ρ -orderings and valuative capacity in ultrametric spaces

Anne Johnson

November 9, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Ultrametric basics

Definition

Let (M, ρ) be a metric space. If ρ satisfies the ultrametric inequality

$$ho(x,z) \leq max(
ho(x,y),
ho(y,z)), orall x,y,z \in M$$

then (M, ρ) is an **ultrametric space**.

Definition

Let (V, N) be a normed vector space. Then N satisfies the **strong** trianlge inequality if

$$N(x + y) \le max(N(x), N(y)), \forall x, y \in V$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ultrametric basics

Proposition

[1] All triangles in an ultrametric space (M, ρ) are either equilateral or isocoles, with at most one short side.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Ultrametric basics

Proposition

[1] If (M, ρ) is an ultrametric space and $B_{r_1}(x_0)$ and $B_{r_2}(y_0)$ are balls in (M, ρ) , then either $B_{r_1}(x_0) \cap B_{r_2}(y_0) = \emptyset$, $B_{r_1}(x_0) \subseteq B_{r_2}(y_0)$, or $B_{r_2}(x_0) \subseteq B_{r_1}(x_0)$. That is, in an ultrametric space, all balls are either comparable or disjoint.

Proposition

[1] The distance between any two disjoint balls in an ultrametric is constant. That is, if $B_{r_1}(x_0)$ and $B_{r_2}(y_0)$ are two balls in an ultrametric space (M, ρ) , then $\rho(x, y) = c$ for some $c \in \mathbb{R}$ and $\forall x \in B_{r_1}(x_0)$ and $\forall y \in B_{r_2}(y_0)$

Proposition

[1] Every point of a ball in an ultrametric is at its centre. That is, if $B_r(x_0)$ is a ball in an ultrametric space (M, ρ) , then $B_r(x) = B_r(x_0)$, $\forall x \in B_r(x_0)$

Proposition

[1] If *M* is a ultrametric space and Γ_M is the set of all distances occurring between points of *M*, then Γ_M is a discrete subset of \mathbb{R} . In particular if $|\Gamma_M| = \infty$, then the elements of Γ_M can be indexed by \mathbb{N} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 ρ -orderings, ρ -sequences, and valuative capacity

In what follows, let S be a compact subset of an ultrametric space (M, ρ) .

Definition

[2] A ρ -ordering of S is a sequence $\{a_i\}_{i=0}^{\infty} \subseteq S$ such that $\forall n > 0$, a_n maximizes $\prod_{i=0}^{n-1} \rho(s, a_i)$ over $s \in S$.

Definition-Proposition

[2] The ρ -sequence of S is the sequence whose 0^{th} -term is 1 and whose n^{th} term, for n > 0, is $\prod_{i=0}^{n-1} \rho(a_n, a_i)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\rho\text{-orderings},\ \rho\text{-sequences},\ \text{and}\ \text{valuative}\ \text{capacity}$

Definition-Proposition

[2] Let $\gamma(n)$ be the ρ -sequence of S. The valuative capacity of S is

$$\omega(S) := \lim_{n \to \infty} \gamma(n)^{1/n}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

valuative capacity: quick results

Proposition

(translation invariance) Let (M, ρ) be a compact ultrametric space and suppose M is also a topological group. If ρ is (left) invariant under the group operation, then so is ω . That is, if $\rho(x, y) = \rho(gx, gy), \forall g, x, y \in M$, then $\omega(gS) = \omega(S)$, for $S \subseteq M$.

Proposition

(scaling) Let (V, N) be a normed vector space and suppose N satisfies the strong triangle identity. Then if N is multiplicative, so is ω . That is, if $N(gx) = N(g)N(x), \forall g, x \in V$, then $\omega(gS) = N(g)\omega(S)$, for $g \in V$ and $S \subseteq M$.

valuative capacity: subadditivity

Proposition

[2](subadditivity) If $diam(S) := \max_{x,y \in S} \rho(x,y) = d$ and $S = \bigcup_{i=1}^{n} A_{i}$ for A_{i} compact subsets of M with $\rho(x_{i}, x_{j}) = d$, $\forall x_{i} \in A_{i}$, $\forall x_{j} \in A_{j}$ and $\forall i, j$, then

$$\frac{1}{\log(\omega(S)/d)} = \sum_{i=1}^{n} \frac{1}{\log(\omega(A_i)/d)}$$

Corollary

Suppose $S = \bigcup_{i}^{n} S_{i}$ with $\rho(S_{i}, S_{j}) = d = diam(S)$ and also $\omega(S_{i}) = \omega(S_{j}), \forall i, j$. Let $r \in \mathbb{R}$ be such that $\omega(S_{i}) = r\omega(S), \forall i$. Then $\omega(S) = r^{\frac{1}{n-1}} \cdot d$. In particular if $S = \mathbb{Z}$ and $(M, \rho) = (\mathbb{Z}, |\cdot|_{p})$ then $\omega(S) = (\frac{1}{p})^{1/p-1}$ for any prime p.

Setup:

- Let S ⊆ M be a compact subset of an ultrametric space (M, ρ).
- Let $\Gamma_S = \{\gamma_0, \gamma_1, \dots, \gamma_\infty = 0\}$ be the set of distances in *S*.
- Note that for each k ∈ N, the closed balls of radius γ_k partition S. That is,

$$S = S_{\gamma_k} := \cup_{i=1}^n \overline{B_{\gamma_k}(x_i)}$$

where both *n* and the x_i 's depend on *k*.

Setup, continuted: Fix a $k \in \mathbb{N}$.

- Let $S_{\gamma_k} = \bigcup_{i=1}^n \overline{B_{\gamma_k}(x_i)}$ be a partition of S, as above.
- Note that we can construct $S_{\gamma_{k+1}}$ by partitioning each of the $\overline{B_{\gamma_k}(x_i)}$, i.e.,

$$S = S_{\gamma_{k+1}} = \bigcup_{i=1}^n \bigcup_{j=1}^{l_i} \overline{B_{\gamma_{k+1}}(x_{i,j})}$$

where $1 \leq I_i \leq n$ and $\cup_{j=1}^{I_i} \overline{B_{\gamma_{k+1}}(x_{i,j})} = \overline{B_{\gamma_k}(x_i)}, \forall i$.

- We denote by x_{i,j} the centre of a ball of radius γ_{k+1} partitioning the ball B_{γk}(x_i).
- ▶ Without loss of generality, when j = 1, assume $x_{i,j} = x_i$, $\forall i$.

We now make the following observation due to [3],

Lemma

For each $k \in \mathbb{N}$, the elements of S_{γ_k} , that is, the closed balls of radius γ_k , themselves form an ultrametric space, where

$$\rho_{k}(\overline{B_{\gamma_{k}}(x)},\overline{B_{\gamma_{k}}(y)}) = \begin{cases} \rho(x,y), & \text{if } \rho(x,y) > \gamma_{k} \\ 0, & \text{if } \rho(x,y) \le \gamma_{k}, \text{ i.e., } \overline{B_{\gamma_{k}}(x)} = \overline{B_{\gamma_{k}}(y)} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We make the following observations:

- Since S is compact, S_{γ_k} is a finite metric space $\forall k < \infty$ and $S_{\gamma_{\infty}} = \bigcup_{x \in S} \overline{B_0(x)} = \bigcup_{x \in S} x = S$ and $\rho_{\infty} = \rho$.
- ► View S_{γ_k} , for fixed $k < \infty$ as a finite ultrametric space with n elements. Let us denote an element of S_{γ_k} , that is a $\overline{B_{\gamma_k}(x_i)}$, by its centre, x_i .
- Without loss of genearlity, we can reindex the x_i's so that they give the first *n* terms of a ρ_k-ordering of S_{γ_k}.

Setup, revisited:

- ► Let $S_{\gamma_k} = \bigcup_{i=1}^n \overline{B_{\gamma_k}(x_i)}$ be the finite metric space describe above, and suppose the x_i are indexed according to a ρ_k -ordering of S_{γ_k} .
- Let $S_{\gamma_{k+1}}$ be the finite metric space formed by partitioning each of the $B_{\gamma_k}(x_i)$, so that $S_{\gamma_{k+1}} = \bigcup_{i=1}^n \bigcup_{j=1}^{l_i} \overline{B_{\gamma_{k+1}}(x_{i,j})}$ and $x_{i,j}$ is a point in the ball $B_{\gamma_k}(x_i)$ with the convention that $x_{i,1} = x_i, \forall i$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider the matrix A_k , whose $(i, j)^{th}$ -entry is $x_{i,j}$ (or * if $l_i < j$).

$$A_{k} = \begin{pmatrix} x_{1,1} & x_{2,1} & \dots & x_{n,1} \\ x_{1,2} & x_{2,2} & \dots & x_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1,l_{1}} & x_{2,l_{2}} & \dots & x_{n,l_{n}} \end{pmatrix}$$

Consider the matrix A_k , whose $(i, j)^{th}$ -entry is $x_{i,j}$ (or * if $l_i < j$).

$$A_{k} = \begin{pmatrix} x_{1,1} & x_{2,1} & \dots & x_{n,1} \\ x_{1,2} & x_{2,2} & \dots & x_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1,l_{1}} & x_{2,l_{2}} & \dots & x_{n,l_{n}} \end{pmatrix}$$

A ρ_{k+1} -ordering of $S_{\gamma_{k+1}}$ can be found by concatenating the rows of A_k (and ignoring *'s).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Some corollaries

Corollary

Interweaving the bottown row of the lattice of closed balls for a set S gives a ρ -ordering of S. In particular, the natural ordering on the integers gives a ρ_p -ordering for every prime p.

Corollary

Suppose S and T are compact subsets of an ultrametric space M with $\Gamma_S = \Gamma_T$ and $|S_{\gamma_k}| = |T_{\gamma_k}|$, $\forall k$. Then $\omega(S) = \omega(T)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

references

- Alain M. Robert, A course in p-adic analysis.
- Keith Johnson, P-orderings and Fekete sets
- Nate Ackerman, Completeness in Generalized Ultrametric Spaces

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ