
MATH 2030: MORE ON VECTORS

Lines and Planes and Vectors

In R2, the equation of a line takes a simple form as a linear equation, for example
y = mx + n where m can be seen as slope and n is the value at which the line
intersects the y-axis. We wish to consider lines in the plane in terms of vectors,
this perspective will allow us to generalize the idea of a line and a plane in R3.

Lines in the plane and in R3. In the plane, the most general form for a line is
of the form ax+ by = c. Assuming b 6= 0 we recover the simpler form with m = −a

b
and n = c

b . Returning to the general form, the similarity of this linear equation
and the dot product of two vectors is hard to ignore.

Example 0.1. The line ` with equation 2x + y = 0 is shown in figure (1). It is a
line with slope −2 passing through the origin. The left hand side resembles the

dot product of the vectors n =

[
2
1

]
and x =

[
x
y

]
with n · x = 0. The vector n is

perpendicular to the line, i.e. orthogonal to any vector x parallel to the line, we
call this the normal vector to the line. And we say the equation n · x = 0 the
normal form of the equation of `.

Figure 1. A normal vector and direction vector for the line `

Example 0.2. Alternatively we may imagine a particle traveling along the line `
with time as a parameter, as in figure (2). At time t = 0, this particle is initially at
the origin, and as t varies the particle movies along the line so that the x-coordinate
changes 1 unit per unit of t. At t = 1 the particle is at (1,−2), at t = 2 it will be
at (2,−4). Similarly if we allow t to be negative the particle will travel backwards
along the line, i.e. at t = −2, the particle is at (−2, 4). To summarize these
observations we may write this as[

x
y

]
=

[
t
−2t

]
= t

[
1
−2

]
.

1
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We call d =

[
1
−2

]
the direction vector for the line `, as it is parallel to the line.

The equation of the form x = td, called the vector form of the line.

Figure 2. The line ` seem as a parametrized trajectory of a particle.

If the line does not pass through the origin, the form of these equations must be
changed.

Example 0.3. Consider the line ` with equation 2x + y = 5, this is the same line
from the previous example except it has been shifted upwards by 5 units. Thus it
has slope m = −2 and intersects the y-axis at (0, 5). Translating d and n it is clear
these will still be direction and normal vectors for the new line.

Taking the point P = (1, 3) on `, and noting that n is orthogonal to any vector

parallel to `, if X = (x, y) is any other point on ` the vector
−→
PX =

−→
OX−

−→
OP = x−p

will be parallel to ` and hence n · (x − p) = 0 we find n · x = n · p. To verify we
calculate

n · x = 2x + y, n · p = 5.

Simplifying the vanishing dot product, we produce the normal form n · x = n · p,
which is a more general form of the equation of the line. What was p in the previous
example?

Figure 3. The same line translated upwards by five units.
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Definition 0.4. The normal form of the equation of a line ` in R2 is

n · (x− p) = 0, or n · x = n · p
where p is a specific point on ` and n 6= 0 is a normal vector for `. The general

form of the equation of ` is ax+ by = c where n =

[
a
b

]
is a normal vector for `.

Example 0.5. Let us find the vector form of the previous example. Noting that
x − p must be a scalar multiple of the direction vector d. We may express this
identity as x− p = td or with components as:[

x
y

]
=

[
1
3

]
+ t

[
1
−2

]
.

In this form we call this the vector form of the equation of `. This may be written as
two linear equations, x = 1 + t, y = 3−2t, which is called the parametric equations
of the line, where t is the parameter.

The idea of a line may be easily generalized to R3, to do so we generalize the
idea of slope of a line in R2 to a particular direction vector.

Definition 0.6. The vector form of the equation of a line ` in R2 or R3 is

x = p + td

where p is the vector in standard position indicating a point on the line, and d 6= 0
is the direction vector of the line. Taking the components of the vector form one
recovers the parametric equations of `.

Example 0.7. Q:Find the vector and parametric equations of the line in R3 through
the point P = (1, 2,−1), parallel to the vector

d =

 5
−1
3

 .

A: The vector equation x = p + td is nowxy
z

 =

 1
2
−1

+ t

 5
−1
3

 .

The parametric form is then x = 1 + 5t,y = 2− t and z = −1 + 3t.

The point and direction vector chosen are not unique, any point on ` other than P
and any scalar multiple of d will produce a set of linear equations whose parameter
t′ is related to the original equations through an affine transformation: t′ = at+ b.

Example 0.8. Q: Given the points P = (−1, 5, 0) and Q = (2, 1, 1), find the vector
equation of the line determined by them
A: Choosing the vector p with its tail at the origin and its head at P . For a

direction vector we choose d =
−→
QP =

 3
−4
1

. Thus the line will have the vector

(and parametric) form xy
z

 =

−1
5
0

+ t

 3
−4
1

 .
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Planes in R3. Can we use the same trick as in the plane to express the general
form of an equation of a line in R3? Since ax + by = c is the general form of a line
in R2, could the equation of a line in R3 be ax + by + cz = d? In normal form this
corresponds to n ·x = n ·p, wher n is a normal vector and p corresponds to a point
on the line.

To verify this conjecture, we consider the special case of the equation, ax+ by +
cz = 0. In normal form n ·x = 0, with nt = [a, b, c]. In R3, there are infinitely many
vectors to pick for x, in fact these vectors determine a family of parallel planes.
Thus the equation ax + by + cz = d isn’t an equation for a line in R3, but instead,
describes a plane in R3.

More rigorously, every plane ℘ in R3 can be determined by specifying a point P
on ℘ and a non-zero vector n normal to ℘. And so, if X represents an arbitrary

point on ℘, we have n ·
−→
PX = 0 or n ·

−→
OX = n ·

−→
OP. Denoting nt = [a, b, c] and

xt =
−→
OXt = [x, y, z], the equation becomes ax + by + cz = n ·

−→
OP.

Definition 0.9. The normal form of the equation of a plane ℘ in R3 is

n · (x− p) = 0, or n · x = n · p

where p =
−→
OP, with P a particular point on ℘ and n 6= 0 is a normal vector for ℘.

The general form of the equations of ℘ is ax+ by + cz = d, where nt = [a, b, c]
is the normal vector to the plane.

Example 0.10. Q: Find the normal and general forms of the equation of the plane
that contains the point P = (6, 0, 1) and normal vector nt = [1, 2, 3].

A: Taking p =
−→
OP, with components pt = [6, 0, 1] and xt = [x, y, z], we find n·p = 9

and so invoking the normal equation from the above definition, the general equation
is x + 2y + 3z = 9

In a geometric sense, any two planes that share the same normal vector must
be parallel, and so their the coefficients of x, y, z and 1 in one equation will be all
scaled by the same constant, for example 2x+ 4y + 6z = 10 is the general equation
of a plane that is parallel to the plane give in the previous example, since we may
divide by 2 on both sides and recover the original equation, x+ 2y + 3z = 5. These
planes will not coincide as the right-hand side of each equation differs.

x = p + su + tv.

Alternatively this may be seen by noting x− p lies on the plane with its tail at P ,
thus it may be represented in terms of u and v.

Definition 0.11. The vector form of the equation of a plane ℘ in R3 is

x = p + su + tv

where p is a vector whose head is at a point on ℘ and u and v are direction vectors
for ℘ at that point (i.e. non-zero, parallel to ℘ and u 6= cv).
The equation corresponding to the components of the vector form of this equation
are called parametric equations of ℘.



MATH 2030: MORE ON VECTORS 5

Figure 4. In the first picture we list two of infinitely many vectors
that are orthogonal to n. In the second we show how any vector in
standard position whose head lies on a point on the plane ℘ may
be expressed in terms of P and u and v on ℘.

Example 0.12. Q: Find the vector and parametric equations for the plane x+ 2y +
3z = 9
A: Knowing that P = (6, 0, 1) lies on the plane, if we find two other points lying
on the plane we may be able to build the direction vectors u and v. With some
guesswork, we find Q = (9, 0, 0) and R = (3, 3, 0) both satisfy the general equation,

so they lie on the plane. Computing u =
−→
PQ =

−→
OQ−

−→
OP and v =

−→
PR we find,

u =

 3
0
−1

 , v =

−3
3
−1

 .

As they are not scalar multiples of each other these will work perfectly find, the
vector equation of ℘ is thenxy

z

 =

6
0
1

+ s

 3
0
−1

+ t

−3
3
−1


the corresponding parametric equations are x = 6+3s−3t, y = 3t and z = 1−s−t.

Figure 5. In the first picture we illustrate how a line is uniquely
determined by two normal vectors. In the second we related the
normal vectors to the intersection of planes.
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A plane is a two-dimensional object, since its vector or parametric form requires
two parameters. To determine a line, which is a one-dimensional object, we pick a
point on P and consider the intersection of two planes with normal vectors n1 and
n2, these uniquely determine a line ` as its direction vector must be the normal
vector to the plane p + sn1 + tn2. Therefor any line in R3 can be specified by a
pair of equations

a1x + b1y + c1z = d1, a2x + b2y + c2z = d2

corresponding to the two normal vectors. As long as n1 6= cn2 these planes must
be non-parallel, this line is in actuality the intersection of these two planes. Al-
gebraically the line is the set of all points (x, y, z) satisfying both of the general
equations.

Normal Form General Form Vector Form Parametric Form

n · x = n · p ax + by = c x = p + td x = p1 + td1

y = p2 + td2

Table 1. Equations of Lines in R2

Normal Form General Form Vector Form Parametric Form

Lines n1 · x = n1 · p1 a1x + b1y + c1z = d1 x = p + td x = p1 + td1

n2 · x = n2 · p2 a2x + b2y + c2z = d2 y = p2 + td2

z = p3 + td3

Planes n · x = n · p ax + by + cz = d x = p + su + tv x = p1 + su1 + tv1

y = p2 + su2 + tv2

x = p2 + su2 + tv2

Table 2. Equations of Lines and Planes in R3

Notice that a single general equation describe a line in R2, however in R3 a lone
general equation gives rise to a plane, and that two general equations give rise to
a line here. The relationship between the dimension of the object and the number
of equations needed is given by

(# of Parameters) + (# of General Equations) = # of Dimensions

With the vector expression for a line determined, we may calculate the distance
from a point to a line or a plane using the projection operator.

Example 0.13. Q: Find the distance from the point B = (1, 0, 2) to the line `
through the point A = (3, 1, 1) with direction vector dt = [−1, 1, 0].

A: We must calculate
−→
PB, where P is the point on ` at the foot of the perpendicular

from B. If we label v =
−→
AB, then

−→
AP = projd(v) and

−→
PB = v − projd(v) We will

break this up into separate steps.
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(1) v =
−→
AB = b− a =

1
0
2

−
3

1
1

 =

−2
01
1


(2) The projection v onto d will be

projd(v) =

(
d · v
d · d

)
d =

1

2

−1
1
0

 .

(3) The vector we want is then

v − projd(v) =

−2
−1
1

−
− 1

2
1
2
0

 =

− 3
2
− 3

2
1


(4) The distance d(B, `) from B to ` is

||v − projd(v)|| = 1

2

√
22.

In R2, any line ` with its equation in general form ax + by = c, the distance
d(B, `) from B = (x0, y0) is given by the formula

d(B, `) =
|ax0 + by0 − c|√

a2 + b2

Example 0.14. Q: Find the distance from the point B = (1, 0, 2) to the plane ℘
whose general equation is x + y − z = 1

A: We must calculate
−→
PB, where P is the point on ℘ at the foot of the perpendicular

from B. If A is any point on ℘ and we situate the normal vector nt = [1, 1,−1] of

℘ so that its tail is at A. Calculating the length of the projection of
−→
AB onto n, we

will break this calculation into steps.

(1) Trying A = (1, 0, 0) we see that this satisfies x + y − z = 1, and so it is on
the plane.

(2) Set v =
−→
AB = b− a =

1
0
2

−
1

0
0

 =

0
0
2


(3) Then the projection of v onto n will be

projn(v) =
(n · v

n · n

)
n = −2

3

 1
1
−1

 .

(4) Calculating the distance d(B,℘) is the norm of this vector,

||projn(v)|| = 2

3

√
3

As in the case of a line in R2, the distance of a point B = (x0, y0, z0) in
R3 to a plane ax + by + cz = d is given by the formula

d(B,℘) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + d2
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Figure 6. In the first image we are calculating the distance of a
point B from the line `. In the second the distance of a point B
from the plane ℘ is determined.

A Non-geometric Application: Code Vectors

If we want to say something privately, or transmit information as reliably as
possible without words, we may want to examine codes. A code can be some one-
to-one substitution rule, where each letter is replaced with another - codes like these
belong to the domain of cryptography and we will not concern ourselves with them.

Instead we are interested in communicating information in an clear and efficient
manner, an example of this would be Morse code consisting of dots and dashes
meant to communicate information long distances. Alternatively we could talk
about our computers, these encode information as 0s and 1s. These codes are
essential to the functioning to many of the devices we use everyday. We will ex-
plore a simpler application of such codes to universal product codes (UPC) and
international standard book numbers (ISBN).

We will work with vectors in Zn
m to describe codes that are able to detect errors

caused by transmission. As computers represent data in Zn
m, represented as 1s and

0s we will start by considering binary codes. To do this we take a message we wish
to transmit and encode each ’word’ of the message into a binary vector.

Definition 0.15. A binary code is a set of binary n-vectors, n ∈ Z called code
vectors. The process of converting a message into code vectors is called encoding
and the reverse process is caleed decoding.

This is a good start towards a code, although we will want our codes to do
more than just translate our words into computer code. We will want our codes to
detect errors that can occur in transmission of a code vector, and - ideally- have
the code suggest how to correct the error. For example, suppose we have encoded
a message as a set of binary code vectors and we send it across a channel (like a a
radio transmitter, telephone line, a cd laser, an audio cable, etc,...), if the channel
is ’noisy’ so that errors are introduced, changing 1s to 0s or vice versa. How can
we fix this?

Example 0.16. If we have a simple set of messages to send, say up,down,left, or it
right we may use the four vectors in Z2

2
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Message up down left right

Code [0, 0] [0, 1] [1, 0] [1, 1]

This is perfectly fine if the receiver has the same table, we can communicate our
commands. However, if a single error occurs, so that only one component has been
changed, we cannot detect the change. Consider [0, 1] where transmission error
causes this to be received as [1, 1]. Even if the event of an error is known, there is
no way to tell if the original message was [0, 1] or [1, 0].

By adding another component we are able to detect an error.

Example 0.17.
Message up down left right

Code [0, 0, 0] [0, 1, 1] [1, 0, 1] [1, 1, 0]

By adding the sum of the first two components and recording the result in the
third, called the check digit we may detect if a single error occurred, these codes
are known as a parity check code Again if [0, 1, 1] was sent and a single error
occurred, the only possibilities are [1, 0, 0], [0, 1, 0] or[1, 1, 1] none of which are code
vectors. The receiver would know a mistake had occurred, and could request the
original message to be sent again. Notice that one cannot determine where the
error occurred.

We call such a code an error-detecting code, until the 1940s this was the best
that could be achieved. Digital computers led to the development of codes that
could correct as well as detect errors!

Example 0.18. Consider the message encoded as a binary vector [1, 0, 0, 1, 0, 1] this
has an odd number of 1s and so the the check digit will be 1, thus the code vector
will be [1, 0, 0, 1, 0, 1, 1] A single error may be detected by this code as the sum of
the original binary vector will be even, contradicting the check digit, however if two
errors occur the check digit will remain as 1.

To generalize this idea, suppose the message is the binary vector b = [b1, b2, ..., bn]
in Zn

2 The parity check code vector is v = [b1, ..., bn, d] ∈ Zn+1
2 where d ∈ Z2 is

chosen such that

Σn
i=0bi + d = 0mod 2

. This may be represented as the dot product of the vector with 1 for all components,
1 and v, i.e., v · 1 = 0. We call 1 the check vector. If a vector v′ is received
such that v′ · 1 = 1 it is certain that a single error occurred (We are excluding the
possibility that more than one error occurring.).

The parity check codes are a special case of a more general class of codes, check
digit codes, consisting of vectors in Zn

m

Example 0.19. Let b = [b1, b2, ..., bn] be a vector in Zn
3 , a check digit code vector

may be defined as [b1, b2, ..., bn, d] ∈ Zn+1
3 so that

b1 + b2 + ... + bn + d = 0mod3

As an example, consider u = [2, 2, 0, 1, 2], by adding the components we find 2 +
2 + 0 + 1 + 2 = 1mod3, so the check digit must be d = 2. Therefore the associated
code is v = [2, 2, 0, 1, 2, 2].
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Example 0.20. The Universal Product Code or UPC is associated with the bar
codes found on most products. The black and white bars correspond to a 10-ary
vector u = [u1, u2, ..., u11, d] of length 12. The first 11 components are a vector
in Z11

10 giving the manufacturer and product information. The last component
is the check digit chosen so that c · u = 0mod10 where the check vector is now
c = [3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1].

Rearranging the sum,

3(u1 + u3 + u5 + u7 + u9 + u11) + (u2 + u4 + u6 + u8 + u10) + d = 0mod10

Supposing we have the vector u = [0, 7, 4, 9, 2, 7, 0, 2, 0, 9, 4, 6] we find

c · u = 3(0 + 4 + 2 + 0 + 0 + 4) + (7 + 9 + 7 + 2 + 9) + dmod10

= 3(0) + 4 + dmod10

= 4 + dmod10

Thus the check digit must be d = 6 so that the sum is a multiple of 10.
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