On the CNOT-complexity of CNOT-PHASE circuits

Matthew Amy1,2 Parsiad Azimzadeh2 Michele Mosca1,2

1Institute for Quantum Computing, Waterloo, Canada

2University of Waterloo, Waterloo, Canada

Theory of Quantum Computation, Communication and Cryptography
July 18th, 2018
Sea knot???

CNOT/CZ optimization problems

<table>
<thead>
<tr>
<th>Gate set</th>
<th>Complexity</th>
<th>State-of-the-art</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNOT</td>
<td>???</td>
<td>Asymptotically optimal synthesis¹</td>
</tr>
<tr>
<td>CZ-PHASE</td>
<td>Polynomial</td>
<td>Optimal synthesis</td>
</tr>
<tr>
<td>CNOT-PHASE</td>
<td>???</td>
<td>Re-write rules</td>
</tr>
<tr>
<td>Clifford</td>
<td>???</td>
<td>Re-write rules</td>
</tr>
<tr>
<td>Clifford + T</td>
<td>???</td>
<td>Re-write rules</td>
</tr>
</tbody>
</table>

Assuming completely connected topology...

CNOT-PHASE: Circuits over CNOT and $R_Z(\theta) = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i \theta} \end{pmatrix}$

¹Patel, Markov and Hayes, *Optimal synthesis of linear reversible circuits*
Why CNOT-PHASE?

Phase folding/\(T\)-par uses \(T\)-depth optimal CNOT-PHASE synthesis as a sub-routine

Amy, Maslov and Mosca, *Polynomial-time \(T\)-depth Optimization of Clifford+\(T\) circuits via Matroid Partitioning*
Why CNOT-PHASE?

Phase folding/\(T\)-par uses \(T\)-depth optimal CNOT-PHASE synthesis as a sub-routine

Idea: replace \(T\)-depth optimal with CNOT-optimal!

Amy, Maslov and Mosca, *Polynomial-time T-depth Optimization of Clifford+T circuits via Matroid Partitioning*
We...

- Show that in certain cases, minimizing the number of CNOT gates is equivalent to finding a minimal CNOT circuit cycling through a set of parities of the inputs
- Show that cycling through a set of parities is NP-hard if
 - all CNOT gates have the same target, or
 - the circuit inputs are not linearly independent
- Give a new heuristic optimization algorithm
Introduction

Parity networks

Complexity of minimal parity network synthesis

Heuristic synthesis

Experiments

Conclusion
The sum-over-paths form

Recall the basis state action of CNOT and Phase gates:

\[
\text{CNOT} : |x\rangle|y\rangle \mapsto |x\rangle|x \oplus y\rangle
\]

\[
R_Z(\theta) : |x\rangle \mapsto e^{2\pi i \theta x} |x\rangle
\]

We call this basis state action the sum-over-paths (SOP) form.
The sum-over-paths form

Recall the basis state action of CNOT and Phase gates:

\[
\text{CNOT} : |x\rangle|y\rangle \mapsto |x\rangle|x \oplus y\rangle
\]

\[
R_Z(\theta) : |x\rangle \mapsto e^{2\pi i \theta x}|x\rangle
\]

We call this basis state action the sum-over-paths (SOP) form

Definition

The SOP form of a CNOT-PHASE circuit \(C\) is a pair \((f, A)\) where

\(f : \mathbb{F}_2^n \to \mathbb{R}\) is a pseudo-Boolean function given by

\[
f(x) = \sum_{y \in \mathbb{F}_2^n} \hat{f}(y) \chi_y(x), \quad \chi_y(x) = x_1 y_1 \oplus \cdots \oplus x_n y_n
\]

\(A \in \text{GL}(n, \mathbb{F}_2)\) is a linear permutation such that \(U_C : |x\rangle \mapsto e^{2\pi i f(x)} |Ax\rangle\)
Computing the sum-over-paths

Consider an implementation of \(CCZ \):

\[
\begin{align*}
R_Z \left(\frac{1}{8} \right) & \quad \bullet & \quad R_Z \left(\frac{7}{8} \right) & \quad \bullet & \quad R_Z \left(\frac{1}{8} \right) & \quad \bullet & \quad R_Z \left(\frac{7}{8} \right) \\
R_Z \left(\frac{1}{8} \right) & \quad \bullet & \quad R_Z \left(\frac{1}{8} \right) & \quad \bullet & \quad R_Z \left(\frac{7}{8} \right) & \quad \bullet & \quad R_Z \left(\frac{7}{8} \right)
\end{align*}
\]
Computing the circuit sum-over-paths

First annotate...

\[x_1 \equiv 100 \]
\[R_Z \left(\frac{1}{8} \right) \]
\[010 \]
\[x_2 \equiv 010 \]
\[R_Z \left(\frac{1}{8} \right) \]
\[x_3 \equiv 001 \]
\[R_Z \left(\frac{7}{8} \right) \]
\[001 \]

Then add the phase factors

\[|x\rangle \mapsto e^{2\pi i \left(x_1 + x_2 + 7(x_1 \oplus x_3) + 7(x_2 \oplus x_3) + (x_1 \oplus x_2 \oplus x_3) + 7(x_1 \oplus x_2) \right)} |x\rangle \]
Computing the circuit sum-over-paths

First annotate...

\[
\begin{align*}
 x_1 &\equiv 100 & R_Z \left(\frac{1}{8} \right) \quad \oplus \quad 101 &\rightarrow & R_Z \left(\frac{7}{8} \right) \quad \oplus \quad 111 &\rightarrow & R_Z \left(\frac{1}{8} \right) \quad \oplus \quad 110 &\rightarrow & R_Z \left(\frac{7}{8} \right) \quad \oplus \quad 100 \\
 x_2 &\equiv 010 & R_Z \left(\frac{1}{8} \right) \quad \oplus \quad 011 &\rightarrow & R_Z \left(\frac{7}{8} \right) \quad \oplus \quad 001 &\rightarrow & R_Z \left(\frac{1}{8} \right) \quad \oplus \quad 001 &\rightarrow & 010 \\
 x_3 &\equiv 001 & R_Z \left(\frac{1}{8} \right) \quad \oplus \quad 011 &\rightarrow & R_Z \left(\frac{7}{8} \right) \quad \oplus \quad 001 &\rightarrow & R_Z \left(\frac{1}{8} \right) \quad \oplus \quad 001 &\rightarrow & 001
\end{align*}
\]

...Then add the phase factors

\[
|\mathbf{x}\rangle \mapsto e^{\frac{2\pi i}{8}}(x_1 |\mathbf{x}\rangle)
\]
Computing the circuit sum-over-paths

First annotate...

\[\begin{align*}
 x_1 & \equiv 100 & & R_Z \left(\frac{1}{8} \right) & & 101 & & R_Z \left(\frac{7}{8} \right) & & 111 & & R_Z \left(\frac{1}{8} \right) & & 110 & & R_Z \left(\frac{7}{8} \right) & & 100 \\
 x_2 & \equiv 010 & & R_Z \left(\frac{1}{8} \right) & & 011 & & R_Z \left(\frac{7}{8} \right) & & 001 & & R_Z \left(\frac{1}{8} \right) & & 010 \\
 x_3 & \equiv 001
\end{align*} \]

...Then add the phase factors

\[|x\rangle \mapsto e^{\frac{2\pi i}{8}(x_1 + x_2)} |x\rangle \]
Computing the circuit sum-over-paths

First annotate...

\[x_1 \equiv 100 \]
\[R_Z \left(\frac{1}{8} \right) \]
\[101 \]
\[R_Z \left(\frac{7}{8} \right) \]
\[111 \]
\[R_Z \left(\frac{1}{8} \right) \]
\[110 \]
\[R_Z \left(\frac{7}{8} \right) \]
\[100 \]

\[x_2 \equiv 010 \]
\[R_Z \left(\frac{1}{8} \right) \]
\[011 \]
\[\bullet \]
\[R_Z \left(\frac{7}{8} \right) \]
\[001 \]
\[\bullet \]
\[R_Z \left(\frac{1}{8} \right) \]
\[001 \]

\[x_3 \equiv 001 \]
\[\bullet \]

...Then add the phase factors

\[|x\rangle \mapsto e^{\frac{2\pi i}{8}(x_1 + x_2 + 7(x_1 \oplus x_3))} |x\rangle \]
Computing the circuit sum-over-paths

First annotate...

\[x_1 \equiv 100 \]
\[R_Z \left(\frac{1}{8} \right) \]
\[101 \]
\[R_Z \left(\frac{7}{8} \right) \]
\[111 \]
\[R_Z \left(\frac{1}{8} \right) \]
\[110 \]
\[R_Z \left(\frac{7}{8} \right) \]
\[100 \]

\[x_2 \equiv 010 \]
\[R_Z \left(\frac{1}{8} \right) \]
\[011 \]

\[x_3 \equiv 001 \]
\[001 \]

...Then add the phase factors

\[|x\rangle \mapsto e^{\frac{2\pi i}{8}(x_1+x_2+7(x_1\oplus x_3)+7(x_2\oplus x_3))} |x\rangle \]
Computing the circuit sum-over-paths

First annotate...

\[x_1 \equiv 100 \quad R_Z \left(\frac{1}{8} \right) \quad 101 \quad R_Z \left(\frac{7}{8} \right) \quad 111 \quad R_Z \left(\frac{1}{8} \right) \quad 110 \quad R_Z \left(\frac{7}{8} \right) \quad 100 \]

\[x_2 \equiv 010 \quad R_Z \left(\frac{1}{8} \right) \]

\[x_3 \equiv 001 \]

...Then add the phase factors

\[|x\rangle \mapsto e^{\frac{2\pi i}{8}(x_1 + x_2 + 7(x_1 \oplus x_3) + 7(x_2 \oplus x_3) + (x_1 \oplus x_2 \oplus x_3))} |x\rangle \]
Computing the circuit sum-over-paths

First annotate...

\[\begin{align*}
 x_1 &\equiv 100 \\
 x_2 &\equiv 010 \\
 x_3 &\equiv 001
\end{align*} \]

...Then add the phase factors

\[|x\rangle \mapsto e^{\frac{2\pi i}{8}(x_1+x_2+7(x_1\oplus x_3)+7(x_2\oplus x_3)+(x_1\oplus x_2\oplus x_3)+7(x_1\oplus x_2))} |x\rangle \]
Computing the circuit sum-over-paths

First annotate...

\[x_1 \equiv 100 \quad R_Z \left(\frac{1}{8} \right) \quad 101 \quad R_Z \left(\frac{7}{8} \right) \quad 111 \quad R_Z \left(\frac{1}{8} \right) \quad 110 \quad R_Z \left(\frac{7}{8} \right) \quad 100 \]

\[x_2 \equiv 010 \quad R_Z \left(\frac{1}{8} \right) \quad 010 \quad 011 \quad R_Z \left(\frac{7}{8} \right) \quad 001 \quad R_Z \left(\frac{1}{8} \right) \quad 010 \]

\[x_3 \equiv 001 \quad \]...

...Then add the phase factors

\[|x\rangle \mapsto e^{\frac{2\pi i}{8}(x_1 + x_2 + 7(x_1 \oplus x_3) + 7(x_2 \oplus x_3) + (x_1 \oplus x_2 \oplus x_3) + 7(x_1 \oplus x_2) + x_3)}|x\rangle \]
Computing the circuit sum-over-paths

First annotate...

\[x_1 \equiv 100 \]
\[R_Z \left(\frac{1}{8} \right) \]
\[x_2 \equiv 010 \]
\[R_Z \left(\frac{1}{8} \right) \]
\[x_3 \equiv 001 \]
\[R_Z \left(\frac{7}{8} \right) \]

...Then add the phase factors

\[|x\rangle \mapsto e^{\frac{2\pi i}{8}(x_1 + x_2 + 7(x_1 \oplus x_3) + 7(x_2 \oplus x_3) + (x_1 \oplus x_2 \oplus x_3) + 7(x_1 \oplus x_2) + x_3)} |x\rangle \]
\[\mapsto e^{\frac{2\pi i}{2} x_1 x_2 x_3} |x\rangle \]
An observation

Recall:

\[CS^\dagger : |x_1 x_2\rangle \leftrightarrow e^{\frac{2\pi i}{4} x_1 x_2} |x_1 x_2\rangle \]

\[\leftrightarrow e^{\frac{2\pi i}{8} (7x_1 + 7x_2 + x_1 \oplus x_2)} |x_1 x_2\rangle \]

Can use the same CNOT structure as CCZ to implement \(CS^\dagger \)!
An observation

Recall:

$$CS^\dagger : |x_1 x_2\rangle \mapsto e^{\frac{2\pi i}{4} 3 x_1 x_2} |x_1 x_2\rangle$$

$$\mapsto e^{\frac{2\pi i}{8} (7 x_1 + 7 x_2 + x_1 \oplus x_2)} |x_1 x_2\rangle$$

Can use the same CNOT structure as CCZ to implement CS^\dagger!
Definition

A **parity network** for a set $S \subseteq \mathbb{F}_2^n$ is an n-qubit circuit C over CNOT gates where each $y \in S$ appears in the annotated circuit.

A parity network is **pointed at** $A \in \text{GL}(n, \mathbb{F}_2)$ if it implements the overall linear transformation A.
Parity networks

Definition

A parity network for a set $S \subseteq \mathbb{F}_2^n$ is an n-qubit circuit C over CNOT gates where each $y \in S$ appears in the annotated circuit.

A parity network is pointed at $A \in GL(n, \mathbb{F}_2)$ if it implements the overall linear transformation A.

E.g. the CNOT gates of CCZ,

```
100   101   111   110   100
100   101   111   110   100
010   011   001   010   010
001   011   001   001   001
```

is a parity network for $S = \{100, 010, 001, 110, 101, 011, 111\}$ pointed at $A = I$.
A CNOT-minimal circuit with SOP form \((f, A)\) necessarily gives a minimal parity network for \(\text{supp}(\hat{f})\) pointed at \(A\)
However...
A minimal parity network for supp(\hat{f}) may not give a CNOT-minimal circuit across equivalent SOP forms.
A minimal parity network for supp(\(\hat{f}\)) may not give a CNOT-minimal circuit across equivalent SOP forms.

E.g., \((\frac{1}{2}(x_1 \oplus x_2), I)\) and \((\frac{1}{2}x_1 + \frac{1}{2}x_2, I)\) give equivalent unitaries but have minimal parity network implementations.
Main result

Theorem

CNOT minimization of CNOT-PHASE circuits is at least as hard as synthesizing a minimal parity network.
Main result

Theorem

CNOT minimization of CNOT-PHASE circuits is at least as hard as synthesizing a minimal parity network

Intuition:

- If \((f, A) \sim (f', A')\), then \(A = A'\) and \(f' = f + k\) for \(k : \mathbb{F}_2^n \rightarrow \mathbb{Z}\)
Main result

Theorem

CNOT minimization of CNOT-PHASE circuits is at least as hard as synthesizing a minimal parity network

Intuition:

- If \((f, A) \sim (f', A')\), then \(A = A'\) and \(f' = f + k\) for \(k : \mathbb{F}_2^n \to \mathbb{Z}\).
- The Fourier coefficients of \(k\) have even order in \(\mathbb{R}/\mathbb{Z}\).
Main result

Theorem

CNOT minimization of CNOT-PHASE circuits is at least as hard as synthesizing a minimal parity network

Intuition:

- If \((f, A) \sim (f', A') \), then \(A = A' \) and \(f' = f + k \) for \(k : \mathbb{F}_2^n \to \mathbb{Z} \)
- The Fourier coefficients of \(k \) have even order in \(\mathbb{R}/\mathbb{Z} \)
- If no elements of \(\hat{f} \) have even order in \(\mathbb{R}/\mathbb{Z} \), then

\[
\text{supp}(\hat{f}') \subseteq \text{supp}(\hat{f})
\]
Introduction

Parity networks

Complexity of minimal parity network synthesis

Heuristic synthesis

Experiments

Conclusion
Goal:

Prove that the minimal parity network problem (MPNP) is NP-hard

Obvious reductions don’t work due to shortcuts
Goal:

Prove that the minimal parity network problem (MPNP) is NP-hard

Obvious reductions don’t work due to **shortcuts**
A graphical interpretation
Conjecture

If for all \(y \in S, y_i = 1 \), then there exists a minimal parity network for \(S \) where each CNOT targets bit \(i \).
Conjecture

If for all $y \in S$, $y_i = 1$, *then there exists a minimal parity network for* S *where each CNOT targets bit* i.
Theorem

The fixed-target minimal parity network problem is NP-complete

Proof:

Reduction from traveling salesman on the hypercube

\(^2\)Ernvall, Katajainen, and Penttonen, *NP-completeness of the Hamming salesman problem*
If some inputs are linearly dependent, fewer gates may be needed to implement a parity network.

E.g., $S = \{111\}$

![Diagram of minimal parity network with encoded inputs]
If some inputs are linearly dependent, fewer gates may be needed to implement a parity network

E.g., $S = \{111\}$

Direct applications to phase folding with ancillas!
Theorem

The encoded input minimal parity network problem is NP-complete

Proof:

Reduction from maximum-likelihood decoding

\(^3\)Berlekamp, McEliece, and van Tilborg, *On the inherent intractability of certain coding problems*
Introduction

Parity networks

Complexity of minimal parity network synthesis

Heuristic synthesis

Experiments

Conclusion
Given $S \subseteq \mathbb{F}_2^n$, synthesize an efficient parity network for S
For $S = \mathbb{F}_2^n \parallel x, x \in \mathbb{F}_2^m$, minimal parity network is the Gray code and can be computed greedily

E.g.,

$S = \mathbb{F}_2^3 \parallel 1 = \{0001, 1001, 0101, 1101, 0011, 1011, 0111, 1111\}$
Bases cases

For $S = \mathbb{F}_2^n$, case is similar

E.g.,

$S = \mathbb{F}_2^3$

\[
\begin{array}{cccc}
100 & \bullet & 110 & \bullet & 100 \\
010 & 110 & 101 & 011 & 111 \\
001 & 110 & 111 & & \\
\end{array}
\]

$S = \mathbb{F}_2^4$

\[
\begin{array}{cccccccc}
1000 & \bullet & 1100 & \bullet & 1000 & \\
0100 & 1100 & 1010 & 0110 & 1110 & \\
0010 & 1110 & 1001 & 0101 & 1101 & \\
0001 & 1101 & 0011 & 1011 & 0111 & \\
\end{array}
\]
Main idea:

Try to identify subsets S' of S which have the form $S' \simeq \mathbb{F}_2^n \parallel x$, and synthesize those greedily
The **Gray-synth** algorithm

1. Start with a singleton stack containing the set S
2. Pop a set S' off the stack
3. If $x_i \oplus x_j$ appears in every parity of S',
 - Apply a CNOT between bits i and j, and
 - Adjust all subsets remaining on the stack accordingly
4. Pick some row i maximizing the number of parities in S'
 which **either contain or do not contain** x_i
5. Set $S_b = \{ x \in S' \mid x_i = b \}$ and push S_1, S_0 onto the stack
6. Go to step 2

Invariant: remaining parities are expressed over the current basis
- Avoids “uncomputing” or backtracking
Example

Parity network for \(S = \{0110, 1000, 1001, 1110, 1101, 1100\} \)

\[
\begin{bmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}
\]

Columns are remaining parities
Box is current top of the stack
White rows haven't been partitioned
Grey rows have been partitioned
Example

Parity network for $S = \{0110, 1000, 1001, 1110, 1101, 1100\}$

Columns are remaining parities
Box is current top of the stack
White rows haven’t been partitioned
Grey rows have been partitioned
Example

Parity network for \(S = \{0110, 1000, 1001, 1110, 1101, 1100\} \)

- Columns are remaining parities
- Box is current top of the stack
- White rows haven’t been partitioned
- Grey rows have been partitioned
Example

Parity network for $S = \{0110, 1000, 1001, 1110, 1101, 1100\}$

Columns are remaining parities
Box is current top of the stack
White rows haven't been partitioned
Grey rows have been partitioned
Example
Parity network for \(S = \{0110, 1000, 1001, 1110, 1101, 1100\} \)

- Columns are remaining parities
- Box is current top of the stack
- White rows haven’t been partitioned
- Grey rows have been partitioned
Example
Parity network for $S = \{0110, 1000, 1001, 1110, 1101, 1100\}$

- Columns are remaining parities
- Box is current top of the stack
- White rows haven’t been partitioned
- Grey rows have been partitioned
Example

Parity network for $S = \{0110, 1000, 1001, 1110, 1101, 1100\}$

Columns are remaining parities
Box is current top of the stack
White rows haven’t been partitioned
Grey rows have been partitioned
Example
Parity network for $S = \{0110, 1000, 1001, 1110, 1101, 1100\}$

- Columns are remaining parities
- Box is current top of the stack
- White rows haven’t been partitioned
- Grey rows have been partitioned
Example
Parity network for $S = \{0110, 1000, 1001, 1110, 1101, 1100\}$

Columns are remaining parities
Box is current top of the stack
White rows haven’t been partitioned
Grey rows have been partitioned
Example
Parity network for $S = \{0110, 1000, 1001, 1110, 1101, 1100\}$

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\rightarrow

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Columns are remaining parities
- Box is current top of the stack
- White rows haven’t been partitioned
- Grey rows have been partitioned
Example
Parity network for $S = \{0110, 1000, 1001, 1110, 1101, 1100\}$

- Columns are remaining parities
- Box is current top of the stack
- White rows haven’t been partitioned
- Grey rows have been partitioned
Example

Parity network for $S = \{0110, 1000, 1001, 1110, 1101, 1100\}$

- Columns are remaining parities
- Box is current top of the stack
- White rows haven’t been partitioned
- Grey rows have been partitioned
Example

Parity network for $S = \{0110, 1000, 1001, 1110, 1101, 1100\}$

- Columns are remaining parities
- Box is current top of the stack
- White rows haven’t been partitioned
- Grey rows have been partitioned
Example

Parity network for \(S = \{0110, 1000, 1001, 1110, 1101, 1100\} \)

- Columns are remaining parities
- Box is current top of the stack
- White rows haven’t been partitioned
- Grey rows have been partitioned
Example
Parity network for $S = \{0110, 1000, 1001, 1110, 1101, 1100\}$

- Columns are remaining parities
- Box is current top of the stack
- White rows haven’t been partitioned
- Grey rows have been partitioned
Introduction

Parity networks

Complexity of minimal parity network synthesis

Heuristic synthesis

Experiments

Conclusion
Performance vs. brute force

- Data collected across all sets of parities on 4 bits
- **GRAY-SYNTH** within 15% of optimal on average for $|S| = 8$

https://github.com/meamy/feynman
Benchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>n</th>
<th>Base</th>
<th>Nam et al. (L)</th>
<th>T-par (GRAY-SYNTH)</th>
<th>% Red.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CNOT</td>
<td>Time</td>
<td>CNOT</td>
</tr>
<tr>
<td>Grover.5</td>
<td>9</td>
<td></td>
<td>336</td>
<td>0.027</td>
<td>210</td>
</tr>
<tr>
<td>Mod 5.4</td>
<td>5</td>
<td></td>
<td>32</td>
<td>< 0.001</td>
<td>28</td>
</tr>
<tr>
<td>VBE-Adder.3</td>
<td>10</td>
<td></td>
<td>80</td>
<td>0.073</td>
<td>76</td>
</tr>
<tr>
<td>CSLA-MUX.3</td>
<td>15</td>
<td></td>
<td>90</td>
<td>0.097</td>
<td>136</td>
</tr>
<tr>
<td>CSUM-MUX.9</td>
<td>30</td>
<td></td>
<td>196</td>
<td>0.112</td>
<td>189</td>
</tr>
<tr>
<td>QCLA-Com.7</td>
<td>24</td>
<td></td>
<td>215</td>
<td>0.145</td>
<td>356</td>
</tr>
<tr>
<td>QCLA-Mod.7</td>
<td>26</td>
<td></td>
<td>441</td>
<td>0.165</td>
<td>352</td>
</tr>
<tr>
<td>QCLA-Adder.10</td>
<td>36</td>
<td></td>
<td>267</td>
<td>0.180</td>
<td>71</td>
</tr>
<tr>
<td>Adder.8</td>
<td>24</td>
<td></td>
<td>466</td>
<td>0.210</td>
<td>352</td>
</tr>
<tr>
<td>RC-Adder.6</td>
<td>14</td>
<td></td>
<td>104</td>
<td>0.230</td>
<td>71</td>
</tr>
<tr>
<td>Mod-Red.21</td>
<td>11</td>
<td></td>
<td>122</td>
<td>0.240</td>
<td>84</td>
</tr>
<tr>
<td>Mod-Mult.55</td>
<td>9</td>
<td></td>
<td>55</td>
<td>0.260</td>
<td>45</td>
</tr>
<tr>
<td>Mod-Adder.1024</td>
<td>28</td>
<td></td>
<td>2005</td>
<td>0.280</td>
<td>1376</td>
</tr>
<tr>
<td>Cycle 17.3</td>
<td>35</td>
<td></td>
<td>4532</td>
<td>2.618</td>
<td>2998</td>
</tr>
<tr>
<td>GF(2^{32})-Mult</td>
<td>96</td>
<td></td>
<td>7292</td>
<td>5.571</td>
<td>6658</td>
</tr>
<tr>
<td>GF(2^{64})-Mult</td>
<td>192</td>
<td></td>
<td>28861</td>
<td>114.310</td>
<td>25966</td>
</tr>
<tr>
<td>Ham.15 (low)</td>
<td>17</td>
<td></td>
<td>259</td>
<td>0.043</td>
<td>208</td>
</tr>
<tr>
<td>Ham.15 (med)</td>
<td>17</td>
<td></td>
<td>574</td>
<td>0.089</td>
<td>351</td>
</tr>
<tr>
<td>Ham.15 (high)</td>
<td>20</td>
<td></td>
<td>2489</td>
<td>0.376</td>
<td>1500</td>
</tr>
<tr>
<td>HWB.6</td>
<td>7</td>
<td></td>
<td>131</td>
<td>0.006</td>
<td>111</td>
</tr>
<tr>
<td>HWB.8</td>
<td>12</td>
<td></td>
<td>7508</td>
<td>1.706</td>
<td>6719</td>
</tr>
<tr>
<td>QFT.4</td>
<td>5</td>
<td></td>
<td>48</td>
<td>0.005</td>
<td>47</td>
</tr>
<tr>
<td>$\Lambda_5(X)$</td>
<td>9</td>
<td></td>
<td>49</td>
<td>< 0.001</td>
<td>30</td>
</tr>
<tr>
<td>$\Lambda_5(X)$ (Barenco)</td>
<td>9</td>
<td></td>
<td>84</td>
<td>< 0.001</td>
<td>60</td>
</tr>
<tr>
<td>$\Lambda_{10}(X)$</td>
<td>19</td>
<td></td>
<td>119</td>
<td>< 0.001</td>
<td>70</td>
</tr>
<tr>
<td>$\Lambda_{10}(X)$ (Barenco)</td>
<td>19</td>
<td></td>
<td>224</td>
<td>0.001</td>
<td>144</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>23.3</td>
<td></td>
</tr>
</tbody>
</table>

https://github.com/meamy/feynman
Introduction

Parity networks

Complexity of minimal parity network synthesis

Heuristic synthesis

Experiments

Conclusion
Conclusion

In this talk...

- Parity networks characterize the CNOT complexity of CNOT-PHASE circuits for a particular phase function.
- CNOT minimization is at least as hard as synthesizing a minimal parity network.
- Synthesizing a minimal parity network is NP-hard when targets are fixed or inputs are encoded.
- A heuristic parity network synthesis algorithm & benchmarks.
Future work

- Proof of hardness for the general problem
- Synthesis algorithm that combines parity network synthesis with an output linear permutation
- Adding topology constraints
Thank you!