ρ-orderings and valuative capacity in ultrametric spaces

Anne Johnson

November 9, 2018

Ultrametric basics

Definition

Let (M, ρ) be a metric space. If ρ satistifies the ultrametric inequality

$$
\rho(x, z) \leq \max (\rho(x, y), \rho(y, z)), \forall x, y, z \in M
$$

then (M, ρ) is an ultrametric space.
Definition
Let (V, N) be a normed vector space. Then N satisfies the strong trianlge inequality if

$$
N(x+y) \leq \max (N(x), N(y)), \forall x, y \in V
$$

Ultrametric basics

Proposition

[1] All triangles in an ultrametric space (M, ρ) are either equilateral or isocoles, with at most one short side.

Ultrametric basics

Proposition

[1] If (M, ρ) is an ultrametric space and $B_{r_{1}}\left(x_{0}\right)$ and $B_{r_{2}}\left(y_{0}\right)$ are balls in (M, ρ), then either $B_{r_{1}}\left(x_{0}\right) \cap B_{r_{2}}\left(y_{0}\right)=\emptyset$, $B_{r_{1}}\left(x_{0}\right) \subseteq B_{r_{2}}\left(y_{0}\right)$, or $B_{r_{2}}\left(x_{0}\right) \subseteq B_{r_{1}}\left(x_{0}\right)$. That is, in an ultrametric space, all balls are either comparable or disjoint.

Proposition

[1] The distance between any two disjoint balls in an ultrametric is constant. That is, if $B_{r_{1}}\left(x_{0}\right)$ and $B_{r_{2}}\left(y_{0}\right)$ are two balls in an ultrametric space (M, ρ), then $\rho(x, y)=c$ for some $c \in \mathbb{R}$ and $\forall x \in B_{r_{1}}\left(x_{0}\right)$ and $\forall y \in B_{r_{2}}\left(y_{0}\right)$

Proposition

[1] Every point of a ball in an ultrametric is at its centre. That is, if $B_{r}\left(x_{0}\right)$ is a ball in an ultrametric space (M, ρ), then
$B_{r}(x)=B_{r}\left(x_{0}\right), \forall x \in B_{r}\left(x_{0}\right)$

Proposition

[1] If M is a ultrametric space and Γ_{M} is the set of all distances occurring between points of M, then Γ_{M} is a discrete subset of \mathbb{R}. In particular if $\left|\Gamma_{M}\right|=\infty$, then the elements of Γ_{M} can be indexed by \mathbb{N}.

ρ-orderings, ρ-sequences, and valuative capacity

In what follows, let S be a compact subset of an ultrametric space (M, ρ).
Definition
[2] A ρ-ordering of S is a sequence $\left\{a_{i}\right\}_{i=0}^{\infty} \subseteq S$ such that $\forall n>0$, a_{n} maximizes $\prod_{i=0}^{n-1} \rho\left(s, a_{i}\right)$ over $s \in S$.

Definition-Proposition
[2] The ρ-sequence of S is the sequence whose $0^{\text {th }}$-term is 1 and whose $n^{\text {th }}$ term, for $n>0$, is $\prod_{i=o}^{n-1} \rho\left(a_{n}, a_{i}\right)$.

ρ-orderings, ρ-sequences, and valuative capacity

Definition-Proposition
[2] Let $\gamma(n)$ be the ρ-sequence of S. The valuative capacity of S
is

$$
\omega(S):=\lim _{n \rightarrow \infty} \gamma(n)^{1 / n}
$$

valuative capacity: quick results

Proposition

(translation invariance) Let (M, ρ) be a compact ultrametric space and suppose M is also a topological group. If ρ is (left) invariant under the group operation, then so is ω. That is, if $\rho(x, y)=\rho(g x, g y), \forall g, x, y \in M$, then $\omega(g S)=\omega(S)$, for $S \subseteq M$.

Proposition

(scaling) Let (V, N) be a normed vector space and suppose N satisfies the strong triangle identity. Then if N is multiplicative, so is ω. That is, if $N(g x)=N(g) N(x), \forall g, x \in V$, then $\omega(g S)=N(g) \omega(S)$, for $g \in V$ and $S \subseteq M$.

valuative capacity: subadditivity

Proposition

[2](subadditivity) If $\operatorname{diam}(S):=\max _{x, y \in S} \rho(x, y)=d$ and $S=\cup_{i}^{n} A_{i}$ for A_{i} compact subsets of M with $\rho\left(x_{i}, x_{j}\right)=d$, $\forall x_{i} \in A_{i}, \forall x_{j} \in A_{j}$ and $\forall i, j$, then

$$
\frac{1}{\log (\omega(S) / d)}=\sum_{i=1}^{n} \frac{1}{\log \left(\omega\left(A_{i}\right) / d\right)}
$$

Corollary

Suppose $S=\cup_{i}^{n} S_{i}$ with $\rho\left(S_{i}, S_{j}\right)=d=\operatorname{diam}(S)$ and also $\omega\left(S_{i}\right)=\omega\left(S_{j}\right), \forall i, j$. Let $r \in \mathbb{R}$ be such that $\omega\left(S_{i}\right)=r \omega(S), \forall i$.
Then $\omega(S)=r^{\frac{1}{n-1}} \cdot d$. In particular if $S=\mathbb{Z}$ and $(M, \rho)=\left(\mathbb{Z},|\cdot|_{p}\right)$ then $\omega(S)=\left(\frac{1}{p}\right)^{1 / p-1}$ for any prime p.

Constructing a ρ-ordering

Setup:

- Let $S \subseteq M$ be a compact subset of an ultrametric space (M, ρ).
- Let $\Gamma_{S}=\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{\infty}=0\right\}$ be the set of distances in S.
- Note that for each $k \in \mathbb{N}$, the closed balls of radius γ_{k} partition S. That is,

$$
S=S_{\gamma_{k}}:=\cup_{i=1}^{n} \overline{B_{\gamma_{k}}\left(x_{i}\right)}
$$

where both n and the x_{i} 's depend on k.

Constructing a ρ-ordering

Setup, continuted:
Fix a $k \in \mathbb{N}$.

- Let $S_{\gamma_{k}}=\cup_{i=1}^{n} \overline{B_{\gamma_{k}}\left(x_{i}\right)}$ be a partition of S, as above.
- Note that we can construct $S_{\gamma_{k+1}}$ by partitioning each of the $\overline{B_{\gamma_{k}}\left(x_{i}\right)}$, i.e.,

$$
S=S_{\gamma_{k+1}}=\cup_{i=1}^{n} \cup_{j=1}^{I_{i}} \overline{B_{\gamma_{k+1}}\left(x_{i, j}\right)}
$$

where $1 \leq I_{i} \leq n$ and $\cup_{j=1}^{l_{i}} \overline{B_{\gamma_{k+1}}\left(x_{i, j}\right)}=\overline{B_{\gamma_{k}}\left(x_{i}\right)}, \forall i$.

- We denote by $x_{i, j}$ the centre of a ball of radius γ_{k+1} partitioning the ball $B_{\gamma_{k}}\left(x_{i}\right)$.
- Without loss of generality, when $j=1$, assume $x_{i, j}=x_{i}, \forall i$.

Constructing a ρ-ordering

We now make the following observation due to [3],
Lemma
For each $k \in \mathbb{N}$, the elements of $S_{\gamma_{k}}$, that is, the closed balls of radius γ_{k}, themselves form an ultrametric space, where

$$
\left.\rho_{k} \overline{\left(B_{\gamma_{k}}(x)\right.}, \overline{B_{\gamma_{k}}(y)}\right)= \begin{cases}\rho(x, y), & \text { if } \rho(x, y)>\gamma_{k} \\ 0, & \text { if } \rho(x, y) \leq \gamma_{k}, \text { i.e., } \overline{B_{\gamma_{k}}(x)}=\overline{B_{\gamma_{k}}(y)}\end{cases}
$$

Constructing a ρ-ordering

We make the following observations:

- Since S is compact, $S_{\gamma_{k}}$ is a finite metric space $\forall k<\infty$ and $S_{\gamma_{\infty}}=\cup_{x \in S} \overline{B_{0}(x)}=\cup_{x \in S} x=S$ and $\rho_{\infty}=\rho$.
- View $S_{\gamma_{k}}$, for fixed $k<\infty$ as a finite ultrametric space with n elements. Let us denote an element of $S_{\gamma_{k}}$, that is a $\overline{B_{\gamma_{k}}\left(x_{i}\right)}$, by its centre, x_{i}.
- Without loss of genearlity, we can reindex the x_{i} 's so that they give the first n terms of a ρ_{k}-ordering of $S_{\gamma_{k}}$.

Constructing a ρ-ordering

Setup, revisited:

- Let $S_{\gamma_{k}}=\cup_{i=1}^{n} \overline{B_{\gamma_{k}}\left(x_{i}\right)}$ be the finite metric space describe above, and suppose the x_{i} are indexed according to a ρ_{k}-ordering of $S_{\gamma_{k}}$.
- Let $S_{\gamma_{k+1}}$ be the finite metric space formed by partitioning each of the $B_{\gamma_{k}}\left(x_{i}\right)$, so that $S_{\gamma_{k+1}}=\cup_{i=1}^{n} \cup_{j=1}^{l_{i}} \overline{B_{\gamma_{k+1}}\left(x_{i, j}\right)}$ and $x_{i, j}$ is a point in the ball $B_{\gamma_{k}}\left(x_{i}\right)$ with the convention that $x_{i, 1}=x_{i}, \forall i$.

Constructing a ρ-ordering

Consider the matrix A_{k}, whose $(i, j)^{\text {th }}$-entry is $x_{i, j}$ (or $*$ if $I_{i}<j$).

$$
A_{k}=\left(\begin{array}{cccc}
x_{1,1} & x_{2,1} & \ldots & x_{n, 1} \\
x_{1,2} & x_{2,2} & \ldots & x_{n, 2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1, l_{1}} & x_{2, l_{2}} & \ldots & x_{n, l_{n}}
\end{array}\right)
$$

Constructing a ρ-ordering

Consider the matrix A_{k}, whose $(i, j)^{t h}$-entry is $x_{i, j}$ (or ${ }^{*}$ if $I_{i}<j$).

$$
A_{k}=\left(\begin{array}{cccc}
x_{1,1} & x_{2,1} & \ldots & x_{n, 1} \\
x_{1,2} & x_{2,2} & \ldots & x_{n, 2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1, l_{1}} & x_{2, l_{2}} & \ldots & x_{n, l_{n}}
\end{array}\right)
$$

A ρ_{k+1}-ordering of $S_{\gamma_{k+1}}$ can be found by concatenating the rows of A_{k} (and ignoring *'s).

Some corollaries

Corollary

Interweaving the bottown row of the lattice of closed balls for a set S gives a ρ-ordering of S. In particular, the natural ordering on the integers gives a ρ_{p}-ordering for every prime p.

Corollary
Suppose S and T are compact subsets of an ultrametric space M with $\Gamma_{S}=\Gamma_{T}$ and $\left|S_{\gamma_{k}}\right|=\left|T_{\gamma_{k}}\right|, \forall k$. Then $\omega(S)=\omega(T)$.

references

嗇 Alain M. Robert, A course in p-adic analysis.
Keith Johnson, P-orderings and Fekete sets
嗇 Nate Ackerman, Completeness in Generalized Ultrametric Spaces

