
The mathematics of boosting

Philippe Fullsack

March 10 2020

1 The boosting idea

Boosting is an idea proposed by Robert Schapire and Yoav Freund. It evolved, as good ideas often
do, from a simple concept into a family of powerful algorithms. In this section, we present a basic
idea and show how it allows us to improve the quality of prediction of pretty much any algorithm.
In the next section, we will further improve on this idea. Suppose we some access to some data.
We have seen in our presentation of the Random Forest algorithm how we can re-sample data with
replacement (this is called bootstrap sampling) and use this method to create synthetic data-sets
to generate many models (e.g. CART trees) and elicit a good response by averaging or voting. In
bootstrap sample, the basic idea was that all records were exchangeable and had the exact same
weight. In boosting, we proceed differently. We are going to play with ’re-weighting of the data’.
By this, we mean that the algorithm will attach a weight (importance) to each data record, and
it will do this so as to improve the performance of classification. Assume that we have a baseline
algorithm that does ’a bit better’ than chance guessing, hence has a probability of error p < 1/2.
Our goal is to embed this baseline (or weak) learner into an ’boosted’ algorithm that has a better
performance. Of course, the key reason why we might be able to do this is that we have access to
labels and can therefore validate the predictions of the weak learner.

Here is the first idea of Schapire-Freund (pre-AdaBoost, if you wish to call it so). Note D1[x]
be the original sampling probability on x. This gives a uniform weight 1/|S| to all records/data
points. Applying our base learner produces a first hypothesis (tentative prediction of classes), that
we note h1. This makes mistakes on incorrect samples (set SI) and is correct on the subset SC .
Hence verification of labels (which is possible because we build our model from a labelled training
set, as we usually do in supervised learning algorithms) leads to a first partition of of S. The

nominal/baseline algorithm has a probability of error equal to p = |SI |
|S| , and the probability of

making no error is 1 − p = |SC |
|S| . Now we want in the next round the algorithm to re-weight the

data point so as to balance the hard and easy examples, so to speak. This is done by modifying
the original uniform sampling distribution on data points so as to give equal weights to the sample
points that have been correctly and incorrectly classified in the first round of iteration. Hence, we
want to reduce the probability of correct data point from 1 − p to 1/2. This ’un-boosting’ (by a
value γ = 1/2− p) of correctly classified examples will by the same token boost the hard example.
Hence, chances are that the algorithm will spend more iterations working at classifying the hard
examples. So we create a distribution D2(x) that is D2(x) = D1(x)/(2(1 − p)) (reduced sampling
probability) on SC and D2(x) = D1(x)/(2p) (boosted sampling probability) on SI . This creates
a hypothesis h2 with accuracy 1 − p on the D2 distribution. Now, we describe how the algorithm
proceeds in the second round. It picks data (examples) with the re-weighted distribution D2(x).
Then the same algorithm (base learner) A is applied to this sample. Then A is fed to those sample
in S where the two hypotheses disagree (h1(x) 6=h2(x)). Over this set, the sampling distribution

1

is taken to be uniform. This gives a third hypothesis h3(x), that has the baseline accuracy 1 − p
over this set. Finally, we take a majority vote between the 3 hypotheses. If a set of covariates, x,
is such that h1(x) = h2(x), the algorithm returns h(x) = h1(x) = h2(x), or else, returns h3(x).

Let us analyze this algorithm. The following lemma states the result.

Lemma 1. The accuracy Q of the boosted algorithm is:

Q = 3p2 − 2p3 (1)

Proof S is partitioned into 4 regions, SCC , SCI , SIC , SII by the two rounds of this algorithm,
according to the status of the classification of data points by hypotheses h1, h2 during the first and
second rounds. Let us note pCC , pCI , pIC , pII the probabilities that data points belong to these
regions.

As no mistake is made on SCC , and all samples are incorrect in SII , and 1 − p samples are
correct on SCI or SIC , the error rate is:

Q = p(pCI + pIC) + pII

Let us calculate each term. First, pCI = 2(1− p)γ. Second, by definition of h2:

D2(SII) = p− γ

so that pII = 2p(p − γ). Third,by construction of D2, D2(SIC) = 1/2 − (p − γ). so that pIC =
2p(1/2− (p− γ)). Hence the overall error rate is:

p(2(1− p)γ + 2p(1/2− p+ γ))) + 2p(p− γ)

If we know develop and substitute the expression γ = 1/2− p, we find:

Q = p(2(1− p)(1/2− p) + 2p(1/2− p+ 1/2− p)) + 2p(p− 1/2 + p)

or Q = 3p2 − 2p3

Remark For the second round of the algorithm, a naive idea would have been to only look at
examples in S that are misclassified by h1, and learn from this subset only. I let you establish the
reason why this idea cannot work.

Remark If h1, h2, h3 were independent classifiers, all with error rate p, then the error rate of
the majority vote would be:

p3 + 3p2(1− p) = 3p2 − 2p3

This formula is obtained by reasoning that 2 hypotheses at least must be incorrect in order for
the majority vote to be incorrect. We note that the lemma matches this result. So, assuming for
example that p = 1/4, the boosted algorithm makes now a much lower error of 5/32. Re-weighting
has acted so as to force hypotheses to be as useful as if they were independent.

2

2 Adaboost

The previous section has revealed that weak learners can be boosted. This is an important finding.
Let’s move now to a cleaner and more efficient algorithm to do the boosting: Adaboost. Note that
Adaboost comes into different flavors. We will comment on that later.

For each round or iteration t, let ft be the (approximate) minimizer of the loss:

lt =
n∑
i=1

Dt(i)1(ft(xi) 6= yi)

Let αt = 1
2 ln(1−εtεt

), and consider a modification of the current (boosted) classifier by an additive
perturbation:

Ft = Ft−1 + αtft

This implies that the decision rule of Adaboost is a properly weighted linear combination of weak
predictor functions fitted onto iteratively re-weighted sample records.

Now comes the time to update the weights. For correctly classified data points, weights are
decreased:

Dt+1(i) = e−αt
Dt(i)

Zt

while for incorrectly classified data points, weights are increased:

Dt+1(i) = eαt
Dt(i)

Zt

The partition function Zt normalizes Dt so that it sums to one. This turns out to be

Zt = 2
√
εt(1− εt) (2)

Theorem 2 (Schapire-Freund). The probability of making error at stage T of Adaboost is upper-
bounded by:

Q = P̂(Y FT (x) ≤ 0) ≤ ET
with ET =

∏T
t=1 2

√
εt(1− εt)

Proof
The key observation is that the event Y FT (X) ≤ 0 is equivalent to e−Y FT (X) ≥ 1. Therefore

P̂(Y FT (x) ≤ Ê(e−Y FT (X)) = ET

But each point i contributes 1
ne
−yiFT (xi) to the expectation, therefore

ET =
1

n

n∑
i=1

e−yi
∑T

t=1 αtft(xi)

ET =
1

n

n∑
i=1

T∏
t=1

e−yiαtft(xi)

Now, note that regardless of the sign of yi, Dt+1 = Dt(i)
Zt

e−yiαtft(xi), which implies that:

ET =
1

n

n∑
i=1

T∏
t=1

Zt
Dt+1(i)

Dt(i)

3

All Dt cancel each other, except:

ET =
1

n

n∑
i=1

T∏
t=1

e−yiαtft(xi)

As
∑

iDT+1(i) = 1 and D1(i) = 1/n, we get:

ET =
T∏
t=1

Zt

How should the weights αt be chosen? Let us analyze the partition function Zt. All incorrectly
classified points i (such that yi 6= ft(xi) contribute eαtDt(i) and all correctly classified points i
(such that yi = ft(xi) contribute e−αtDt(i). If we note εt =

∑
i,yi 6=ft(xi)Dt(i), we have:

Zt = (1− εt)e−αt + εte
αt

The idea is to minimize this expression in αt, which is easily found by zeroing the derivative. This
results in αt = 1

2 ln(1−εtεt
), which in turns, gives:

Zt = 2
√
εt(1− εt)

Corollary 3. If we can uniformly bound the weak learner error with some 0 < γ < 1/2

∀t, εt ≤
1

2
− γ

then
Q ≤ (1− 4γ2)T/2

Remark Therefore, Adaboost decreases the error as in a geometric progression. The ratio of
this progression is dictated by the margin that we can save/maintain uniformly on the prediction
error of the weak learner, i.e. 1/2− p. However, I am not too sure how we would be able to prove
a uniform bound. The weak learner would have to provide error guarantees that do not depend on
the sample. This is a point to examine further.

3 Extension

It does not take too much sweating to arrive at useful generalizations of Adaboost. One popular
extension is Gradient boosting (XGBoost). Gradient Boosting is a generic algorithm that finds
approximate solutions to additive modeling problem. AdaBoost is a special case with a particular
(exponential) loss function. Gradient boosting is much more flexible and accepts a wide range of
loss functions.

On the other hand, AdaBoost is a much more intuitive perspective its implementation does not
require gradients. We have seen how it instead use the very intuitive idea of reweighting of training
samples based on classifications from previous learners.

4

4 Conclusion

This document is not entirely complete. I have other topics in mind that I will paste here when I
can. For the meantime, I hope to have left you with the Take Home message that Boosting is very
different from Bagging, and quite elegant.

You will also understand why Robert Schapire and Yoav Freund have received the Godel Prize
in 2003 for the invention of this beautiful algo rithm.

Figure 1: Robert Schapire.

Figure 2: Yoav Freund.

References

5

	The boosting idea
	Adaboost
	Extension
	Conclusion

