Number-Theoretic Characterizations of Some Restricted Clifford+T Circuits

QPL 2020

M. Amy, A. N. Glaudell, & N. J. Ross
I. The Clifford+T Gate Set and its Restrictions
The Clifford+T Gate Set

Let $\omega = e^{i\pi/4} = (1 + i)/\sqrt{2}$. The Clifford+$\mathsf{T}$ gate set consists of the H and T gates below

\[
\begin{bmatrix}
\mathsf{H} & = & \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} & \quad \text{and} & \quad \begin{bmatrix}
\mathsf{T} & = & \begin{bmatrix} 1 & 0 \\ 0 & \omega \end{bmatrix}
\end{bmatrix}
\end{bmatrix}
\]

together with the CX gate

\[
\begin{bmatrix}
\mathsf{CX} & = & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}
\end{bmatrix}
\]

The set $\{\mathsf{H}, \mathsf{T}, \mathsf{CX}\}$ forms a universal and fault-tolerant set of quantum gates.
Clifford+T Circuits

Clifford+T circuits are generated from Clifford+T gates via *composition* and *tensor product* (and *ancillas*).

The circuit below is a Clifford+T circuit.

Some of the gates in the above circuit are *derived gates*.

Because they are universal and well-suited for fault-tolerant quantum computing, Clifford+T circuits have received a lot of attention.
Single-Qubit Clifford+T Circuits

Single-qubit Clifford+T circuits are very well understood.

For single qubit Clifford+T operators we have:

- generators and relations [M.A. 2008],
- optimal normal forms [M.A. 2008],
- a number-theoretic characterization [K.M.M. 2013], and
- optimal approximations [R.S. 2014].
Multi-Qubit Clifford+T Circuits

Multi-qubit Clifford+T circuits are **not** very well understood.

For multi-qubit qubit Clifford+T operators we have:

- a number-theoretic characterization [G.S. 2013] and
- generators and relations for 2-qubit circuits [B.S. 2015].
Multi-Qubit Clifford+T Circuits

Multi-qubit Clifford+T circuits are **not** very well understood.

![Diagram of multi-qubit Clifford+T circuit]

For multi-qubit qubit Clifford+T operators we have:

- a number-theoretic characterization [G.S. 2013] and
- generators and relations for 2-qubit circuits [B.S. 2015].

To circumvent the difficulties associated with multi-qubit Clifford+T circuits **restricted gate sets** have been considered.
Restricted Clifford+T Circuits

Several types of restricted Clifford+T circuits have been studied.

These include:

- Clifford circuits [S. 2015],
- $\text{CX}+\text{T}$ circuits [A.M. 2016, C.H. 2017, A.C.R. 2017], and
- CX-dihedral circuits [A.C.R. 2017].

Unfortunately, these restrictions are not universal.
Restricted Clifford+T Circuits

Several types of restricted Clifford+T circuits have been studied.

These include:

- Clifford circuits [S. 2015],
- \(\text{CX}+\text{T}\) circuits [A.M. 2016, C.H. 2017, A.C.R. 2017], and
- \(\text{CX}\)-dihedral circuits [A.C.R. 2017].

Unfortunately, these restrictions are not universal.
Restricted Clifford+\mathbf{T} Circuits

Several types of *restricted* Clifford+\mathbf{T} circuits have been studied.

These include:

- Clifford circuits [S. 2015],
- $\mathbf{CX}+\mathbf{T}$ circuits [A.M. 2016, C.H. 2017, A.C.R. 2017], and
- \mathbf{CX}-dihedral circuits [A.C.R. 2017].

Unfortunately, these restrictions are not universal.
Goal: study restricted and universal Clifford+T circuits.
II. Number-Theoretic Characterizations
Characterizing Clifford+T Operators

Let $\mathbb{D} = \{ \frac{a}{2^k} \mid a \in \mathbb{Z}, k \in \mathbb{N} \}$ be the ring of Dyadic fractions and let $\mathbb{D}[\omega] = \{ a\omega^3 + b\omega^2 + c\omega + d \mid a, b, c, d \in \mathbb{D} \}$ where $\omega = e^{i\pi/4} = (1 + i)/\sqrt{2}$.

[G.S. 2013] A $2^n \times 2^n$ matrix V can be exactly represented by an n-qubit Clifford+T circuit if, and only if, $V \in U_{2^n}(\mathbb{D}[\omega])$.

This number-theoretic characterization proved extremely useful in the study of 1- and 2-qubit Clifford+T circuits.
Restricted Clifford\oplusT Operators

We can restrict Clifford\oplusT operators by considering unitary matrices over subrings of $\mathbb{D}[\omega]$.

For sufficiently large n, each one of these subrings of $\mathbb{D}[\omega]$ corresponds to a universal subgroup of $U_n(\mathbb{D}[\omega])$ (sometimes in an encoded sense).
Results (I)

Theorem: A $2^n \times 2^n$ matrix V can be exactly represented by an n-qubit circuit over

- $\{X, CX, CCX, H \otimes H\}$ if and only if $V \in U_{2^n} (\mathbb{D})$,
- $\{X, CX, CCX, H, CH\}$ if and only if $V \in U_{2^n} (\mathbb{D} [\sqrt{2}])$,
- $\{X, CX, CCX, F\}$ if and only if $V \in U_{2^n} (\mathbb{D} [i \sqrt{2}])$, and
- $\{X, CX, CCX, \omega H, S\}$ if and only if $V \in U_{2^n} (\mathbb{D} [i])$,

where $F \propto \sqrt{H}$. Moreover, a single ancilla is always sufficient.
III. The Dyadic Case
Dyadic Matrices

In the *Dyadic* case we focus on matrices of the form

\[V = \frac{1}{2^k} U \]

where \(k \in \mathbb{N}, \ U \in \mathbb{Z}^{n \times n} \).

The smallest \(k \) such that \(V \) can be written as above is called the *least denominator exponent* of \(V \), written \(\text{Id}(V) \).

Our basic gates are \(X \), \(CX \), \(CCX \), together with

\[
H \otimes H = \frac{1}{2} \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{bmatrix}.
\]
Exact Synthesis

Easy: If a $2^n \times 2^n$ matrix V can be exactly represented by an n-qubit circuit over \{X, CX, CCX, H \otimes H\} then $V \in U_{2^n}(\mathbb{D})$.

Harder: If a $2^n \times 2^n$ matrix $V \in U_{2^n}(\mathbb{D})$ then V can be exactly represented by an n-qubit circuit over \{X, CX, CCX, H \otimes H\}.

To solve the harder problem, we follow [G.S. 2013] and introduce an *exact synthesis algorithm*.

The exact synthesis algorithm inputs $V \in U_{2^n}(\mathbb{D})$ and outputs an n-qubit circuit over \{X, CX, CCX, H \otimes H\} for V.
Generators

The 1-, 2-, and 4-level operators

\[\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, H \otimes H_{[\alpha, \beta, \gamma, \delta]} \mid 1 \leq \alpha < \beta < \gamma < \delta \leq n \} \]

can be exactly represented over the gate set \(\{X, CX, CCX, H \otimes H\} \).

Where, e.g.,

\[
\begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
 e
\end{bmatrix}
= \begin{bmatrix}
 (a + c + d + e)/2 \\
 b \\
 (a - c + d - e)/2 \\
 (a + c - d - e)/2 \\
 (a - c - d + e)/2
\end{bmatrix}.
\]

We now forget circuits and we use the set

\[\{(-1)_{[\alpha]}, X_{[\alpha, \beta]}, H \otimes H_{[\alpha, \beta, \gamma, \delta]} \mid 1 \leq \alpha < \beta < \gamma < \delta \leq n \} \]

as our set of generators.
Some Lemmas (I)

Lemma 1: If \(u_1, \ldots, u_4 \) are odd integers, then there exists \(m_1, \ldots, m_4 \) such that

\[
(H \otimes H)(-1)^{m_1}[1](-1)^{m_2}[2](-1)^{m_3}[3](-1)^{m_4}[4] \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix}
\]

for some even integers \(w_1, \ldots, w_4 \).
Some Lemmas (I)

Lemma 1: If u_1, \ldots, u_4 are odd integers, then there exists m_1, \ldots, m_4 such that

$$(H \otimes H)(-1)^{m_1}[1](-1)^{m_2}[2](-1)^{m_3}[3](-1)^{m_4}[4] \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix}$$

for some even integers w_1, \ldots, w_4.

Lemma 2: If $v = u/2^k$ is a unit vector such that $u \in \mathbb{Z}^n$ and $\text{Ide}(v) \geq 1$ then the number of odd entries in u is a multiple of 4.

Proof. Let $k = \text{Ide}(v)$. Since v is a unit vector we have

$$4^k = u^\dagger u = \sum a_i^2$$

and since $k \geq 1$ the number of odd a_i must be a multiple of 4.
Some Lemmas (II)

Column Lemma: If $v \in \mathbb{D}^n$ is a unit vector then there exists a sequence G_1, \ldots, G_ℓ of 1-, 2-, and 4-level operators of type $(−1)$, X, and $H \otimes H$ such that

$$G_1 \cdots G_\ell v = e_j$$

where e_j is the j-th standard basis vector.

Proof. By induction on the least denominator exponent k of v.

- If $k = 0$ then $v = \pm e_q$ and we choose the appropriate operators of type $(−1)$ and X.

- If $k > 0$ then we can apply 4-level operators of type $(−1)$ and $H \otimes H$ to groups of 4 odd components until all the entries in our vector are even at which point the least denominator exponent decreases.
The Exact Synthesis Algorithm

Theorem: If \(V \in U_n(\mathbb{D}) \) then there exists a sequence \(G_1, \ldots, G_\ell \) of 1- and 2- level operators of type \((-1), X, \) and \(H \otimes H \) such that

\[
G_1 \cdots G_\ell V = I
\]

or, equivalently, \(G_\ell^\dagger \cdots G_1^\dagger = V. \)

Proof. Apply the Column Lemma iteratively to the columns of \(V \) until the matrix is reduced to \(I. \)
IV. Further Results
Results (II)

Theorem: A $2^n \times 2^n$ matrix V can be exactly represented by an n-qubit circuit over

- $\{X, CX, CCX, H\}$ if and only if $V = W/\sqrt{2^q}$ for some matrix W over \mathbb{Z} and some $q \in \mathbb{N}$, and

- $\{X, CX, CCX, H, S\}$ if and only if $V = W/\sqrt{2^q}$ for some matrix W over $\mathbb{Z}[i]$ and some $q \in \mathbb{N}$.

Moreover, a single ancilla is always sufficient.
Results (III)

Theorem: Let $n \geq 4$. A $2^n \times 2^n$ matrix V can be exactly represented by an n-qubit ancilla-free circuit over

- $\{X, CX, CCX, F\}$ if and only if $V \in U_{2^n}(\mathbb{D}[i\sqrt{2}])$ and $\det(V) = 1$,
- $\{X, CX, CCX, \omega H, S\}$ if and only if $V \in U_{2^n}(\mathbb{D}[i])$ and $\det(V) = 1$,

where $F \propto \sqrt{H}$. Moreover, the requirement that $\det(V) = 1$ can be dropped for $n < 4$.

V. Conclusion and Outlook
Contributions

- We showed that the groups $U_n(D)$, $U_n(D[i\sqrt{2}])$, $U_n(D[i])$, and $U_n(D[\sqrt{2}])$ correspond to classes of restricted Clifford+\bar{T} circuits.

- In each case, the circuits are associated to gate sets obtained by extending the set of classical reversible gates $\{X, CX, CCX\}$ with an analogue of the Hadamard gate and an optional phase gate.
Looking Forward

• Can we further explore the lattice of subgroups of $U_n(D[\omega])$ through the study of restricted Clifford+T circuits?

• Can we use these characterizations to find presentations for families of circuits?

• Can this work provide a foundation for the optimization and verification of quantum circuits?
References (I)

- [M.A. 2008]: Matsumoto and Amano, *Representation of quantum circuits with Clifford and π/8 gates*.
- [K.M.M. 2013]: Kliuchnikov, Maslov, and Mosca, *Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates*.
- [G.S. 2013]: Giles and Selinger, *Exact synthesis of multiqubit Clifford+T circuits*.
- [B.S. 2015]: Bian and Selinger, *Relations for the group of 2-qubit Clifford+TT operators*.
- [S. 2015]: Selinger, *Generators and relations for n-qubit Clifford operators*.
References (II)

- [A.M. 2016]: Amy and Mosca, *T-count optimization and Reed-Muller codes*.
- [C.H. 2017]: Campbell and Howard, *Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost*.