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Determinants

Although we are introducing determinants in the context of matrices, the theory
of determinants predates matrices by at least two hundred years. Their study was
motivated in the pursuit of solutions to a variety of practical problems that may
be seen as independent of matrices as the concept of a matrix had not been fully
explored.

In this section we will generalize the definition of the determinant for any 2× 2
matrix to an n×n matrix. The definition of the determinant arose from our study of

invertible matrices, we saw that if A =

[
a11 a12
a21 a22

]
has a non-vanishing determinant

detA = a11a22 − a12a21

then it is invertible and the inverse of A may be computed.
At times we will use an alternative notation, we will denote the determinant of

a matrix A as |A|, or explicitly with the components of the matrix,

|A| =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.

As the determinant can be negative it is very important not to confuse this with
the absolute value function |a|abs =

√
a2, which is always positive. Compare this

with the definition of the determinant for a 1× 1 matrix det[a] = |a| = a.
Notice that we have not given a formula for the determinant in the 1 × 1 and

2× 2 cases we have been given the determinant formula, we will do this once more
for the 3× 3 to get a flavour of how the general case works. Given a 3× 3 matrix
A,

A =

a b c
d e f
g h i


the determinant will be

|A| = aei− afh− bdi + bfg + cdh− ceg

= a(ei− fh)− b(di− fg) + c(dh− eg);

these bracketed terms are notable because they look like the determinants of 2× 2
matrices, and so we may write this as

|A| = a

∣∣∣∣e f
h i

∣∣∣∣− b

∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣ .
Each of these 2×2 matrices are submatrices of A. We will take this as our definition
of determinants as it is recursive since we have defined the definition of 3×3 matrices
in terms of 2× 2 submatrices.
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Definition 0.1. Given a 3× 3 matrix A, the determinant of A is the scalar, det
A = |A|,∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23
a311 a33

∣∣∣∣+ a13

∣∣∣∣a21 a31
a32 a33

∣∣∣∣ .
It is important to notice the relationship between the coefficient of the deter-

minant of the 2 × 2 submatrix and their positions in the original matrix. Each of
these 2 × 2 determinants are obtained by deleting the row and column of A that
contain the coefficient of the determinant. For the first term we remove the first
column and first row to calculate the determinant multiplied by a11. Furthermore
there is an alternating sign in the sum of each term.

If we denote Aij as the submatrix of A made by removing the i-th row and j-th
column of A then this equation may be written as

detA = |A| = a11|A11| − a12|A12|+ a13|A13|
= Σ3

k=1(−1)1+ka1k|A1k|.
For any square matrix A, detAij = |Aij | is called the (i,j) -minor of A.

Example 0.2. Q: Compute the determinant of

A =

5 −3 2
1 0 2
2 −1 3


A: Using the formula we compute,

detA = 5

∣∣∣∣ 0 2
−1 3

∣∣∣∣− (−3)

∣∣∣∣1 2
2 3

∣∣∣∣+ 2

∣∣∣∣1 0
2 −1

∣∣∣∣
= 5(0− (−2)) + 3(3− 4) + 2(−1− 0)

= 10− 3− 2 = 5.

Example 0.3. Q: Compute the determinant of

A =

3 0 −3
2 1 4
3 2 2


A: Using the formula we compute,

detA = 3

∣∣∣∣1 4
2 2

∣∣∣∣− 0

∣∣∣∣2 4
3 2

∣∣∣∣+ (−3)

∣∣∣∣2 1
3 2

∣∣∣∣
= 3(2− 8) + 0 + (−3)(4− 3)

= −18− 3 = −21.

Determinants of n × n matrices. The definition of (i,j)-minor of A is easily
extended to square matrices of any size, this allows one to generalize the definition
of the determinant to any n× n matrix

Definition 0.4. Given A = [aij ], a n× n matrix with n ≥ 2, the determinant of
A is the scalar, det A = |A|,

det A = a11det A11 − a12det A12 + · · ·+ (−1)1+na1ndet A1n

= Σn
k=1(−1)1+ka1kdet A1k.
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If we combine the minor of a matrix with its plus or minus sign, we produce the
(i,j)-cofactor of A

Cij = (−1)1+idetAij

with this notation, the determinant is very compact

det A = Σn
k=1a1kC1k.

The above formula for the determinant will be called the cofactor expansion
along the first row. If we expand along any other row we will recover the same
result, furthermore the same could be done along any column of A as well. We will
summarize this fact in a theorem whose proof will wait until later.

Theorem 0.5. The Laplace Expansion Theorem The determinant of an n × n
matrix A = [aij ], where n ≥ 2 may be computed as the sum

det A = |A| = ai1Ci1 + ai2Ci2 + · · ·+ ainCin(1)

= Σn
k=1aikCik

and also as the sum

det A = |A| = a1jC1j + a2jC2j + · · ·+ anjCnj(2)

= Σn
k=1akjCkj .

These are respectively called the cofactor expansion along the i-th row and
cofactor expansion along the j-th column.

As a helpful reminder to calculate the sign change between the (i,j)-minor of A
and the (i,j)-cofactor of A, remember the checkerboard pattern:

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...
. . .

 .

Example 0.6. Q: Compute the determinant of the matrix

A =

5 −3 2
1 0 2
2 −1 3


by (a) cofactor expansion along the third row and (b) cofactor expansion along the
second column.
A: (a) Using the formula we find

|A| = a31C31 + a32C32 + a33C33

= 2

∣∣∣∣−3 2
0 2

∣∣∣∣− (−1)

∣∣∣∣5 2
1 2

∣∣∣∣+ 3

∣∣∣∣5 −3
1 0

∣∣∣∣
= 2(−6) + 8 + 3(3) = 5
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(b) To calculate det A with the cofactor expansion along the second column we use
the second formula

|A| = a12C12 + a22C22 + a32C32

= −(−3)

∣∣∣∣1 2
2 3

∣∣∣∣+ 0

∣∣∣∣5 2
2 3

∣∣∣∣− (−1)

∣∣∣∣5 2
1 2

∣∣∣∣
= 3(−1) + 0 + 8 = 5

This example illustrates the utility of choosing the ”right” row or column to expand
along in order to compute the determinant quickly; in the second example we did
less work as the coefficient of C22 is zero and so we need not compute this minor.
Thus the Laplace Expansion theorem is relevant when a matrix contains a row
or columns with lots of zeroes as the existence of such a row or column simplifies
calculations.

Example 0.7. Q: By choosing the proper row or column, compute the determinant
of

A =


2 −3 0 1
5 4 2 0
1 −1 0 3
−2 1 0 0

 .

A: As the third column has only one non-zero entry we should expand along this
column. Reminding ourself of the checkerboard pattern, the entry a23 = 2 must
have a minus sign in the (2,3)-minor:

|A| = a13C13 + a23C23 + a33C33 + a43C43

= 0C13 + 2C23 + 0C33 + 0C43

= −2

∣∣∣∣∣∣
2 −3 1
1 −1 3
−2 1 0

∣∣∣∣∣∣ .
Thus in order to compute the determinant of A we must compute the determinant
of the 3 × 3 submatrix, this is most easily done by expanding along the third row
(or third column) as this contains a zero:

|A| = −2

(
−2

∣∣∣∣−3 1
−1 3

∣∣∣∣− ∣∣∣∣2 1
1 3

∣∣∣∣)
= −2(−2(−8)− 5) = −2(11) = −22

The determinants of upper and lower Triangular matrices are easily determined
using the Laplace Expansion theorem

Example 0.8. Q: Compute the determinant of

A =


2 −3 1 0 4
0 3 2 5 7
0 0 1 6 0
0 0 0 5 2
0 0 0 0 −1


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Expanding along the first column we find

|A| = 2

∣∣∣∣∣∣∣∣
3 2 5 7
0 1 6 0
0 0 5 2
0 0 0 −1

∣∣∣∣∣∣∣∣ = 2 ∗ 3 ∗

∣∣∣∣∣∣
1 6 0
0 5 2
0 0 −1

∣∣∣∣∣∣ = 2 ∗ 3 ∗ 1

∣∣∣∣5 2
0 −1

∣∣∣∣
Computing the last determinant we find

|A| = 2 ∗ 3 ∗ 1(5(−1)− 2) = 2 ∗ 3 ∗ 1 ∗ 5 ∗ (−1) = −30

From this example we suspect that in general the determinant of an upper-triangular
matrix will be the product of its diagonal entries.

Proposition 0.9. The determinant of a triangular matrix is the product of the
entries on its main diagonal. That is, if A=[aij ] is an n× n matrix, then

det A = |A| = a11 ∗ a22 ∗ · · · ∗ ann.

Properties of Determinants. In general the cofactor expansion of an arbitrary
matrix requires an extensive calculation, as n increases the number of computations
required to determine the determinant of an n×n matrix increases at an alarming
rate While this approach to computing the determinant does provide the answer
for any size matrix, this will be useless for applications because of the number
of multiplications, additions and subtractions required will take longer than one
could reasonably wait. For this reason we examine the algebraic properties of the
determinant to find a better method.

Row reduction will play an important part in the computation of determinants.
However some care must be taken as not every elementary row operation leaves the
determinant of a matrix unchanged. We summarize these facts in a helpful theorem

Theorem 0.10. Let A = [aij ] be a square matrix,

(1) If A has a zero row (or column) then det A = 0.
(2) If B is obtained by interchanging two rows (or columns of A), then det B

= - det A.
(3) If A has two identical rows (or columns) then det A = 0.
(4) If B is obtained by multiplyinga row (or column) of A by k, then det A = k

det A.
(5) If A,B, and C are identical except that the i-th row (or column) of C is the

sum of the i-th rows (or columns) of A and B, then det C = det A + det
B.

(6) If B is obtained by adding a multiple of one row (or column) of A to another
row (or column), then det B = det A

Proof. We will save the proof of the second statement in the list until the end
of the section. To illustrate how one might prove statements like these we prove
(3),(4) and (5) using the rows of A- the proofs for these statements with columns
are essentially identical.

• (3) If A has two identical rows, we may interchange them to produce B,
with B = A, and so det B = det A. However taking (2) we see that this
also implies det B = - det A, as this is the case we must have that det A
= -det A, implying that det A = 0.
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• (4) Suppose the i-th row of A is multiplied by k to produce B, so that
bij = kaij where j ∈ [1, n]. As the cofactors Cij of the elements of the i-th
row of A and B are identical, expanding along the i-th row of B gives

|B| = Σn
j=1bijCij = Σn

j=1kaijCij = kΣn
j=1aijCij = k|A|

• (5) As in the last example, the cofactors Cij of the elements in the i-th row
of A,B and C are identical, as no change has occured outside of the i-th
row. Furthermore cij = aij + bij , j ∈ [1, n] and so expanding along the i-th
row of C we find

|C| = Σn
j=1cijCij = Σn

j=1(aij + bij)Cij

= Σn
j=1aijCij + Σn

j=1bijCij

= |A|+ |B|

With these statements proven, the proof of (1) and (6) are easily proven. �

Example 0.11. Compute the determinant of the matrix A if

a) A =

 2 3 −1
0 5 3
−4 −6 2

 , b) A =


0 2 −4 5
3 0 −3 6
2 4 5 7
5 −1 −3 1

 .

A: a) Using properties (5) followed by (1) we note that adding twice the first row
to the third row, R3 + 2R1 results in the new third row being all zeroes:∣∣∣∣∣∣

2 3 −1
0 5 3
−4 −6 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2 3 −1
0 5 3
0 0 0

∣∣∣∣∣∣ = 0

b) To compute the determinant of this matrix we apply row operations and keep
track of the sign changes, we apply the row operations R1 ↔ R2; 1

3R1; R3 − 2R1,
R4 − 5R1; R2 ↔ R4; R3 + 4R2 and R4 + 2R2 to get:

|A| =

∣∣∣∣∣∣∣∣
0 2 −4 5
3 0 −3 6
2 4 5 7
5 −1 −3 1

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
3 0 −3 6
0 2 −4 5
2 4 5 7
5 −1 −3 1

∣∣∣∣∣∣∣∣ = −3

∣∣∣∣∣∣∣∣
1 0 −1 2
0 2 −4 5
2 4 5
5 −1 −3 1

∣∣∣∣∣∣∣∣
= −3

∣∣∣∣∣∣∣∣
1 0 −1 2
0 2 −4 5
0 4 7 3
0 −1 2 −9

∣∣∣∣∣∣∣∣ = −(−3)

∣∣∣∣∣∣∣∣
1 0 −1 2
0 −1 2 −9
0 4 7 3
0 2 −4 5

∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣∣∣
1 0 −1 2
0 −1 2 −9
0 0 15 −33
0 0 0 −13

∣∣∣∣∣∣∣∣
= 3 ∗ 1 ∗ (−1) ∗ 15 ∗ (−13) = 585

where semi-colons in the list of row operations is paralleled by equalities in the
chain of equalities above.
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Determinants of Elementary Matrices. As elementary row operations have
come back into our discussion of matrices and their determinants, we will examine
the determinants of the elementary matrices arising from these row operations.
Setting A = In the theorem on the properties of the determinants yields the helpful
result

Theorem 0.12. Let E be an n× n elementary matrix.

(1) If E results from interchanging two rows of In then det E = -1.
(2) If E results from multiplying one row of In by k, then det E = k.
(3) If E results from adding a multiple of one row of In to another row, then

det E = 1.

Proof. Since det In = 1, applying the second, fourth and sixth properties of deter-
minants we prove all three results above. �

Multiplying on the left by a matrix B by an elementary matrix is the equivalent of
applying the analogous row operation on B, therefore we may rephrase the second,
fourth and sixth properties of the determinant in the following way:

Lemma 0.13. Let B be an n×n matrix, and let E be an n×n elementary matrix,
then det(EB) = det(E)det(B)

By applying this lemma we will prove the main result of this section

Theorem 0.14. A square matrix A is invertible if and only if det A 6= 0.

Proof. Let A be an n×n matrix and let R be the reduced row echelon form of A. We
first show that det A 6= 0 if and only if det R 6= 0, by first supposing E1, E2, · · · , Er

be the elementary matrices corresponding to the elementary row operations that
reduce A to R, then

Er · · ·E2E1A = R

Taking the determinant of either side we find that

(det Er) · · · (det E2)(det E1)(det A) = det R.

Noting that the determinants of all elementary matrices are non-zero, we conclude
that det A vanishes if and only if det R does as well.

To prove the next part, we assume that A is invertible, then by the Fundamental
Theorem of Invertible Matrices, R = In and so the determinant of R must be 1
which is never zero, thus the determinant of A must be non-zero as well. Alterna-
tively assuming that det A 6= 0 then det R 6= 0, so R cannot contain a zero row,
thus R must be In and A is invertible. �

Determinants and Matrix Operations. With a whole list of properties for
determinants and matrix multiplication with elementary matrices, one wonders
how other matrix operations relate to determinants. For example, are there any
formulas for det(kA), det(A+B), det(AB), det (A−1) and det(At) in terms of det
A and det B?

Looking at the fourth property of determinants, we might think det(kA) =
kdet(A), however this is not quite right. The correct relationship between scalar
multiplication and determinants is

Theorem 0.15. If A is an n× n matrix, then

det(kA) = kndet(A)
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The proof of this statement uses the fourth property, by examining the case when
the n vectors can be scaled by the same value k.

There is no simple formula for de(A+B), and in general we will have det(A +
B) 6= det(A) + det(B), despite this there is a surprising connection between matrix
multiplication of arbitrary matrices and determinants, due to Cauchy:

Theorem 0.16. if A and B are n× n matrices, then

det(AB) = det(A)det(B)

Proof. There are two cases to consider, when A is invertible and when it is not.
If A is invertible, then by the Fundamental Theorem of Invertible Matrices it

can be written as the product of elementary matrices and the identity matrix,
A = E1E2 · · ·Ek, then AB = E1E2 · · ·EkB k times and so

det(AB) = det(Ek) · · · det(E1)det(B) = det(Ek · · ·E1)det(B) = det(A)det(B).

Now supposing that A is not invertible, then neither is AB and so det A = 0 and
det(AB) = 0, thus det(AB) = det(A) det(B) as both sides are zero. �

Example 0.17. Q: Given A =

[
2 1
2 3

]
and B =

[
5 1
2 1

]
we have AB =

[
12 3
16 5

]
,

verify if the formula holds true.
A: Computing the determinants we have det A = 4, det B = 3 and det AB = 12,
it follows that det AB = det A det B.

For any invertible matrix, the determinant gives a useful relationship between
the determinant of A and its inverse:

Theorem 0.18. If A is invertible, then

det(A−1) =
1

det A
.

Proof. Since A is invertible AA−1 = I, and so det(AA−1) = 1, thus det(A)det(A−1) =
1, by solving this equation for det A−1 we find the desired identity as det A 6= 0 �

Example 0.19. Q: Verify this fact for A,

A =

[
2 1
2 3

]
A: Computing the inverse we find

A−1 =
1

4

[
3 −1
−2 2

]
taking its determinant we find that

det A−1 =

(
3

2

)(
1

2

)
−
(
−1

4

)(
−1

2

)
=

3

8
− 1

8
=

1

4

As det A = 4 we see that this is the case.

As one last application we relate the determinants of a matrix A with its trans-
pose At, by noting that the Laplace Expansion theorem allows for an expansion
along any row or column and that the rows of At are just the columns of A. Com-
bining these two facts we find that

Theorem 0.20. For any square matrix A,

det A = det At.
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Cramer’s Rule and the Adjoint. We will introduce two useful formulas relating
determinants to the solution of a linear system and the inverse of a matrix. The first,
Cramer’s Rule gives a formula for describing the solution of a particular subclass
of systems of n linear equations in n variables - entirely in terms of determinants.
The second result gives the inverse of a n× n matrix A.

To introduce Cramer’s Rule we must define new notation. For an n× n matrix
A and a vector b ∈ Rn, let Ai(b) denote the matrix obtained by replacing the i-th
column of A by b, so that

Ai(b) = [a1 · · ·ai−1bai+1 · · ·an]

With these new matrices defined we may introduce Cramer’s Rule

Theorem 0.21. Cramer’s Rule Let A be an invertible n× n matrix and let b be a
vector in Rn. Then the unique solution xof the system Ax = b is given by

xi =
det Ai(b)

det A
, i = 1, ..., n

Proof. The columns of the identity matrix In = I are the standard unit vectors
e1, ..., en, if Ax = b, then

AIi(x) = A[e1 · · ·x · · · en] = [Ae1 · · ·Ax · · ·Aen]

= [a1 · · ·b · · ·an] = Ai(b).

Thus, using the relationship between matrix multiplication and determinants,

(det A)(det Ii(x)) = det(AIi(x) = det(Ai(b)).

Finally

detIi(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · x1 · · · 0 0
0 1 · · · x2 · · · 0 0
...

...
. . . · · · · · · · · ·

0 0 · · · xi · · · 0 0
...

... · · ·
. . . · · · · · ·

0 0 · · · xn−1 · · · 0 0
0 0 · · · xn · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= xi

which can be seen by expanding along the i-th row. Thus (det A)xi = det(Ai(b))
and the result follows by dividing by det A. �

Example 0.22. Q: Use Cramer’s rule to solve the system

x1 + 2x2 = 2

−x1 + 4x2 = 1.

A: We compute

det A =

∣∣∣∣ 1 2
−1 4

∣∣∣∣ = 6, det(A1(b) =

∣∣∣∣2 2
1 4

∣∣∣∣ = 6, det(A2(b) =

∣∣∣∣ 1 2
−1 1

∣∣∣∣ = 3.

Now using Cramer’s rule we find that

x1 =
det(A1(b))

det A
=

6

6
= 1, x2 =

det(A2(b))

det A
=

3

6
=

1

2
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We conclude this section with a formula for the inverse of a matrix in terms of
determinants. To start we suppose A is an invertible n × n matrix, its inverse is
the unique matrix X that satisfies AX = I. Solve for X one column at a time, let’s
say xj is the j-th column of X,

xi =



x1j

...
xij

...
xnj


we consider the problem Axi = ei, and apply Cramer’s rule:

xij =
det(Ai(ej))

det A
.

However,

det(Ai(ej)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · 0 · · · a1n
a21 a22 · · · 0 · · · a2n
...

...
. . .

...
...

aj1 aj2 · · · 1 · · · ajn
...

...
...

. . .
...

an1 an2 · · · 0 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)i+jdetAji = Cji

this is the (j,i)-cofactor of A.
It follows that xij = 1

det ACji and so A−1 = X = 1
det A [Cji] = 1

det A [Cij ]
t.

Thus the inverse of A is the transpose of the matrix of cofactors of A, divided by
the determinant of A. We call this matrix the adjoint or adjugate of A and is
denoted by adj A:

adjA = [Cij [
t=


C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

. . .
...

C1n C2n · · · Cnn

 .

The result we have proven may be summarized as

Theorem 0.23. Let A be an invertible n× n matrix, then

A−1 =
1

det A
adj A

Example 0.24. Q: Use the adjoint method to compute the inverse of

A =

1 2 −1
2 2 4
1 3 −3


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A: Computing the determinant we find det A = -2, and the nine cofactors are

C11 =

∣∣∣∣2 4
3 −3

∣∣∣∣ = −18, C12 = −
∣∣∣∣2 4
1 −3

∣∣∣∣ , C13 =

∣∣∣∣2 2
1 3

∣∣∣∣ = 4

C21 = −
∣∣∣∣2 −1
3 −3

∣∣∣∣ = 3, C22 =

∣∣∣∣1 −1
1 −3

∣∣∣∣ = −2, C23 = −
∣∣∣∣1 2
1 3

∣∣∣∣ = −1

C31 =

∣∣∣∣2 −1
2 4

∣∣∣∣ = 10, C23 = −
∣∣∣∣1 −1
2 4

∣∣∣∣ = −6, C33 =

∣∣∣∣1 2
2 2

∣∣∣∣ = −2.

We find that the adjoint of A is then

adj A = [Cij ]
t =

−18 3 10
10 −2 −6
4 −1 −2


and hence the inverse is

A−1 =
1

det A
adj A =

−9 − 3
2 −5

−5 1 3
−2 1

2 −2


Proof of the Laplace Expansion Theorem. The proof of this theorem is some-
what complicated, to make it simpler to understand we will break it into smaller
parts.

Theorem 0.25. Let A be an n× n matrix, then

a11C11 + a12C12 + · · ·+ a1nC1n = det A = a11C11 + a21C21 + · · ·+ an1Cn1.

Proof. We prove this lemma by induction on n; for n = 1 the result is trivial,
and so we now assume the result holds for any (n − 1) × (n − 1) matrix as our
induction hypothesis. By definition of the cofactor, all of the terms containing a11
are accounted for by the summand a11C11, and so we may ignore terms containing
a11

The i-th summand on the right-hand side of equation this equation is ai1Ci1 =
ai1(−1)i+1detAi1. Expanding Ai1 along the first row:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a12 a13 · · · a1j · · · a1n
...

...
. . .

...
...

a(i−1)2 a(i−1)3 · · · a(i−1)j · · · a(i−1)n
a(i+1)2 a(i+1)3 · · · a(i+1)j · · · a(i+1)n

...
...

...
. . .

...
an2 an3 · · · anj · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
the j-th term in this expansion of det Ai1 is aij(−1)1+j−1detA1i,1j where the no-
tation A1i,1j denotes the submatrix of A obtained by deleting rows k and l and
columns r and s. Combining these facts, the term containing ai1a1j on the right
hand side of equation is

ai1(−1)j+1a1j(−1)1+j−1detA1i,1j = (−1)i+j+1ai1a1jdetA1i,1j

The term containing ai1aj1 on the left-hand side of the equation may be deter-
mined by noting that a1j occurs in the j-th summand, a1jC1j = a1j(−1)1+jdet A1j .
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By the induction hypothesis we can expand det A1j along its first column,

a21 · · · a2(j−1) a2(j+1) · · · a2n
a31 · · · a3(j−1) a3(j+1) · · · a3n
...

. . .
...

...
...

ai1 · · · ai(j−1) ai(j+1) · · · a2n
...

...
...

. . .
...

an1 · · · an(j−1) an(j+1) · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The i-th term in this expansion of detA1j is ai1(−1)(i−1)+1detA1i,1j and so the term
containing ai1a1j on the left-hand side of the equation we are proving is

a1j(−1)1+jai1(−1)(i−1)+1detA1i,1j = (−1)i+j+1ai1a1jdetA1i,1j

proving the equality. �

Next we prove the second property of determinants under row operations

Theorem 0.26. Let A be an n× n matrix and let B be obtained by interchanging
any two rows (or columns) of A. Then

det B = −det A.

Proof. We use induction on n; the base case for n = 2 is easily proven, and so we
assume the inductive hypothesis holds: that this is true for any (n − 1) × (n − 1)
matrix. We now prove the result for n× n matrices. We will first prove this to be
true in the case that two adjacent rows are interchanged, say row r and row r+1 .

We may evaluate det B by cofactor expansion along its first column. The i-th
term in this expansion is (−1)1 + ibi1det Bi1. If i 6= r or r + 1 then bi1 = ai1 and
Bi1 is an (n−1)× (n−1) submatrix that is identical to Ai1 with two adjacent rows
interchanged. ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
...

...
...

ai1 ai2 · · · ain
...

...
...

a(r+1)1 a(r+1)2 · · · a(r+1)n

ar1 ar2 · · · arn
...

...
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By the induction hypothesis, det Bi1 = −detAi1 if i 6= r, r + 1. If i = r, then
bi1 = a(r+1)1 and Bi1 = A(r+1)1,∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
...

...
...

a(r+1)1 a(r+1)2 · · · a(r+1)n

ar1 ar2 · · · arn
...

...
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Therefore the r-th summand in det B is

(−1)r+1br1detBr1 = (−1)r+1a(r+1)1detA(r+1)1

= −(−1)(r+1)+1a(r+1)1detA(r+1)1

= −(−1)(r+1)+1a(r+1)1detA(r+1)1

Similarly if i = r + 1 then bi1 = ar1, Bi1 = Ar1 and the r + 1-st summand in det B
is

(−1)(r+1)+1b(r+1)1detB(r+1)1 = (−1)rar1detAr1 = −(−1)r+1ar1detAr1

We conclude that the r-th and r+ 1-st terms in the first column cofactor expansion
of det B are negatives of the r+ 1-st and r-th terms respectively in the first column
cofactor expansion of det A.

Substituting all of these results into det B and using the last result we find

detB = Σn
i=1(−1)i+1bi1detBi1

= Σn
i=1,i6=r,r+1(−1)i+1bi1det Bi1 + (−1)r+1br1detBr1 + (−1)(r+1)+1b(r+1)1detB(r+1)1

= Σn
i=1(−1)i+1,i6=r,r+1(−1)i+1ai1detAi1 − (−1)(t+1)+1a(r+1)1detA(r+1)1 − (−1)r+1ar1detAr1

= −Σn
i=1(−1)i+1(−1)i+1ai1detA1i = −det A.

This proves the result for the interchange of two adjacent rows in an n× n matrix.
To see that this holds for arbtrary row interchanges, we note that the interchange
of two rows, say row r and s where r < s we may switch them by performing
2(s − r) − 1 interchanges of adjacent rows. As the number of interchanges is odd
and each one changes the sign of the determinant, the net effect is a change of sign
as desired. To prove for columns instead of rows, we expand along row 1 instead of
column 1. �

We are now able to prove the Laplace Expansion theorem

Proof. Let B be the matrix obtained by moving the i-th row of A to the top, using
i − 1 interchanges of adjacent rows. Thus det B = (−1)i−1 det A, but b1j = aij
and B1j = Aij for j ∈ [1, n] and so

det B =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai1 · · · aij · · · ain
a11 · · · a1j · · · a1n
...

...
...

a(i−1)1 · · · a(i−1)j · · · a(i−1)n
a(i+1)1 · · · a(i+1)j · · · a(i+1)n

...
...

...
an1 · · · anj · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Hence

det A = (−1)i−1det B = (−1)i−1Σn
j=1(−1)1+jb1jdet B1j

= (−1)i−1Σn
j=1(−1)1+jaijdet Aij = Σn

j=1(−1)1+jaijdet Aij

giving the formula for cofactor expansion along the i-th row. The proof for column
expansion is similar. �
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