-Martin-P, 2025+)

For squarefree monomial ideals, (iteratively) pruning the minimal free resolution of Q/I is DG-sensitive.

$$\mathbb{F} \xrightarrow{\simeq}_{Q} Q/I \text{ dga} + \text{minimal} \quad \rightsquigarrow \ \mathbb{F}' \xrightarrow{\simeq}_{R} R/I' \text{ dga} + \text{minimal}$$

Main Result

Theorem (Geller-Martin-P, 2025+)

For squarefree monomial ideals, (iteratively) pruning the minimal free resolution of Q/I is DG-sensitive.

$$\mathbb{F} \xrightarrow{\simeq}_{Q} Q/I \text{ dga} + \text{minimal} \quad \rightsquigarrow \ \mathbb{F}' \xrightarrow{\simeq}_{R} R/I' \text{ dga} + \text{minimal}$$

Corollary (Geller-Martin-P, 2025+)

Let Δ be a simplicial complex such that the minimal Q-free resolution of $Q/I(\Delta)$ admits the structure of a differential graded algebra, where $I(\Delta)$ is the facet ideal of Δ and Q is the ambient polynomial ring of Δ .

Main Result

Theorem (Geller-Martin-P, 2025+)

For squarefree monomial ideals, (iteratively) pruning the minimal free resolution of Q/I is DG-sensitive.

$$\mathbb{F} \xrightarrow{\simeq}_{Q} Q/I \text{ dga} + \text{minimal} \quad \rightsquigarrow \ \mathbb{F}' \xrightarrow{\simeq}_{R} R/I' \text{ dga} + \text{minimal}$$

Corollary (Geller-Martin-P, 2025+)

Let Δ be a simplicial complex such that the minimal Q-free resolution of $Q/I(\Delta)$ admits the structure of a differential graded algebra, where $I(\Delta)$ is the facet ideal of Δ and Q is the ambient polynomial ring of Δ .

If Δ' is a facet-induced subcomplex of Δ and R is the ambient polynomial ring of Δ' , then the minimal R-free resolution of $R/I(\Delta')$ admits the structure of a differential graded algebra.

Classification (Geller-Martin-P, 2025+)

Let Γ be a tree of diameter d. The minimal Q-free resolution of Q/I_{Γ} admits the structure of a differential graded algebra if and only if $d \leq 4$.

Classification (Geller-Martin-P, 2025+)

Let Γ be a tree of diameter d. The minimal Q-free resolution of Q/I_{Γ} admits the structure of a differential graded algebra if and only if $d \leq 4$.

Classification (Geller-Martin-P, 2025+)

Let C_n be the cycle on *n* vertices. The minimal *Q*-free resolution of Q/I_{C_n} admits the structure of a differential graded algebra if and only if $n \leq 5$.

Thanks for listening!

Henry Potts-Rubin hpottsru@syr.edu