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A catalysis state is a quantum state that is used to make some desired operation possible or more

efficient, while not being consumed in the process. Recent years have seen catalysis used in state-

of-the-art protocols for implementing magic state distillation or small angle phase rotations. In this

paper we will see that we can also use catalysis to prove that certain gate sets are computationally

universal, and to extend completeness results of graphical languages to larger fragments. In particu-

lar, we give a simple proof of the computational universality of the CS+Hadamard gate set using the

catalysis of a T gate using a CS gate, which sidesteps the more complicated analytic arguments of the

original proof by Kitaev. This then also gives us a simple self-contained proof of the computational

universality of Toffoli+Hadamard. Additionally, we show that the phase-free ZH-calculus can be

extended to a larger complete fragment, just by using a single catalysis rule (and one scalar rule).

In chemistry, a catalyst is a substance that facilitates a reaction without being modified by it. In

analogy, a quantum state is said to be a catalyst or a catalysis state, if it can be used to make a desired

operation more efficient, or even possible, while not being consumed in the process.

The idea of catalysis has recently found several applications in quantum computation. Catalytic

methods were used to reason about resource conversions in fault-tolerant quantum computing, and to

derive lower bounds on the cost of certain important computational tasks [6]. Catalytic methods were

also used to improve the cost of unitary approximations over restricted gate sets such as the Clifford+T

gate set [2], and to establish number-theoretic characterizations for important extensions of the Clifford

gate set [3]. A construction based on catalysis is also currently the leading candidate for the fault-tolerant

implementation of small-angle rotations [11], and one of the most promising magic state distillation

protocols [12].

In this paper we extend the uses of catalysis in quantum computing in two new directions: establish-

ing the computational universality of gate sets and proving the completeness of graphical calculi.

In the first direction we provide a novel proof of the computational universality of the CS+Hadamard

gate set by leveraging the fact that any Clifford+T circuit can be reduced to a CS+Hadamard circuit

using CS gates to catalyse T gates. This side-steps the complicated analytical arguments of the original

proof [14], and also establishes that CS+Hadamard circuits only incurs a linear overhead in the number

of samples needed compared to Clifford+T circuits. In addition, this also leads to a simple and self-

contained proof of the computational universality of Toffoli+Hadamard circuits.

In the second direction we show that the phase-free ZH-calculus [5, 21] can be extended to a complete

calculus for the Clifford+T fragment by simply including a rule encoding a catalytic equation, along with

a scalar cancellation rule. The proof of completeness then follows simply, and this approach works for

any tower of quadratic ring extensions

D⊆ D [a1]⊆ . . .⊆ D [a1, . . . ,ak]

where D = Z[1
2
] and a2

j ∈ D[a1, . . . ,a j−1]. In contrast to previous complete calculi for the Clifford+T

fragment [13, 17], this yields a calculus with rules that are easy to interpret, and relies on a generic proof

strategy, rather than one specific to Clifford+T .

http://arxiv.org/abs/2404.09915v1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


2 Catalysing Completeness and Universality

More generally, our results demonstrate that catalytic methods provide powerful means to extend

results between different gate sets and graphical calculi.

1 The ZH-calculus and catalysis

The ZH-calculus [4, 5] is a graphical language designed to reason more easily about quantum computing

involving controlled unitaries than the earlier ZX-calculus [9, 10]. ZH-diagrams are string diagrams built

out of generators representing certain linear maps between qubits that can be composed together either

horizontally, corresponding to regular composition of linear maps, and vertically, corresponding to tensor

product. The two generators are Z-spiders and H-boxes. These are represented by circles and squares

respectively, and correspond to the following linear maps:

..
.

..
. := |0 · · ·0〉〈0 · · ·0|+ |1 · · ·1〉〈1 · · ·1| (1)

a nm ..
.

..
.

:= ∑ai1...im j1... jn | j1 . . . jn〉〈i1 . . . im| (2)

Here the label of the H-box a can be any complex number. Both Z-spiders and H-boxes can have any

number of inputs or outputs (including zero). If they have n inputs and m outputs, then they correspond

to matrices of size 2n ×2m. The Z-spider matrix consists of all zeroes, except for the top-left and bottom-

right corner where there is a 1. The matrix of the H-box is all ones, except for the bottom-right corner

where there is an a. If the label of the H-box is −1, then we usually don’t write it. In the special case of

1 input and 1 output the −1 labelled H-box is proportional to the Hadamard. Next to these generators we

also have the standard structural generators of compact-closed string-diagrammatic language: identity,

swap, cup and cap [20].

We say a graphical calculus is universal for a set of matrices when it can represent any matrix in

this set using some diagram. When we allow the label of H-boxes to be arbitrary complex numbers,

ZH-diagrams are universal for all complex-valued matrices of size 2n ×2m [4]. If instead we restrict the

labels to some sub-ring R of C including at least Z[1
2
], then it is universal for matrices over R [5]. In

the phase-free ZH-calculus we only allow the default label of −1 for the H-boxes, and we augment the

calculus with a generator representing the scalar 1
2

written as a star: . The phase-free ZH-calculus is

universal for matrices over the ring Z[1
2
] [5].

Let’s give some examples of how some useful unitaries are represented as ZH-diagrams. First, We

define an X-spider and one with a NOT applied to it as a derived generator:

(X) :=

. . .

. . .

. . .

. . .
(NOT) ¬ :=

· · ·

· · ·

· · ·

· · ·
(3)

The X-spider allows us to calculate the XORs of computational basis states. Hence, in particular we can

use it to represent a CX (i.e. the CNOT) gate:

CNOT = ⊕ = (4)

Here we are allowed to write a horizontal wire, because all the (derived) generators of the ZH-calculus

are fully symmetric tensors, and hence whether a wire is an input or output does not change the linear

map it represents.
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(id)

(hh)

(ba1)

(ba2)

(m) (and) (hc)

Figure 1: The rules of the phase-free ZH-calculus. The right-hand sides of both bialgebra rules (bbbaaa111)
and (bbbaaa222) are complete bipartite graphs, with an additional input or output for each vertex. (zzzsss) and (hhhsss)
stand respectively for Z-spider and H-spider; (iiiddd) for identity; (mmm) for multiply; (aaannnddd) for the identity

involving the AND stating AND(x,x) = x; and blafor H-copy.

Other useful gates are the CZ, CCZ and Toffoli gate:

CZ = CCZ = Tof = (5)

More general controlled-phase gates, can also be represented as ZH-diagrams. In particular, the CZ(α) :=
diag(1,1,1,eiα ) gate is represented as follows:

CZ(α) = eiα (6)

The ZH-calculus is called that because we can actually do calculations with the diagrams. We can

treat ZH-diagrams as undirected graphs, because Z-spiders and H-boxes are fully symmetric tensors,

and hence the only relevant information in the diagram is which generator is connected to which other.

Besides these topological symmetries, we also have a set of rewrite rules. We present here the rules for

the phase-free ZH-calculus; see Figure 1.

We say a set of rewrite rules is complete for a ring R when any two diagrams representing equal linear

maps with matrix entries in the ring R can be rewritten into each other using just these rewrite rules. The

rule set of Figure 1 is complete for the ring Z[1
2
].

Note that we have the following relations between the spiders of the ZX-calculus [9, 10] and H-boxes:

α = eiα 1 = (7)

The following multiply rule from the universal ZH-calculus (where H-boxes are labelled by arbitrary

complex numbers) will also be useful:

a

b

= ab (8)

It is this equation that gives the multiply rule (mmm) it’s name (take a = b =−1).

We can use the ZH-calculus to show the correctness of some simple catalysis equations.
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Example 1.1. We can use a single copy of a CS gate and a single |T 〉 state to apply a T gate and get the

starting |T 〉 state back:

π
4

i =
π
4

π
4

π
4− π

4

=
π
4

π
4

π
4− π

4

=

π
4

π
4

=

π
4

π
4

(9)

Here, we used the standard decomposition of a controlled-phase gate CZ(α) into CNOT gates and

Z(±α/2) phase gates.

Just using Clifford operations and CS gates, it is not possible to construct a T gate. This is because

the number ei π
4 appearing in the T gate is not part of the ring of entries generated by the matrices of the

Clifford and CS gates. However, with Eq. (9) we see that as soon as we have just one |T 〉 state available

to us, we can use CS gates to apply any number of T gates. Indeed, because the catalysis state |T 〉 is not

modified by the application of the circuit in Eq. (9), it can be weaved through an arbitrary Clifford+T

circuit in order to replace every T gate by a small Clifford+CS circuit. This catalytic use of |T 〉 states

can be contrasted to the process of T gate injection. In the latter process, |T 〉 states are used to perform

T gates but can no longer be accessed after the injection has taken place: they have been consumed by

the injection.

Example 1.2. We can do something similar with a CCZ gate: we can transform the magic state |CCZ〉 :=
CCZ|+++〉 into 3 |T 〉 states using Clifford operations and one T gate:

π
4

− π
4

π
4

− π
4

π

π
− π

4

π

π
− π

4

− π
2

π

π
− π

4
=

−i
=

π
4

π
4π

4

π
4π

π
− π

4
= π

4
π
4

π
4 − π

4
=

π
4

π
4

π
4

=
π
4

(10)

Here we use some rewrites involving phase gadgets and pushing phases through H-boxes [20].

So again, if we can perform CCZ and Clifford gates and have just a single |T 〉 available, then we can

inject as many T gates as we want.

These examples can be captured using the notion of catalytic embeddings, which provide a frame-

work for reasoning about certain aspects of catalysis in quantum circuits [2].

Definition 1.3. Let U and V be two collection of unitaries. An m-dimensional catalytic embedding

from U to V is a pair (φ , |c〉) of a function f : U → V and a quantum state |c〉 ∈ C
m such that

φ(U)|ψ〉|c〉 = (U |ψ〉)|c〉

for any unitary U ∈ U and any quantum state |ψ〉. We call the state |c〉 the catalyst of (φ , |c〉).
Definition 1.3 shows that the unitary φ(U) can be used to apply the unitary U to the state |ψ〉,

provided that the state |c〉 is available. Intuitively, one should think of the elements of U as unitaries that

are “hard” to implement and of the elements of V as unitaries that are “easy” to implement. With this

in mind, the existence of a catalytic embedding (φ , |c〉) : U → V implies that the hard unitaries can be

performed using only the easy ones in the presence of the appropriate catalyst.

As a nice demonstration of the utility of ZH in catalysis, we present in Appendix B a new proof

of one of the most useful results using catalysis: how the synthesis of small-angle phase rotations can
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be implemented in a fault-tolerant friendly manner, by decomposing it into a series of dyadic angle

rotations Z(2π
2n ), each of which can be implemented using catalysis and an adder gadget [11]. While the

end result is not new, our proof of correctness is more elementary, relying only on low level reasoning

about catalysis, and does not use special high-level properties concerning phase gradients and Fourier

transforms.

2 Catalysing universality

There are several ways in which a gate set can be universal. It is common to say that a gate set G is

approximately universal if any unitary can be approximated up to arbitrary accuracy using circuits over

G. Because the fundamental purpose of a quantum computer is to estimate the expectation value of some

observable O , being able to approximately compute such expectation values yields another, weaker,

notion of universality: computational universality.

We start with some state |ψ〉, apply some unitary U to it, perform some measurements, and finally

post-process these measurements to get an estimate of O . After many such runs we will get a close

approximation of O . Mathematically we can represent this as

〈O〉 = ψ U O U† ψ
...

... (11)

However, when we are trying to estimate this observable, we don’t have to do this with just a single

quantum circuit we run over and over again. Instead we can have a collection of different quantum

circuits Vj (potentially acting on a different number of qubits), input states |ψ j〉, and observables O j,

such that taking a particular weighted average gets us the outcome we are after:

〈O〉 = ∑
j

λ j
ψ j V j O j V †

j
ψ j

...
... = ∑

j

λ j〈O〉 j, (12)

where here we define 〈O〉 j to be the expectation value of O j with respect to Vj and |ψ j〉. We then see that

if we can estimate each of the 〈O〉 j, then we can also estimate 〈O〉 itself, by just summing our estimates

like 〈O〉= ∑ j λ j〈O〉 j.

While we can reduce the calculation of an expectation value to the calculation of a sum of (potentially

simpler to calculate) expectation values in this way, there is the important issue of the overhead in the

number of samples needed. Generally, we want to determine an error budget for how close we want

the estimate to be, and then that determines how many times we need to sample from the quantum

computation. Since we are summing together different expectation values, we need to be careful that we

aren’t blowing up the error in the estimates. Suppose for instance that some λk = 100. Then a small error

in our estimate of 〈O〉 j will blow up by a factor of a 100. On the other hand, if λk = 1/100, then any

error will also be decreased by a factor of a 100, so that even a large error is not that important. The most

efficient strategy is then to sample 〈O〉 j a number of times proportional to |λ j|. The total overhead using

this sum-of-expectations approach is then ∑ j|λ j| when comparing it to estimating 〈O〉 directly with the

original circuit .

These sum-of-expectations techniques are used in a variety of subfields in quantum computing. For

instance, quasi-probability simulators use such a technique to write a quantum computation as an affine

combination of easier to classically simulate quantum computations [7, 16]. They are also used in

stochastic compilation in order to better suppress errors, for instance by randomly multiplying a state
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by a Pauli in order to get rid of systematic errors [19], or by manipulating the order of Trotter terms

when decomposing a Hamiltonian simulation [8]. Here we will see that such a technique can also be

used to argue for the computational universality of a gate set, by reducing from a more extensive gate set

using catalysis.

2.1 Clifford+CS

Here we will show that we can reduce the calculation of an expectation value involving a Clifford+T

circuit to one involving a collection of Clifford+CS circuits with some small overhead. This will prove

that the Clifford+CS gate set is computationally universal, as the Clifford+T gate set is as well.

Suppose we have a Clifford+T circuit C applied to the input state |ψ〉. Then we can transform C into

a circuit C′ containing just Clifford gates and CS gates using catalysis, so that C′|ψ〉|T 〉 = C|ψ〉|T 〉. If

we were trying to estimate the observable O we can then check that:

ψ

C′ O
(C′)†

ψ
...

...

π
4 − π

4

= ψ C O C† ψ
...

...

π
4 − π

4

(9)

1√
2

1√
2

1
2

= ψ C O C† ψ
...

...

(zzzsss)

(13)

So instead of running the circuit C, we can run the circuit C′, which doesn’t contain any T gates. This

is then an example of Eq. (12) where the sum is over just one term and we have λ1 := 1, U1 := C′,
|ψ1〉 := |ψ〉⊗ |T〉 and O1 := O ⊗ I.

But to prepare |T 〉 we still need to use a T gate, so we need to also get rid of this magic state. We can

decompose this magic state into a sum of Clifford states. Because each term in the sum needs to retain

the form of an expectation value like (11), we can’t just decompose |T 〉 into pure states |φ j〉, instead we

need to decompose |T 〉〈T | into a sum of density matrices |φ j〉〈φ j|. One way to do this is the following:

|T 〉〈T | = 1

2

(
1 eiπ/4

e−iπ/4 1

)
=

1

2

(
1 1+i√

2
1−i√

2
1

)

=
1√
2
(|+〉〈+|+ |−i〉〈−i|)−

√
2−1

2
(|0〉〈0|+ |1〉〈1|) . (14)

Hence, we can decompose |T 〉〈T | into four Clifford states |φ1〉= |+〉, |φ2〉= |−i〉, |φ3〉= |0〉 and |φ4〉=
|1〉 with weights λ1 = λ2 =

1√
2

and λ3 = λ4 = −
√

2−1
2

. Starting with the left-hand side of Eq. (13) we

then have:

ψ

C′ O
(C′)†

ψ
...

...

π
4 − π

4

=

(9)

1
2

ψ

C′ O
(C′)†

ψ
...

...

π
4

1
2

− π
4

ψ

C′ O
(C′)†

ψ
...

...

φ j φ j

=

(14)

∑ j λ j

= ψ

C′ O
(C′)†

ψ
...

...

φ jφ j

∑ j λ j

(15)
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We see then that this is a case of Eq. (12) with |ψ j〉 := |ψ〉⊗ |φ j〉 and O j := O ⊗ I and U j = C′ for

all j ∈ {1,2,3,4}. Furthermore, we can check that the four terms have ∑ j|λ j|= 2
√

2−1 ≈ 1.83. Hence,

if we decompose the magic state in this way we need to collect 1.83 samples more than we would have

needed to if we did use the magic |T 〉 state directly.

Summarising the full procedure we see then that we can do the following:

1. Start with the Clifford+T computation you want to calculate.

2. Replace all T gates by a CS gate catalysis circuit using a |T 〉.
3. Replace the |T 〉 state needed for all the catalysis by the Clifford states |ψ j〉.
4. Run each of the resulting four circuits a number of times proportional to |λ j|.
5. Combine the resulting estimates of the observable by scaling by λ j to get the final outcome.

When we have Clifford gates and CS gates, the gate set is generated by CNOT, Hadamard, S and CS.

The CNOT can be constructed using CS and Hadamard, and if we allow states to be prepared in the |0〉
and |1〉 (which is necessary to encode different input states), then we can also prepare an S using a CS.

Hence, this gate set is equivalent to just the CS and Hadamard gate. We see then that we have proven the

following.

Theorem 2.1. The CS+Hadamard gate set is computationally universal. In particular, a Clifford+T

computation can be simulated by a CS+Hadamard computation with a linear overhead in the number of

samples, qubits and gates needed.

Remark 2.2. Without using the catalysis, we could have also chosen to write each T gate as a magic

state injection, and then replace each of the |T 〉〈T | states by the Clifford states |φ j〉〈φ j|. When we do this

however, we get a number of terms in the decompositions that scales exponentially in the number of T

gates, and in particular ∑ j|λ j| scales exponentially, so that the simulation would no longer be efficient.

This makes sense, since replacing all the T gates gives us a Clifford circuit, and we don’t expect this gate

set to be computationally universal.

Remark 2.3. CS+Hadamard is in fact approximately universal, as proven by Kitaev [14, Lemma 4.6 on

p. 1213] (note that what he calls S is the Hadamard gate, and K is the S gate). Kitaev proves this using

an unproven ‘geometric lemma’ that adding a gate to a set of gates that stabilises a given state creates

a larger-dimensional space of gates. This proof is not constructive. He then proves what is now known

as the Solovay-Kitaev algorithm to show how you would do it constructively. Though this result also

establishes the computational universality of CS+Hadamard, we remark that that construction would,

for instance, give an approximate decomposition of the T gate, meaning the cost of implementing the T

would scale with the desired precision, whereas our method has a constant overhead.

2.2 Real-valued unitaries

An interesting example of a computationally universal gate set is the set of real-valued unitaries [1]. That

is, where we only allow unitaries where all matrix entries are real numbers. Obviously this gate set is not

approximately universal as we can never approximate any complex-valued unitary (like the S gate), but

it turns out we can ‘simulate’ complex-valued unitaries using a real-valued one on a larger set of qubits.

For a (complex-valued) n-qubit unitary U , let ℜ(U) be the real part of U . That is: ℜ(U)i j = ℜ(Ui j).
Similarly define the complex part ℑ(U). Then U = ℜ(U)+ iℑ(U). Now define the (n+1)-qubit unitary

Ũ via

Ũ(|0〉⊗ |ψ〉) := |0〉⊗ (ℜ(U)|ψ〉)+ |1〉⊗ (ℑ(U)|ψ〉)
Ũ(|1〉⊗ |ψ〉) := −|0〉⊗ (ℑ(U)|ψ〉)+ |1〉⊗ (ℜ(U)|ψ〉)
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While it is clear that Ũ is real-valued, it is not immediately obvious that it is unitary. We show this,

and the fact that ŨV = ŨṼ in Appendix A.1.

This construction from [1] can actually also be seen as an example of catalysis as Ũ |−i〉⊗ |ψ〉 =
|−i〉⊗U |ψ〉. This then might look like we can use the previous sum-of-expectations approach to argue

that real-valued unitaries are computationally universal. This does not work however, as we cannot write

|−i〉〈−i| as a sum of self-adjoint real matrices, so that we can’t represent it directly just using real-valued

unitaries and state preparations. We can however still prove computational universality using a slightly

different argument.

In fact, we can exactly simulate the probability distribution arising from a complex-valued circuit.

To see this, first note that if |ψ〉 and |ψ ′〉 are real-valued states that then |〈ψ |C|ψ ′〉|2 = |〈ψ |ℜ(C)|ψ ′〉|2+
|〈ψ |ℑ(C)|ψ ′〉|2 (this requires some computation to show). On the other hand, if we input |0〉⊗ |ψ ′〉 into

C̃ and do a measurement marginalising over the first qubit we also get the probabilities:

∑
x=0,1

|〈x,ψ |C̃|0,ψ ′〉|2 = |〈ψ |ℜ(C)|ψ ′〉|2 + |〈ψ |ℑ(C)|ψ ′〉|2 = |〈ψ |C|ψ ′〉|2.

So the probability distribution we get for C is the same as that for C̃ when we prepare the first qubit in

the |0〉 state and ignore its measurement outcome.

Proposition 2.4. Real-valued unitaries are computationally universal.

2.3 Toffoli+Hadamard

Because we can simulate complex-valued quantum circuits using real-valued unitaries in the direct man-

ner described above, we don’t need all the real-valued unitaries. Given any computationally universal

gate set G we only need Ũ for U ∈ G.

In particular, for CS+Hadamard, we can check that we get a real-valued unitary C̃S that is equivalent

to a Toffoli up to some swaps. With the Hadamard we just get H̃ = I ⊗H . Hence, when we encode

the CS+Hadamard gate set, we get the Toffoli+Hadamard gate set [1]. We can hence do the follow-

ing: starting with a Clifford+T computation, we write it as an ensemble of CS+Hadamard circuits. We

then encode each of these circuits into a real-valued Toffoli+Hadamard circuit. By doing this we can

efficiently simulate the original Clifford+T circuit. We see then that Toffoli+Hadamard circuits are also

computationally universal.

Theorem 2.5. The Toffoli+Hadamard gate set is computationally universal.

Note that we could also do a version of this without first encoding a complex unitary as a real unitary

by using the fact that we can catalyse T gates using a CCZ gate. We then get a version of Theorem 2.1 for

the Clifford+CCZ gate set. Using this method, we however also need the S gate, which is not necessary

using the above approach.

Our proof of the universality of Toffoli+Hadamard follows along the same lines as that of Aharonov [1],

namely, by reducing it to CS+Hadamard. However, the original proof of CS+Hadamard universality

is non-constructive and relies on a series of non-trivial encodings of unitaries into larger-dimensional

spaces, whilst our proof reduces the problem to Clifford+T universality, which itself simply reduces to

universality of CNOT+single-qubit unitaries.

2.4 Catalysing general gate sets

We can generalise these specific statements of computational universality to a general statement about

gate sets that have catalytic embeddings. We present he proof in Appendix A.2.
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Theorem 2.6. Let U and V be gate sets which have a catalytic embedding (φ , |c〉) as in Definition 1.3

and suppose that |c〉〈c| can be written as a sum ∑ j λ j|ψ j〉〈ψ j| where each of the |ψi〉 can be prepared by

a circuit over V . Then if the bigger gate set U is computationally universal, the smaller gate set V is

also computationally universal.

In this result we needed the catalyst |c〉〈c| to be expressible as a sum of states that can be prepared

by the smaller gate set. In the examples of catalysis we saw earlier, these states were all stabiliser

states, and hence could be expressed as the gate set included all Cliffords. There is however nothing

special about a stabiliser decomposition, and any decomposition into expressible states is sufficient.

Even an approximate decomposition would suffice, as long as the 1-norm ∑ j|λ j| of the approximate

decomposition scales polynomially in the desired error rate ε . This condition is needed because the error

in the catalysis state needs to be lower if it is used more often, and hence the 1-norm should not increase

too rapidly.

3 Catalysing Completeness

We can also use catalysis in order to define extensions of graphical calculi and prove completeness for

them. To see how this works, we want to first generalise the T gate catalysis of Eq. (9). First, as our

goal will just be to produce states, we can plug |+〉 into the top wire of Eq. (9). We can then simplify the

expression to a more symmetric form:

π
4

i=

π
4

π
4

π
4

π
4

= i= π
4 i= π

4

(9)

(16)

We can then identify the underlying reason this catalysis works. It is because we have the following

’Euler decomposition’ of the H-box with an i phase:

eiπ/2 = − π
4

π
4

i =
π
4

= e−i π
4

ei π
4

ei π
4

(17)

Here we use the fact that eiα = α to write the phases as H-boxes. We do this because such a

rule doesn’t just hold for an H-box with a label that is a complex phase like eiα , it in fact holds for any

complex a 6= 0:

a = 1√
a

√
a

√
a

(18)

This then allows us to write down a generalisation of Eq. (16) to arbitrary H-boxes:

a2 =a a 1
a

a

a

(18)

=

a

1
a

a

a

(zzzsss)

(bbbaaa111)

= 1

a

a

(8) (7)

=

a

a

=
a

a

(19)

Note that this equation first appeared in [15]. Here we wrote a2 in the 2-ary H-box instead of a so that we

don’t have to work with square roots. When we take a= ei π
4 we get Eq. (16), but this works for any value.
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A particularly simple, but still interesting case is when a = ei π
2 = i. Translating this back into circuit form

gives us a catalysis of |i〉 := |0〉+ i|1〉 states using a CZ. As a rewrite rule this is essentially equivalent

to the Euler decomposition of a Hadamard. While this rule itself is simple, it already demonstrates the

power of the catalysis framework in proving completeness.

The phase-free ZH-calculus is complete for the ring Z[1
2
]. By adding the generator i , a single-ary

H-box with label a = i, we get a universal representation for the ring Z[1
2
, i] [5]. As it turns out, adding

the rule Eq. (19) for a = i to the already existing rules for the phase-free fragment is already almost

enough to get a complete calculus for this bigger fragment Z[1
2
, i] which includes i .

To see this, we first consider what a generic diagram in the Z[1
2
, i] fragment looks like. We added

the generator i , so now a diagram consists of generators from the old Z[1
2
] fragment plus this new

generator, used an arbitrary number of times. Using Eq. (19) we can however reduce all these separate

instances of i into just one of them, reducing the complexity of the diagram. That is, given some

diagram D in the Z[i] fragment, we can rewrite it to a diagram D′ containing just generators from the

Z[1
2
] fragment such that:

D
...

... = D′...
...

i

(19)

(20)

We are for now ignoring the edge case where the original diagram did not contain any instance of i .

As a shorthand, we will write D′[|ψ〉] for the diagram we get when we plug |ψ〉 into the bottom input

in Eq. (20). So here we have D = D′[ i ]. Note that i = |0〉+ i|1〉. Hence, if we expand it like this

we see that D is equal to a sum of two diagrams: D′ where we plugged in |0〉 into the bottom wire, and

iD′ where we plugged |1〉 into the bottom wire: D = D′[|0〉]+ iD′[|1〉].
Now suppose we have two diagrams D1 and D2 in the Z[i] fragment and that they implement the

same linear map: D1 = D2. We can both decompose them as described above to get D′
1[|0〉]+ iD′

1[|1〉] =
D′

2[|0〉]+ iD′
2[|1〉]. Each of these D′

j[|x〉] diagrams represents a matrix that is entirely real-valued, so the

only way for this equation of complex matrices to hold, is if it holds for the real part and for the complex

part separately:

D′
1[|0〉] = D′

2[|0〉] D′
1[|1〉] = D′

2[|1〉] (21)

We then conclude that D′
1 and D′

2 are equal when we input either |0〉 or |1〉 into the bottom wire. As these

states form a basis, this must then hold for any input. We can then leave this wire open and still have an

equality:

=D′
1

...
... D′

2

...
... (22)

We have this equality as linear maps, but both diagrams are in the Z[1
2
] fragment for which we have

completeness. We hence know how to rewrite one into the other using the rules of the phase-free ZH-

calculus. This gives us then a path to rewrite the original D1 into D2:

=D′
1

...
...

i

D′
2

...
...

i

(*)

D1

...
... = D2

...
...=

(19) (19)

(23)

Here each equality is now a diagrammatic equality, and with (*) we denote we are using rewrites from

the original complete calculus for the Z fragment. This would give us completeness for the fragment

Z[1
2
, i], except that we have ignored an edge case. We can only rewrite a diagram in the Z[i] fragment
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as in Eq. (20) if there is at least one generator i present in the diagram. In fact, we currently haven’t

assumed any rewrite rule that relate a diagram containing a i to one that does not contain any i .

This means in particular that our currently considered rule set cannot prove the following true equation:

i = (24)

However, when we also add Eq. (24) as an additional rule, then this problem is solved and it is true that

we can then always rewrite a diagram in the Z[i] fragment as in Eq. (20): if the diagram contains at least

one i we can already use Eq. (19) to transform to the form of Eq. (20), and if it does not, we can use

Eq. (24) once to introduce one i , in which case it is also in the form of Eq. (20).

Proposition 3.1. The graphical calculus consisting of the phase-free ZH generators and i , together

with the phase-free rewrite rules of Figure 1 augmented with the catalysis rule Eq. (19) for a = i, and the

rule i = is complete and universal for the ring Z[1
2
, i].

This trick for extending the calculus doesn’t just work for i: it works for any complex number a 6= 0

such that a2 ∈ Z using a very similar argument. We can also iterate it: once we have a calculus complete

and universal for Z[1
2
,a] we can pick any b 6= 0 such that b2 ∈ Z[1

2
,a] and augment the calculus with

the appropriate catalysis and scalar-introduction rule to get a new complete calculus for Z[1
2
,a,b]. We

present the proof in Appendix A.3.

Theorem 3.2. Let a1, . . . ,ak be a series of non-zero complex numbers such that a2
j ∈ Z[1

2
,a1, . . . ,a j−1].

Then the phase-free ZH-calculus augmented with generators a j and the following rules is complete

for the ring Z[1
2
,a1, . . . ,ak]:

a2 =a

a

a

and a = for all a = a j

Here the a2 H-box should be understood as short-hand for some diagram in the smaller fragment repre-

senting the matrix for that H-box.

When we take a1 = i and a2 = ei π
4 we get the ring Z[1

2
, i,ei π

4 ] = Z[i, 1√
2
] corresponding to Clifford+T

computation, and in this case we can simplify the rules a bit more to get a simple axiomatisation of the

Clifford+T maps.

Proposition 3.3. The phase-free ZH-calculus augmented with H-boxes with a label of i and ei π
4 and the

following rules is complete for matrices with entries in the ring Z[i, 1√
2
]:

= π
2

π
2

π
2

i = π
4

π
4

π
4

π
4 =

Proof. These are the additional rules needed by Theorem 3.2 for completeness, except we don’t have the

scalar introduction rule for the label i. This rule can be derived from the ei π
4 one, in combination with

the catalysis rule for ei π
4 .

Here we presented the rules in a slightly different manner to make clear the connection between

catalysis for π
2

and the standard Euler decomposition of the Hadamard. Continuing the division into

smaller dyadic rational multiples of π of the form e
i π

2k , we see that we can get a complete calculus for

diagrams corresponding to Clifford-cyclotomic circuits, similar to how exact synthesis for these circuits
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was proven in [3]. Independently to our results, completeness for dyadic angles was also shown in the

context of the Sum-over-paths formalism in [18] using a technique that is reminiscent of catalysis.

While there have been previous complete graphical calculi for the fragment corresponding to Clifford+T

circuits [13, 17], the result we find here has the double benefit of having easy to interpret axioms, and

a generic proof. The axioms consist of the phase-free ZH ones, each of which corresponds to a simple

property of the Boolean maps COPY, XOR and AND [5], plus the catalysis rules. This extension is not

specific to Clifford+T and works for any ring extension of the form stated in Theorem 3.2. Note that [5]

also describes how the ZH-calculus can be made complete for arbitrary rings, but these require adding

three families of rules that are each parametrised over all the elements in the ring, and hence gives a

much more complex rule set.

4 Conclusion

We applied the technique of quantum state catalysis to prove generic results in universality and com-

pleteness. In particular, we obtained new proofs of the universality of the CS+Hadamard and Tof-

foli+Hadamard gate sets, as well as a new simple graphical calculus for the Clifford+T fragment. Our

results simplify the original proofs of these statements considerably, and pave the way for further ap-

plications of catalysis in these areas. Notably, our completeness result did not use any special property

of the ZH-calculus. The fact that it was universal for a large enough fragment to support catalysis was

enough to find completeness of an extension. This technique could hence also be applied to study calculi

over qudits, where for certain interesting fragments of quantum computing (like qudit Clifford+T ), there

is still no complete calculus. In a related direction, one could consider using catalytic methods to study

mixed-dimensional calculi, since catalytic constructions such as the ones in [2] can often be made to take

advantage of mixed-dimensional ancillae.
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A Proofs

A.1 Universality of real-valued unitaries

Lemma A.1. Ũ is indeed unitary for any choice of U .

Proof. We will first show the following claims:

a) We can express ℜ(U†) and ℑ(U†) in terms of ℜ(U) and ℑ(U).

b) We can Express ℜ(UV ) and ℑ(UV ) in terms of ℜ(U), ℜ(V ), ℑ(U) and ℑ(V ).

c) We have ((〈0|⊗ 〈ψ |)Ũ†)(Ũ(|0〉⊗ |ψ ′〉)) = 〈ψ |ψ ′〉.
d) We have ((〈0|⊗ 〈ψ |)Ũ†)(Ũ(|1〉⊗ |ψ ′〉)) = 0.

a) ℜ(U†) = ℜ(U)†. ℑ(U†) =−ℑ(U)†.

b) ℜ(UV ) = ℜ(U)ℜ(V )−ℑ(U)ℑ(V ). ℑ(UV ) = ℜ(U)ℑ(V )+ℑ(U)ℜ(V ).

c) First note that (〈0|⊗〈ψ |)Ũ† = (Ũ(|0〉⊗|ψ〉))† = 〈0|⊗(〈(|ψ)ℜ(U†))−〈1|⊗(〈ψ |ℑ(U†)). Hence, us-

ing 〈0|1〉= 0 the inner product reduces to 〈ψ |ℜ(U†)ℜ(U)|ψ ′〉−〈ψ |ℑ(U†)ℑ(U)|ψ ′〉= 〈ψ |(ℜ(U†)ℜ(U)−
ℑ(U†)ℑ(U))|ψ ′〉= 〈ψ |ℜ(U†U)|ψ ′〉= 〈ψ |ℜ(I)|ψ ′〉= 〈ψ |ψ ′〉.

d) Similar to the above.

Let |ψk〉 form an orthogonal basis of n-qubit state space. The last two points above show that Ũ preserves

the orthogonality of {|ψk〉⊗ |0〉, |ψk〉⊗ |1〉}. Hence, since it sends an orthogonal basis to an orthogonal

basis, it is unitary.

The encoding into Ũ is compositional, meaning we can apply it iteratively to a sequence of unitaries.

Lemma A.2. ŨV = ŨṼ .

Proof. Proven easily by making a case distinction on input states |ψ〉⊗ |0〉 and |ψ〉⊗ |1〉.

A.2 Generic universality through catalysis

Proof of Theorem 2.6. Let C be some circuit over U . Then C′ := φ(C) is a circuit over V such that

C′|ψ〉⊗|c〉= (C|ψ〉)⊗|c〉. By assumption we have |ψ j〉=C j|0 · · ·0〉 for some circuit C j over V . Hence,

for some observable O we have:

=ψ C O C† ψ
...

...

ψ C O C† ψ
...

...

c
...

... c

=

ψ

C′
O

(C′)†

ψ
...

...

c
...

... c
...

=

ψ

C′
O

(C′)†

ψ
...

...

ψ j
...

... ψ j
...

∑ j λ j =

ψ

C′

O

(C′)†

ψ
...

...

0

0

...
0

0

...
...

∑ j λ j

C j (C j)
†

Hence, setting |ψ ′
j〉 := |ψ〉⊗|0 · · ·0〉, C′

j :=C′ ◦(I⊗C j) and O j :=O⊗ I, we see that we can simulate the

computation of an expectation value over a circuit in U using a set of circuits in V . Any computation

done in U can then also be done using circuits in V . Hence, V is computationally universal.
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A.3 Completeness of extensions of the ZH-calculus

Proof of Theorem 3.2. First, note that the catalysis equation is well-typed: By assumption we have a2
i ∈

Z[1
2
,a1, . . . ,ai−1]. We know that if we have the generators a j for j ≤ i− 1, then the calculus can

represent any matrix with entries in Z[1
2
,a1, . . . ,ai−1]. So there is some way to represent the matrix of

the H-box with a label of a2
i . Assuming the calculus over this ring is complete, any such way to represent

this matrix is equivalent, and hence would lead to an equivalent catalysis rule.

We will prove by induction on k with base case k = 1. We may assume a1 6∈ Z[1
2
], since otherwise

the statement is trivial by completeness of the phase-free calculus. In that case any number in Z[1
2
,a1]

can be uniquely written as z1 + a1z2 for z1,z2 ∈ Z[1
2
]. We can now do all the steps we described before

for a = i, translating a diagram D containing an arbitrary number of the H-box with label a1 into a

diagram D′ in the Z[1
2
] fragment which just requires a single input of the a1 H-box: D = D′[|0〉+a1|1〉] =

D′[|0〉]+a1D′[|1〉]. If we then have an equality between two diagrams D1 and D2 in the Z[1
2
,a1] fragment,

we get D′
1[|0〉]+a1D′

1[|1〉] =D′
2[|0〉]+a1D′

2[|1〉]. Because each of the component diagrams only contains

elements from Z[1
2
], and a decomposition z1 +a1z2 is unique, this equation can only hold if each of the

two separate components are equal. We hence again get two equalities D′
1[|0〉] = D′

2[|0〉] and D′
1[|1〉] =

D′
2[|1〉], which allows us to conclude that D′

1 = D′
2 with the wire left open. As D′

1 and D′
2 are diagrams

in the smaller fragment for which we have completeness, we can rewrite one into the other. Plugging in

the H-box with label a1 then gives us a diagrammatic proof of equality.

The induction step follows similarly: we just observe that if ai 6∈ Z[1
2
,a1, . . . ,ai−1] that there is

then again a unique way to write a number in the ring Z[1
2
,a1, . . . ,ai−1,ai] as z1 + aiz2 where z1,z2 ∈

Z[1
2
,a1, . . . ,ai−1]. We can then again use the catalysis and scalar introduction rule to rewrite the diagram

into the form where we can use the completeness of the smaller fragment.

B Small angle rotations, adders and catalysis

Catalysis is not just interesting from a theoretical viewpoint, allowing you to prove the universality and

completeness of certain gate sets or generators, it is also a practically useful tool. In this section we will

see how catalysis can be used to derive an efficient way to implement small angle rotations.

To do that we first need to generalise Eq. (9) to allow us to implement controlled-phase gates. To see

how this works it will be helpful to first write Eq. (9) in circuit notation:

⊕
=

Z(2α)|Z(α)〉

Z(α)

|Z(α)〉
(25)

Here we wrote a slightly more general circuit where we replace the T and controlled-S gates with Z(α)
and controlled-Z(2α) gates. As a shorthand we write |Z(α)〉 := Z(α)|+〉 as a generalisation of |T 〉 =
T |+〉. Since this is a circuit equality that holds on the nose (with a correct global phase), it should

continue to hold when we add additional control wires:

⊕

=

Z(2α)|Z(α)〉

Z(α)

|Z(α)〉

...
...

(26)
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We can prove this is correct using ZH:

α

=

...

ei2α

...

α

...(hhhsss)

(zzzsss)

ei2α

=

α

...(bbbaaa222)

ei2α

=

α

...(19)

α

=

α

...

(7)

eiα(hhhsss)

Because we can apply catalysis equally well to controlled phases, we can start iterating the procedure

producing bigger and bigger controlled-phase gates, where the phase being controlled is also increasingly

large. For instance, if we want to implement a T gate, we can do the following:

⊕
−→

S|T 〉
T

(25)

⊕
−→

|T 〉

(26)

Z|S〉 ⊕
⊕

−→
|T 〉

(26)

|S〉 ⊕
Z2|Z〉 ⊕

(27)

Here in the last step we are left with a controlled Z2 operation. But since Z2 = id this does not do anything

and we can remove it. So at this point we can stop the iteration of the catalysis. We see then that we

can implement a T gate just using multiple-controlled Toffoli gates, if we have the right catalysis states

lying around. This procedure works to implement any Z(2π/2k) gate: we then get a ladder of k Toffoli

gates. This implements a controlled-decrementer circuit that decreases the value of an n-bit number by

1, controlled on the top wire. By making a ladder of these controlled-decrementers we implement a

subtraction circuit that maps |a,b〉 7→ |a,b−a〉 for some n-bit numbers a and b. For this reason, when

we apply a subtraction circuit to a collection of catalysis states, this implements phase gates on on the
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top qubits:

|T 〉
|S〉
|Z〉

Sub

−1 −1
−1

|T 〉
|S〉
|Z〉

:=

−1
−1

|T 〉
|S〉
|Z〉

=

(27)

T

−1

|T 〉
|S〉
|Z〉

=

(27)

T

S

|T 〉
|S〉
|Z〉

=

(27)

T

S

Z

(28)

An adder can be implemented quite efficiently, so we transform Eq. (28) slightly, so that it uses an adder

instead of a subtracter. By taking Eq. (28) and composing both sides on the right by Add = Sub†, and on

the left by (T ⊗S⊗Z)†. After cancelling with the adjoints we are then left with the following equation:

|T 〉
|S〉
|Z〉

Add= |T 〉
|S〉
|Z〉

T †

S†

Z†

(29)

We showed the construction here for 3 bits, but this works for any number of bits n, in which case the

smallest phase we implement is Z(2π/2n).

Such a series of parallel phases is not that useful, but by using ancillae we can make them work on

the same qubit. First, we can transfer the application of a phase gate to a zeroed ancilla:

α

=
α

(zzzsss)

=
α

(iiiddd)

= α

(zzzsss)

(30)

Now when we have a complicated phase, we can decompose it into its components, and put each of these

onto its own ancilla. Suppose for instance we want to implement the phase Z(11
8

π). We can then write

11 bitwise as 1011 so that Z(11
8

π) = Z(2π/24(23 +21 +20)). We can then put each of these component

phases onto their own ancilla to get:

π
8

=11
8 π π π

4
π
8 =

π
4

π
2

π

(31)
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We have here also added a zeroed ancilla that gets a Z(π
2
) applied that does nothing. We need this qubit

to complete the pattern: we see then that we get the right shape needed to use Eq. (29). However, note

that Eq. (29) has adjoint phases, instead of the actual phases we need. There are multiple ways we can

deal with this. One way is to realise that for phase gates, the adjoint is the conjugate: T † = T . Hence,

if we take the conjugate of both sides of Eq. (29) we do get the right phases. Since the Adder is a real

matrix, this stays the same, but the states needed for the catalysis also flip: |T 〉 = |T †〉. We then have

everything we need to produce the circuit we are after:

=11
8 π

− π
8

− π
4

− π
2

π

Add

− π
8

− π
4

− π
2

π

(31)

(29)

(32)

This is the construction that is presented in [11]. There it was proven correct by arguing about the

interaction between the quantum Fourier transform and addition. In comparison, the construction we

present here is more bottom-up and only uses elementary facts about quantum circuits and catalysis.
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