
Solving the Heat Equation using Matlab

In class I derived the heat equation

ut = Cuxx , ux(t, 0) = ux(t, 1) = 0 , u(0, x) = u0(x) , 0 < x < 1 ,

where u(t, x) is the temperature of an insulated wire. To solve this problem numerically, we will turn it into a system
of odes. We use the following Taylor expansions,

u(t, x+ k) = u(t, x) + kux(t, x) +
1

2
k2uxx(t, x) +

1

6
k3uxxx(t, x) +O(k4) , (1)

u(t, x− k) = u(t, x)− kux(t, x) +
1

2
k2uxx(t, x)−

1

6
k3uxxx(t, x) +O(k4) , (2)

(3)

If we add the equations in (1) and solve for uxx(t, x) we get

uxx(t, x) =
u(t, x− k)− 2u(t, x) + u(t, x+ k)

k2
+O(k2) .

Now if we divide the region 0 < x < 1 into n pieces with xi = ik and k = 1

n
and let ui(t) ∼ u(t, xi) then we will have

the following system of ordinary differential equations.

dui

dt
= C

(

ui−1 − 2ui + ui+1

k2

)

, i = 1 . . . (n− 1) .

To find the equations for u0 and un, we must consider the boundary conditions ux(t, 0) = ux(t, 1) = 0. To approximate
ux we take the equations in (1) and subtract then and solve for ux to get

ux(t, x) =
u(t, x+ k)− u(t, x− k)

2k
+O(k2)

We apply this at x = 0 and x = 1 to find

ux(t, 0) =
u1 − u

−1

2k
= 0 ,

ux(t, 1) =
un+1 − un−1

2k
= 0 ,

We note that the points x
−1 and xn+1 are not in our interval and the solution is not really valid there. However if we

use these relations to solve for u
−1 and un+1, we can eliminate these terms from the u0 and un differential equation

resulting in

du0

dt
= C

(

2(u1 − u0)

k2

)

,

dun

dt
= C

(

2(un−1 − un)

k2

)

,

We code this all up with the initial condition u(0, x) = e−
(x−0.1)2

0.01 . The Octave code is given below. To use the ode5r
code I had to install the octave-odepkg. To run this code with Matlab just change ode5r to ode15s.

function [t,u]=heat()

n=100;

dx=1/n;

y0=zeros(n,1);

for i=1:n

x=i*dx;

1



y0(i)=exp(-(x-.1)^2/.01);

end

[t,u]=ode5r(@odes,[0,10],y0);

for i=1:length(t)

plot(u(i,:))

pause(.2);

end

end

function yp=odes(t,y)

n=100;

dx=1/n;

k=1;

yp=zeros(n,1);

yp(1)=k*(2*(y(2)-y(1)))/dx^2;

for i=2:n-1

yp(i)=k*(y(i+1)-2*y(i)+y(i-1))/dx^2;

end

yp(n)=k*(2*(y(n-1)-y(n)))/dx^2;

end

2


