A bit of a mess

Data of measurements of the speed of light in R can be found all over the place in R but it is a mess.

This results in a poor exploitation of a truely rich topics.

In this document, we try to sort this mess out.

1879: Michelson measures the speed of light

morley From datasets v3.6.2 by R-core 99.99th Percentile

Michelson Speed Of Light Data A classical data of Michelson (but not this one with Morley) on measurements done in 1879 on the speed of light. The data consists of five experiments, each consisting of 20 consecutive ‘runs’. The response is the speed of light measurement, suitably coded (km/sec, with 299000 subtracted).

morley
##     Expt Run Speed
## 001    1   1   850
## 002    1   2   740
## 003    1   3   900
## 004    1   4  1070
## 005    1   5   930
## 006    1   6   850
## 007    1   7   950
## 008    1   8   980
## 009    1   9   980
## 010    1  10   880
## 011    1  11  1000
## 012    1  12   980
## 013    1  13   930
## 014    1  14   650
## 015    1  15   760
## 016    1  16   810
## 017    1  17  1000
## 018    1  18  1000
## 019    1  19   960
## 020    1  20   960
## 021    2   1   960
## 022    2   2   940
## 023    2   3   960
## 024    2   4   940
## 025    2   5   880
## 026    2   6   800
## 027    2   7   850
## 028    2   8   880
## 029    2   9   900
## 030    2  10   840
## 031    2  11   830
## 032    2  12   790
## 033    2  13   810
## 034    2  14   880
## 035    2  15   880
## 036    2  16   830
## 037    2  17   800
## 038    2  18   790
## 039    2  19   760
## 040    2  20   800
## 041    3   1   880
## 042    3   2   880
## 043    3   3   880
## 044    3   4   860
## 045    3   5   720
## 046    3   6   720
## 047    3   7   620
## 048    3   8   860
## 049    3   9   970
## 050    3  10   950
## 051    3  11   880
## 052    3  12   910
## 053    3  13   850
## 054    3  14   870
## 055    3  15   840
## 056    3  16   840
## 057    3  17   850
## 058    3  18   840
## 059    3  19   840
## 060    3  20   840
## 061    4   1   890
## 062    4   2   810
## 063    4   3   810
## 064    4   4   820
## 065    4   5   800
## 066    4   6   770
## 067    4   7   760
## 068    4   8   740
## 069    4   9   750
## 070    4  10   760
## 071    4  11   910
## 072    4  12   920
## 073    4  13   890
## 074    4  14   860
## 075    4  15   880
## 076    4  16   720
## 077    4  17   840
## 078    4  18   850
## 079    4  19   850
## 080    4  20   780
## 081    5   1   890
## 082    5   2   840
## 083    5   3   780
## 084    5   4   810
## 085    5   5   760
## 086    5   6   810
## 087    5   7   790
## 088    5   8   810
## 089    5   9   820
## 090    5  10   850
## 091    5  11   870
## 092    5  12   870
## 093    5  13   810
## 094    5  14   740
## 095    5  15   810
## 096    5  16   940
## 097    5  17   950
## 098    5  18   800
## 099    5  19   810
## 100    5  20   870

1882: Newcomb measures the speed of light

how about Newcomb

http://media.news.health.ufl.edu/misc/bolt/Software_R/docs/02_Datasets_in_R.pdf

Warning, there is another Newcomb data set or social networks!

Simon Newcomb’s measurements (1882) to measure the speed of light. The data are recorded as deviations from 24800 nanoseconds.

The format is: atomic [1:66] 28 26 33 24 34 -44 27 16 40 -2 … - attr(*, “comment”)= chr “Units: deviations from 24800 nanoseconds”

Details The currently accepted value for the speed of light on this scale is 33.0.

A numeric vector giving the ‘Third Series’ of measurements of the passage time of light recorded by Newcomb in 1882. The given values divided by 1000 plus 24 give the time in millionths of a second for light to traverse a known distance. The ‘true’ value is now considered to be 33.02.

#library(MASS)
#newwcomb
library(BayesDA)

data(light)
light
##  [1]  28  26  33  24  34 -44  27  16  40  -2  29  22  24  21  25  30  23  29  31
## [20]  19  24  20  36  32  36  28  25  21  28  29  37  25  28  26  30  32  36  26
## [39]  30  22  36  23  27  27  28  27  31  27  26  33  26  32  32  24  39  28  24
## [58]  25  32  25  29  27  28  29  16  23
comment(light)
## [1] "Units: deviations from 24800 nanoseconds"
hist(light, breaks=40)
abline(v=33.0, col="red")

Dont trust this??

go to

http://people.reed.edu/~jones/141/Newcomb.html

Newcomb’s Data Simon Newcomb’s 1882 data on the speed of light; more precisely, the time it takes light to travel 7442 meters at sea level. The currently accepted estimate of the speed of light under these conditions corresponds to a measurement of .00002483302.

"myNewcomb" <-
structure(list(Time = c(2.4828e-05, 2.4826e-05, 2.4833e-05, 2.4824e-05, 
2.4834e-05, 2.4756e-05, 2.4827e-05, 2.4816e-05, 2.484e-05, 2.4798e-05, 
2.4829e-05, 2.4822e-05, 2.4824e-05, 2.4821e-05, 2.4825e-05, 2.483e-05, 
2.4823e-05, 2.4829e-05, 2.4831e-05, 2.4819e-05, 2.4824e-05, 2.482e-05, 
2.4836e-05, 2.4832e-05, 2.4836e-05, 2.4828e-05, 2.4825e-05, 2.4821e-05, 
2.4828e-05, 2.4829e-05, 2.4837e-05, 2.4825e-05, 2.4828e-05, 2.4826e-05, 
2.483e-05, 2.4832e-05, 2.4836e-05, 2.4826e-05, 2.483e-05, 2.4822e-05, 
2.4836e-05, 2.4823e-05, 2.4827e-05, 2.4827e-05, 2.4828e-05, 2.4827e-05, 
2.4831e-05, 2.4827e-05, 2.4826e-05, 2.4833e-05, 2.4826e-05, 2.4832e-05, 
2.4832e-05, 2.4824e-05, 2.4839e-05, 2.4828e-05, 2.4824e-05, 2.4825e-05, 
2.4832e-05, 2.4825e-05, 2.4829e-05, 2.4827e-05, 2.4828e-05, 2.4829e-05, 
2.4816e-05, 2.4823e-05), Series = as.integer(c(1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3))), .Names = c("Time", "Series"), class = "data.frame", row.names = c("1", "2", "3", 
"4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", 
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", 
"27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", 
"38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", 
"49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", 
"60", "61", "62", "63", "64", "65", "66"))

myNewcomb
##          Time Series
## 1  2.4828e-05      1
## 2  2.4826e-05      1
## 3  2.4833e-05      1
## 4  2.4824e-05      1
## 5  2.4834e-05      1
## 6  2.4756e-05      1
## 7  2.4827e-05      1
## 8  2.4816e-05      1
## 9  2.4840e-05      1
## 10 2.4798e-05      1
## 11 2.4829e-05      1
## 12 2.4822e-05      1
## 13 2.4824e-05      1
## 14 2.4821e-05      1
## 15 2.4825e-05      1
## 16 2.4830e-05      1
## 17 2.4823e-05      1
## 18 2.4829e-05      1
## 19 2.4831e-05      1
## 20 2.4819e-05      1
## 21 2.4824e-05      2
## 22 2.4820e-05      2
## 23 2.4836e-05      2
## 24 2.4832e-05      2
## 25 2.4836e-05      2
## 26 2.4828e-05      2
## 27 2.4825e-05      2
## 28 2.4821e-05      2
## 29 2.4828e-05      2
## 30 2.4829e-05      2
## 31 2.4837e-05      2
## 32 2.4825e-05      2
## 33 2.4828e-05      2
## 34 2.4826e-05      2
## 35 2.4830e-05      2
## 36 2.4832e-05      2
## 37 2.4836e-05      2
## 38 2.4826e-05      2
## 39 2.4830e-05      2
## 40 2.4822e-05      2
## 41 2.4836e-05      3
## 42 2.4823e-05      3
## 43 2.4827e-05      3
## 44 2.4827e-05      3
## 45 2.4828e-05      3
## 46 2.4827e-05      3
## 47 2.4831e-05      3
## 48 2.4827e-05      3
## 49 2.4826e-05      3
## 50 2.4833e-05      3
## 51 2.4826e-05      3
## 52 2.4832e-05      3
## 53 2.4832e-05      3
## 54 2.4824e-05      3
## 55 2.4839e-05      3
## 56 2.4828e-05      3
## 57 2.4824e-05      3
## 58 2.4825e-05      3
## 59 2.4832e-05      3
## 60 2.4825e-05      3
## 61 2.4829e-05      3
## 62 2.4827e-05      3
## 63 2.4828e-05      3
## 64 2.4829e-05      3
## 65 2.4816e-05      3
## 66 2.4823e-05      3

What single value of the speed of light would you infer from these experiments?

boxplot(morley$Speed ~ morley$Expt,
  col='light grey', xlab='Experiment #',
  ylab="speed (km/s minus 299,000)",
  main="Michelson?Morley experiment")
mtext("speed of light data")

#abline(h=sol, col='red')

What is the real value? what do you conclude?

library(evidence)
## Loading required package: rstan
## Loading required package: StanHeaders
## Loading required package: ggplot2
## rstan (Version 2.19.2, GitRev: 2e1f913d3ca3)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
## For improved execution time, we recommend calling
## Sys.setenv(LOCAL_CPPFLAGS = '-march=native')
## although this causes Stan to throw an error on a few processors.
## Loading required package: rstanarm
## Loading required package: Rcpp
## Registered S3 method overwritten by 'xts':
##   method     from
##   as.zoo.xts zoo
## rstanarm (Version 2.19.2, packaged: 2019-10-01 20:20:33 UTC)
## - Do not expect the default priors to remain the same in future rstanarm versions.
## Thus, R scripts should specify priors explicitly, even if they are just the defaults.
## - For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores())
## - bayesplot theme set to bayesplot::theme_default()
##    * Does _not_ affect other ggplot2 plots
##    * See ?bayesplot_theme_set for details on theme setting
## 
## Attaching package: 'rstanarm'
## The following object is masked from 'package:rstan':
## 
##     loo
## Loading required package: loo
## This is loo version 2.2.0
## - Online documentation and vignettes at mc-stan.org/loo
## - As of v2.0.0 loo defaults to 1 core but we recommend using as many as possible. Use the 'cores' argument or set options(mc.cores = NUM_CORES) for an entire session.
## - Windows 10 users: loo may be very slow if 'mc.cores' is set in your .Rprofile file (see https://github.com/stan-dev/loo/issues/94).
## 
## Attaching package: 'loo'
## The following object is masked from 'package:rstan':
## 
##     loo
## Loading required package: lattice
data(lightspeed)
qqnorm(lightspeed)
qqline(lightspeed)

Michelson participated in the Washington D.C. observations until September 1880, when he was granted a leave of absence by the Navy to study in Europe. Newcomb continued the experiments for two more years. In his final report [Newcomb, 1883] he gave two values for the velocity of light in vacuum. First, a value of 299,860 km/sec based only on observations made in 1882, which he preferred because he thought that they were less affected by systematic errors. Second, 299,810 km/sec based on a weighted combination of all the observations, which proved to be the more accurate value.

http://vigo.ime.unicamp.br/~fismat/newcomb.pdf

The rotating mirror had eight faces, and was made of steel to withstand the centrifugal force at 528 rev/sec. Michelson obtained a value of for the velocity of light in vacuum of 299,798 ± 4 k/sec, compared to the value of 299,792.458 k/sec accepted today

#Michelson <- read.table("../Data/Michelson.R",header=TRUE)
#head(Michelson)
#summary(Michelson)
#boxplot(Speed ~ Run,data=Michelson,col="gold")
#title("Michelson's Data: Speed of Light",col.main=rgb(.1,.4,.6))

myNewcomb

boxplot(7442./Time ~ Series,data=myNewcomb,col="blue")
title("Newcomb's Data: Speed of Light",col.main=rgb(.3,.4,.6))

Questions:

The width of the Potomac: a problem? (Take 1!)

1907: Rosa and Dorsey measure the speed of light

1930-35: Michelson measures the speed of light

1947: Essen measures the speed of light

The Big Dip , Big Mistake!

Problems with the width of the Potomac, … and many other sources of uncertainties (see Essen, or Dorsey 1944)

Pre-1947 values:

Louis Essen comes to rescue c

With the help of … Alan Turing !

Seul face au monde.

In 1947 he published his first determination of it, which was 16 kilometers per second higher than the accepted value, causing a great deal of controversy in the scientific community.

src:https://www.gsjournal.net/Science-Journals/Journal%20Reprints-Relativity%20Theory/Download/3295

The width of the Potomac: a problem? (Take 2!)

Error bars

What reflexion do the following diagram inspire you?

(src:https://www.cairn-int.info/article-E_ANSO_132_0359--determining-the-speed-of-light.htm)

Retrospective

Best (?)measurements according to Froome and Essen

             <th>Method</th>                    <th>Result (km/s)</th><th>Error</th></tr>
       <td>Jupiter's satellites</td>      <td>214,000</td>      <td></td></tr>
      <td>Stellar Aberration</td>        <td>301,000</td>      <td></td></tr>
      <td>Toothed Wheel</td>             <td>315,000</td>      <td></td></tr>
      <td>Rotating Mirror</td>           <td>298,000</td>      <td>+-500</td></tr>
   <td>Rotating Mirror</td>           <td>299,910</td>      <td>+-50</td></tr>
       <td>Electromagnetic constants</td> <td>299,788</td>      <td>+-30</td></tr>
   <td>Rotating Mirror</td>           <td>299,796</td>      <td>+-4</td></tr>
<td>Cavity Resonator</td>          <td>299,792</td>      <td>+-3</td></tr>
       <td>Radio Interferometer</td>      <td>299,792.5</td>    <td>+-0.1</td></tr>
      <td>Lasers</td>                    <td>299,792.4574</td> <td>+-0.001</td></tr>
                   <td>Adopted Value</td>             <td>299,792.458</td>  <td></td></tr>
Date Author
1676 Olaus Roemer
1726 James Bradley
1849 Armand Fizeau
1862 Leon Foucault
1879 Albert Michelson
1907 Rosa, Dorsay
1926 Albert Michelson
1947 Essen, Gorden-Smith
1958 K. D. Froome
1973 Evanson et al
1983

Which method is best?

(src: Essen)

Lorentz symmetry - 1914

(src: https://www.jstor.org/stable/91014)

Paper by F. Smith (1914)

Lorentz symmetry - 2015

Most precise test of Lorentz invariance ever

Far more precise than the original Michelson-Morley experiment

As far as we can tell, c is indeed constant.

Kibble balance

Take home message: