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Abstract

We consider the problem of approximating arbitrary single-qubit z-rotations by ancilla-free Clifford+T circuits,
up to given epsilon. We present a fast new probabilistic algorithm for solving this problem optimally, i.e., for finding
the shortest possible circuit whatsoever for the given problem instance. The algorithm requires a factoring oracle
(such as a quantum computer). Even in the absence of a factoring oracle, the algorithm is still near-optimal under
a mild number-theoretic hypothesis. In this case, the algorithm finds a solution of T -count m+O(log(log(1/ε))),
where m is the T -count of the second-to-optimal solution. In the typical case, this yields circuit approximations
of T -count 3 log

2
(1/ε) +O(log(log(1/ε))). Our algorithm is efficient in practice, and provably efficient under the

above-mentioned number-theoretic hypothesis, in the sense that its expected runtime is O(polylog(1/ε)).

1 Introduction

Practical quantum computing requires the fault-tolerant implementation of a universal gate set. The decomposition
of arbitrary unitary operators into gates from this fixed set is then an important problem. Most of the common
error correction schemes, including most stabilizer codes and surface codes, permit a relatively inexpensive fault-
tolerant implementation of gates from the Clifford group. However, since Clifford gates are not universal for quantum
computation, at least one non-Clifford gate must be added to the basic gate set to achieve universality. A common
choice for this additional gate is the T -gate or π/8-gate. The T -gate is not the only possible extension of the
Clifford group but it is considered to be the most practical one. This is due to the availability of fault-tolerant
implementations of the T -gate. For this reason, the Clifford+T gate set is often considered as the most promising
candidate for practical quantum computing.

In this paper, we consider the problem of approximating arbitrary single-qubit z-rotations by Clifford+T circuits
up to given ε. Until about two years ago, the state-of-the-art algorithm for this problem was the Solovay-Kitaev
algorithm, which yields circuits of size O(logc(1/ε)), where c > 3. At the other end of the spectrum are algorithms
based on exhaustive search. While such algorithms achieve optimal circuit sizes, they have exponential runtimes.
For example, the algorithm of [5] is feasible up to ε ≈ 10−4. Even the improved algorithm of [11], which combines
search-based and other methods and achieves optimal T -counts, still has exponential runtime which makes it feasible
only for precisions up to ε ≈ 10−17.

Within the last two years, a new generation of efficient number-theoretic algorithms have been proposed for the
approximate synthesis problem, achieving circuit sizes of O(log(1/ε)) with polynomial runtime. Unlike the Solovay-
Kitaev algorithm, which is based on a geometric method of successive approximations, these new algorithms are
based on solving Diophantine equations. The first such algorithm was due to Kliuchnikov, Maslov, and Mosca [9].
It uses a small number of ancilla qubits to approximate a given single-qubit operator. An improved algorithm was
given in [14], which uses no ancillas and achieves T -counts of K+4 log2(1/ε) for approximating arbitrary z-rotations.
This compares to the information-theoretic lower bound of K + 3 log2(1/ε).

In this paper, we present a fast new probabilistic algorithm for solving the single-qubit approximate synthesis
problem. Our algorithm is optimal in an absolute sense, i.e., it finds the shortest possible circuit whatsoever for
any given problem instance. To achieve this optimality, the algorithm requires an oracle for integer factoring. Of
course, a quantum computer can serve as such an oracle by using Shor’s algorithm [15]. But even in the absence of a
factoring oracle, our algorithm is still nearly optimal: In this case, under a mild number-theoretic assumption, we can
prove that the algorithm finds a solution of T -count m+O(log(log(1/ε))), where m is the T -count of the second-to-
optimal solution. In the typical case, m is given by the information-theoretic lower bound 3 log2(1/ε). Therefore our
algorithm, in the absence of a factoring oracle, yields circuit approximations of T -count 3 log2(1/ε)+O(log(log(1/ε)))
in the typical case.
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We note that our algorithm is optimal only for the specific problem of approximating a given z-rotation by a
linear sequence of single-qubit Clifford+T gates. It is already known that even smaller gate counts and/or circuit
depths are achievable using additional techniques, such as ancillas, measurements, or state distillation [4, 16, 3, 2].
In particular, the methods of [3] produce so-called repeat-until-success circuits whose expected T -count is below the
information theoretic lower bound for deterministic circuits.

It is likely that in the future, the existence of an efficient approximate synthesis algorithm will be considered an
essential requirement for any universal gate set proposed for practical quantum computing, of similar importance,
say, as the existence of a fault-tolerant implementation. Our algorithm is specialized to the Clifford+T gate set
which is arguably the most relevant gate set to practical quantum computing. However, similar number-theoretic
methods are also applicable to certain other universal gate sets. For example, Bocharov et al. [1] gave an efficient
synthesis algorithm for the Clifford+V gate set that achieves gate counts linear in log(1/ε), and Kliuchnikov et al.
[8] did the same for the 〈F , T 〉 gate set. One may reasonably expect these gate sets to be amenable to the same kind
of optimal synthesis that we provide here for the Clifford+T gate set.

2 Overview

Recall that the single-qubit Clifford group is generated by the Hadamard gate H , the phase gate S, and the scalar
ω = eiπ/4. By adding the non-Clifford operator T , one obtains a universal gate set for quantum computing.

ω = eiπ/4, H =
1√
2

(

1 1
1 −1

)

, S =
(

1 0
0 i

)

, T =

(

1 0
0 eiπ/4

)

.

Our goal is to approximate an arbitrary z-rotation

Rz(θ) = e−iθZ/2 =

(

e−iθ/2 0
0 eiθ/2

)

by a Clifford+T operator up to given ε > 0. By a result of Kliuchnikov, Maslov, and Mosca [10], a unitary 2 × 2-
operator can be exactly written as a product of Clifford+T operators if and only if all of its matrix entries belong to
the ring D[ω] = Z[ 1√

2
, i]. Our strategy is therefore to approximate Rz(θ) by a unitary operator of the form

U =

(

u −t†
t u†

)

,

where u, t ∈ D[ω]. This problem can be solved in two stages:

(1) find a suitable candidate u ∈ D[ω] that is a good approximation of e−iθ/2;

(2) solve the Diophantine equation u†u+ t†t = 1, to ensure that U is unitary.

Problem (2) can be solved by standard number-theoretic methods. In the interest of self-containedness, we summarize
these methods in Section 6 and Appendix C. In general, solving the Diophantine equation in (2) requires the ability
to factor large integers. However, if no efficient factoring method is available, then (modulo a mild number-theoretic
assumption), the Diophantine equation can still be solved with large enough probability to ensure that at most
O(log(1/ε)) candidates need to be tried.

The main new technical innovation of this paper is a new and optimal solution to problem (1). It turns out that
the “suitability” of a candidate u can be expressed as a problem of the form u ∈ A and u• ∈ B, where A and B
are fixed convex subsets of the complex plane depending only on θ and ε, and (−)• is the automorphism of the ring
D[ω] obtained by mapping

√
2 to −

√
2. We call such a problem a two-dimensional grid problem. In Sections 4 and

5, we formulate a general algorithm for solving one- and two-dimensional grid problems efficiently. Our algorithm
proceeds by transforming the sets A and B using invertible linear operators that preserve solutions to the given
problem, which we call grid operators. We show that for any two convex sets A and B one can construct a grid
operator G such that the action of G on A and B normalizes the grid problem in an appropriate sense. The main
technical ingredient that makes our solution efficient is an iterative process for constructing G, which is detailed in
Appendix A.

The rest of this paper is organized as follows. In Section 3, we review some basic notions from algebra. We
discuss one- and two-dimensional grid problems in Sections 4 and 5, respectively. In Section 6, we show how to solve
the relevant Diophantine equation. A detailed description of the main synthesis algorithm is given in Section 7. In
Section 8, we analyze the algorithm’s correctness, optimality, and complexity. Some experimental results are given
in Section 10. For better readability of the main body of the paper, certain technical results are proved in the
appendices.
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3 Some algebra

We introduce some notation and algebraic prerequisites. The set of natural numbers, including 0, is denoted by N,
the ring of integers is denoted by Z, and we let ω = eiπ/4 = (1 + i)/

√
2.

Definition 3.1. (Extensions of Z) We are interested in the following rings of algebraic integers:

• Z[
√
2] = {a+ b

√
2 | a, b ∈ Z}, the ring of quadratic integers with radicand 2 ;

• Z[ω] = {aω3 + bω2 + cω + d | a, b, c, d ∈ Z}, the ring of cyclotomic integers of degree 8 ;

• D = Z[ 12 ] = { a
2k | a ∈ Z, k ∈ N}, the ring of dyadic fractions ;

• D[
√
2] = Z[ 1√

2
] = {a+ b

√
2 | a, b ∈ D}; and

• D[ω] = Z[ 1√
2
, i] = {aω3 + bω2 + cω + d | a, b, c, d ∈ D}.

We have the inclusions Z ⊆ Z[
√
2] ⊆ Z[ω] and D ⊆ D[

√
2] ⊆ D[ω]. Moreover, Z ⊆ D, Z[

√
2] ⊆ D[

√
2], and

Z[ω] ⊆ D[ω]. Finally, Z[
√
2] and Z[ω] are dense in R and C, respectively.

Definition 3.2. (Automorphisms) The following maps are automorphisms of D[ω]:

• Complex conjugation, which we denote (−)†, acts on an arbitrary element of D[ω] or Z[ω] as follows:

(aω3 + bω2 + cω + d)† = −cω3 − bω2 − aω + d.

•
√
2-conjugation, which we denote (−)•, acts on an arbitrary element of D[ω] or Z[ω] as follows:

(aω3 + bω2 + cω + d)• = −aω3 + bω2 − cω + d

The action of (−)• on an element of D[
√
2] or Z[

√
2] is given by (a+ b

√
2)• = a− b

√
2. In particular, this implies

that if t = a+ b
√
2 is an element of D[

√
2] (resp. Z[

√
2]), then t•t = a2 − 2b2 is an element of D (resp. Z).

Remark 3.3. If α and β are two distinct elements of Z[
√
2], then the following inequality holds:

|α− β| · |α• − β•| > 1, (1)

This follows from the fact that for t ∈ Z[
√
2], t•t is an integer and t•t = 0 if and only if t = 0.

Definition 3.4. Let t ∈ D[ω] and k ∈ N. If
√
2kt ∈ Z[ω], then we say that k is a denominator exponent of t. The

smallest such k > 0 is the least denominator exponent of t. For k ∈ N, the elements of D[
√
2] (resp. D[ω]) having k

as a denominator exponent form a ring, denoted 1√
2k
Z[
√
2] (resp. 1√

2k
Z[ω]).

Definition 3.5. We frequently refer to the following elements of Z[
√
2] and Z[ω]:

• λ = 1 +
√
2 ∈ Z[

√
2] and

• δ = 1 + ω ∈ Z[ω].

Remark 3.6. The element λ is invertible in the ring Z[
√
2], with inverse λ−1 = −1 +

√
2 = −λ•. The element δ of

the ring Z[ω] satisfies δ2 = λω
√
2 and δ†δ = λ

√
2.

4 One-dimensional grid problems

Definition 4.1. Let B be a set of real numbers. The (real) grid for B is the set

grid(B) = {α ∈ Z[
√
2] | α• ∈ B}. (2)

When B is clear from the context, we refer to the elements of this set as grid points.

In the following, we will only be interested in the case where B is a closed interval [y0, y1] with y0 < y1. In this
case, the grid is discrete and infinite. It is discrete because the distance between grid points is bounded below by
(1). And it is infinite by the density of Z[

√
2]: there are infinitely many points β ∈ B ∩Z[

√
2], and for each of them,

β• is a grid point.
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(a)

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

B

(b)

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

B

Figure 1: The real grid for two different intervals B. In both cases, the interval B is shown in green, and grid points
are shown as black dots.

Example 4.2. Figure 1 illustrates the grids for the intervals [−1, 1] and [−3, 3], respectively. For example, the first
few non-negative points in grid([−1, 1]) are 0, 1, 1 +

√
2, 2 +

√
2, 2 + 2

√
2, 3 + 2

√
2, and 4 + 3

√
2. As one would

expect, the grid for [−3, 3] is about three times denser than that for [−1, 1]. We also note that B ⊆ B′ implies
grid(B) ⊆ grid(B′).

Definition 4.3. Let A and B be sets of real numbers. The one-dimensional grid problem for A and B is the
following:

One-dimensional grid problem: Find α ∈ Z[
√
2] satisfying α ∈ A and α• ∈ B. (3)

Note that (3) can be equivalently written as α ∈ A∩grid(B). In other words, the grid problem is to find points in
some given set A that belong to the grid for B. We also refer to the conditions α ∈ A and α• ∈ B as grid constraints.

In the case where A and B are finite intervals, the grid problem is guaranteed to have a finite number of solutions.
We recall the following facts from [14]:

Lemma 4.4. Let A = [x0, x1] and B = [y0, y1] be closed real intervals, such that x1 − x0 = δ and y1 − y0 = ∆. If
δ∆ < 1, then the grid problem (3) has at most one solution. If δ∆ > (1 +

√
2)2, then the grid problem (3) has at

least one solution.

Proof. Lemmas 16 and 17 of [14].

Proposition 4.5. There is an algorithm for enumerating all solutions of the one-dimensional grid problem for
closed intervals A = [x0, x1] and B = [y0, y1]. Moreover, the algorithm is efficient in the sense that it only requires
a constant number of arithmetic operations per solution produced.

Proof. It was already noted in [14, Lemma 17] that there is an efficient algorithm for computing one solution. To
see that we can efficiently enumerate all solutions, let δ = x1 −x0 and ∆ = y1− y0 as before. Recall that λ = 1+

√
2

and that λ−1 = −λ•. The grid problem for the sets A and B is equivalent to the grid problem for λ−1A and −λB,
because α ∈ A and α• ∈ B hold if and only if λ−1α ∈ λ−1A and (λ−1α)• ∈ −λB. Using such rescaling, we may
without loss of generality assume that λ−1 6 δ < 1.

Now consider any solution α = a + b
√
2 ∈ Z[

√
2]. From α ∈ [x0, x1], we know that x0 − b

√
2 6 a 6 x1 − b

√
2.

But since x1 − x0 < 1, it follows that for any b ∈ Z, there is at most one a ∈ Z yielding a solution. Moreover, we
note that b = (α− α•)/

√
23, so that any solution satisfies (x0 − y1)/

√
23 6 b 6 (x1 − y0)/

√
23. The algorithm then

proceeds by enumerating all the integers b in the interval [(x0 − y1)/
√
23, (x1 − y0)/

√
23]. For each such b, find the

unique integer a (if any) in the interval [x0 − b
√
2, x1 − b

√
2]. Finally, check if a + b

√
2 is a solution. The runtime

is governed by the number of b ∈ Z that need to be checked, of which there are at most O(y1 − y0) = O(δ∆). As a
consequence of Lemma 4.4, the total number of solutions is at least Ω(δ∆), and so the algorithm is efficient.

Remark 4.6. For the purposes of this paper, by an arithmetic operation we mean addition, subtraction, multiplication,
division, exponentiation, and logarithm.

Remark 4.7. Since the inputs to the algorithm are real intervals, if we were to give a rigorous complexity-theoretic
account, we should also clarify how these intervals are specified (for example, with rational endpoints, endpoints as
computable real numbers, etc.). For our purposes, the manner in which an interval A = [x0, x1] is specified as an
input to the algorithm does not matter very much; it would be sufficient, for example, to assume that we are given
rational bounds a, b with a < x0 < x1 < b, such that b− a exceeds x1 −x0 by at most a fixed constant factor, as well
as a procedure for deciding whether any given point of D[

√
2] is in A or not.
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5 Two-dimensional grid problems

Recall that Z[ω] is a subset of the complex numbers. In what follows, it is often convenient to identify the complex
numbers with the Euclidean plane R2, so we will often interchangeably regard Z[ω] as a subset of C and of R2.

Definition 5.1. Let B be a subset of R2. The (complex) grid for B is the set

Grid(B) = {u ∈ Z[ω] | u• ∈ B}. (4)

We will only be interested in the case where B is a bounded convex set with non-empty interior. In this case, the
grid is discrete and infinite, just as in the one-dimensional case.

Example 5.2. Figure 2 illustrates the complex grids for several different convex sets B. Note that the grid has a
90-degree symmetry in (a), a 45-degree symmetry in (b), and a 180-degree symmetry in (c).

Definition 5.3. Let A and B be subsets of R2. The two-dimensional grid problem for A and B is the following:

Two-dimensional grid problem: Find u ∈ Z[ω] satisfying u ∈ A and u• ∈ B. (5)

As in the one-dimensional case, the grid problem can be understood as looking for points in the intersection of
the set A and the grid for B. Our goal will be to prove a two-dimensional analogue of Proposition 4.5, namely, that
there is an efficient algorithm which, given two bounded convex subsets A and B of R2 with non-empty interior,
enumerates all solutions of the two-dimensional grid problem for A and B.

However, the proof is more complicated than in the one-dimensional case. We will consider several special cases
before solving the general problem in Section 5.6.

Remark 5.4. By analogy with Remark 4.7, we should indicate what it means for a bounded convex subset A of R2

to be “given” as the input to an algorithm. Again, the details of this do not matter much. For our purposes, it will
suffice to assume that a convex set is given along with the following information:

• a convex polygon enclosing A, say with rational vertices, and such that the area of the polygon exceeds that
of A by at most a fixed constant factor;

• a method to decide, for any given point of D[ω], whether it is in A or not; and

• a method to compute the intersection of A with any straight line in D[ω]. More precisely, given any straight
line parameterized as L(t) = p+ tq, with p, q ∈ D[ω], we can effectively determine the interval {t | L(t) ∈ A}
in the sense of Remark 4.7.

5.1 Upright rectangles

A special case of the two-dimensional grid problem arises when both A and B are upright rectangles, by which we
mean sets of the form [x0, x1] × [y0, y1]. If A and B are upright rectangles, then the two-dimensional grid problem
can easily be reduced to the one-dimensional case. We start with a lemma characterizing Z[ω].

Lemma 5.5. A complex number u is in Z[ω] if and only it can be written of the form u = α + βi or of the form
u = α+ βi + ω, where α, β ∈ Z[

√
2].

Proof. The right-to-left implication is trivial. For the left-to-right implication, let u = aω3 + bω2 + cω + d, where
a, b, c, d ∈ Z. Noting that ω = 1+i√

2
, we have

u = (d+
c− a

2

√
2) + (b+

c+ a

2

√
2)i.

If c − a (and therefore c+ a) is even, then u is of the first form, with α = d + c−a
2

√
2 and β = b + c+a

2

√
2. If c− a

(and therefore c+ a) is odd, then u is of the second form, with α = d+ c−a−1
2

√
2 and β = b+ c+a−1

2

√
2.

Lemma 5.6. There is an algorithm which, given a pair of upright rectangles A and B, enumerates all solutions of the
two-dimensional grid problem for A and B. Moreover, the algorithm requires only a constant number of arithmetic
operations per solution produced.
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(a)

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

B

(b)

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

B

(c)

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

B

Figure 2: The complex grid for three different convex sets B. In each case, the set B is shown in green, and grid points
are shown as black dots. (a) B = [−1, 1]2. (b) B = {(x, y) | x2 + y2 6 2}. (c) B = {(x, y) | 6x2 + 16xy + 11y2 6 2}.
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Proof. By assumption, A = Ax × Ay and B = Bx × By, where Ax, Ay, Bx, and By are closed intervals. By
Lemma 5.5, any potential solution is of the form u = α+βi or u = α+βi+ω, where α, β ∈ Z[

√
2]. When u = α+βi,

then u• = α• + β•i. Therefore, the two-dimensional grid constraints u ∈ A and u• ∈ B are equivalent to the
one-dimensional constraints α ∈ Ax, α

• ∈ Bx and β ∈ Ay , β
• ∈ By. On the other hand, when u = α + βi + ω,

let v = u − ω = α + βi. Then v• = u• + ω, and the constraints u ∈ A and u• ∈ B are equivalent to v ∈ A − ω
and v• ∈ B + ω, which reduces to the one-dimensional constraints α ∈ Ax − 1√

2
, α• ∈ Bx +

1√
2
and β ∈ Ay − 1√

2
,

β• ∈ By + 1√
2
. In both cases, the solutions to the one-dimensional constraints can be efficiently enumerated by

Proposition 4.5.

5.2 Upright sets

We can generalize the method of Section 5.1 to convex sets that are close to upright rectangles in a suitable sense.

Definition 5.7. Let A be a bounded convex subset of R2. The bounding box of A, denoted BBox(A), is the smallest
set of the form [x0, x1]× [y0, y1] that contains A. The uprightness of A, denoted up(A), is defined to be the ratio of
the area of A to the area of its bounding box:

up(A) =
area(A)

area(BBox(A))
. (6)

Therefore, the uprightness is a real number between 0 and 1. We say that A is M -upright if up(A) >M .

Lemma 5.8. There exists an algorithm which, given a pair A,B of convex M -upright sets, enumerates all solutions
of the two-dimensional grid problem for A and B. Moreover, the algorithm requires O(1/M2) arithmetic operations
per solution produced. In particular, when M > 0 is fixed, it requires only a constant number of operations per
solution.

Proof. By Lemma 5.6, we can efficiently enumerate the solutions of the grid problem for BBox(A) and BBox(B).
Moreover, as shown in the proof of Lemma 5.6, the solutions are arranged in rows and columns. For each such
candidate solution u, we only need to check whether u is also a solution for A and B. To establish the efficiency of
the algorithm, we need to ensure that the total number of solutions is not too small in relation to the total number of
candidates produced. To see this, note that, with the exception of trivial cases, when the number of rows or columns
is very small, M -uprightness and convexity ensure that the proportion of candidates u that are solutions for A and
B is approximately M2 : 1. Therefore, the runtime per solution differs from that of Lemma 5.6 by at most a factor
of O(1/M2).

Example 5.9. Figure 3 shows three different examples of grid problems. Each example uses the same set B =
[−1, 1]× [−1, 1], shown in green. The grid for B is shown as black dots. The sets Ai are shown in red, for i = 1, 2, 3,
and their bounding boxes are shown in outline. The typical case of an upright set is A1. Here, a fixed proportion
of grid points from the bounding box of A1 are elements of A1. The exceptional case of an upright set is A2. Its
bounding box spans only two columns of the grid. Therefore, although the bounding box contains many grid points,
A2 does not. However, this case is easily dealt with, by solving a one-dimensional grid problem for each of the grid
columns separately. Finally, the set A3 is not upright. In this case, Lemma 5.8 is not helpful, and a priori, it could
be a difficult problem to find grid points in A3.

5.3 Grid operators

The method of Section 5.2 can be further generalized by using certain linear transformations to turn non-upright
sets into upright sets. The linear transformations that are useful for this purpose are special grid operators:

Definition 5.10. As before, we regard Z[ω] as a subset of R2. A real linear operator G : R2 → R2 is called a grid
operator if G(Z[ω]) ⊆ Z[ω]. Moreover, a grid operator G is called special if it has determinant ±1.

Grid operators are characterized by the following lemma.

Lemma 5.11. Let G : R2 → R2 be a linear operator, which we can identify with a real 2×2-matrix with real entries.
Then G is a grid operator if and only if it is of the form

G =

[

a+ a′√
2

b+ b′√
2

c+ c′√
2

d+ d′√
2

]

, (7)

where a, b, c, d, a′, b′, c′, d′ are integers satisfying a+ b+ c+ d ≡ 0 (mod2) and a′ ≡ b′ ≡ c′ ≡ d′ (mod 2).
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A1 A2

A3

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

Figure 3: Grid problems for upright and non-upright sets

Proof. By Lemma 5.5, we know that a vector u ∈ R2 is in Z[ω] if and only if it can be written of the form

u =

[

x1 +
x2√
2

y1 +
y2√
2

]

, (8)

where x1, x2, y1, y2 are integers and x2 ≡ y2 (mod 2). A simple computation then shows that every operator of
the form (7) is a grid operator. For the converse, consider an arbitrary grid operator G. We prove the claim by
applying G to the three particular points [ 10 ], [

0
1 ], and

1√
2
[ 11 ] ∈ Z[ω]. From G[ 10 ] ∈ Z[ω] and G[ 01 ] ∈ Z[ω], it follows

that the columns of G are of the form (8), so that G is of the form (7), with integers a, b, c, d, a′, b′, c′, d′ satisfying
a′ ≡ c′ (mod 2) and b′ ≡ d′ (mod 2). Moreover, we have

G
[

1/
√
2

1/
√
2

]

=

[

a′+b′

2 + a+b√
2

c′+d′

2 + c+d√
2

]

∈ Z[ω],

which implies a+ b ≡ c+d (mod 2) and a′+ b′ ≡ c′+d′ ≡ 0 (mod 2). Together, these conditions imply a+ b+ c+d ≡
0 (mod 2) and a′ ≡ b′ ≡ c′ ≡ d′ (mod 2), as claimed.

Remark 5.12. The composition of two (special) grid operators is again a (special) grid operator. If G is a special
grid operator, then G is invertible and G−1 is a special grid operator. If G is a (special) grid operator, then G• is a
(special) grid operator, defined by applying (−)• separately to each matrix entry, and satisfying G•u• = (Gu)•.

The interest of special grid operators lies in the following fact:

Proposition 5.13. Let G be a special grid operator, and let A and B be subsets of R2. Define

G(A) = {Gu | u ∈ A},
G•(B) = {G•u | u ∈ B}.

Then u ∈ Z[ω] is a solution to the two-dimensional grid problem for A and B if and only if Gu is a solution to the
two-dimensional grid problem for G(A) and G•(B). In particular, the two-dimensional grid problem for A and B is
computationally equivalent to that for G(A) and G•(B).

Proof. Let u ∈ Z[ω]. Then u is a solution to the grid problem for A and B if and only if u ∈ A and u• ∈ B, if and
only if Gu ∈ G(A) and G•u• = (Gu)• ∈ G•(B), if and only if Gu is a solution to the grid problem for G(A) and
G•(B).
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Figure 4: (a) The grid problem for two sets A and B. (b) The grid problem with G(A) and G•(B). Note that the
solutions of (a), which are the grid points in the set A, are in one-to-one correspondence with the solutions of (b),
which are the grid points in the set G(A).

Example 5.14. Figure 4(a) illustrates the grid problem for a pair of sets A and B. As before, the set B is shown in
green, and Grid(B) is shown as black dots. The set A is shown in red, and the solutions to the grid problem are the
seven grid points that lie in A. Figure 4(b) shows the grid problem for the sets G(A) and G•(B), where G is the
special grid operator

G =

[

1
√
2

0 1

]

.

Note that, as predicted by Proposition 5.13, the solutions of the transformed grid problem are in one-to-one corre-
spondence with those of the original problem; namely, in each case, there are seven solutions.

5.4 Ellipses

Combining the results of Sections 5.2 and 5.3, we know that the grid problem for convex sets A and B can be solved
efficiently, provided that we can find a grid operator G such that G(A) and G•(B) are sufficiently upright. Our key
technical result is that in case A and B are ellipses, this is always the case.

Definition 5.15. Let D be a positive definite real 2 × 2-matrix with non-zero determinant, and let p ∈ R2 be a
point. The ellipse defined by D and centered at p is the set

E = {u ∈ R2 | (u − p)†D(u − p) 6 1}.

Theorem 5.16. Suppose A,B ⊆ R2 are ellipses. Then there exists a grid operator G such that G(A) and G•(B)
are 1/6-upright. Moreover, if A and B are M -upright, then G can be efficiently computed in O(log(1/M)) arithmetic
operations.

Since the proof is long and technical, we give it in Appendix A.

5.5 The enclosing ellipse of a bounded convex set

Our final step in the solution of the two-dimensional grid problem is to generalize Theorem 5.16 from ellipses to
arbitrary bounded convex sets with non-empty interior. This can be done because every such set A can be inscribed
in an ellipse whose area is not much greater than that of A, as stated in the following proposition.
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Proposition 5.17. Let A be a bounded convex subset of R2 with non-empty interior. Then there exists an ellipse E
such that A ⊆ E, and such that

area(E) 6
4π

3
√
3
area(A).

The proof is in Appendix B. Note that 4π
3
√
3
≈ 2.4184. We remark that the bound in Proposition 5.17 is sharp;

the bound is attained in case A is an equilateral triangle. In this case, the enclosing ellipse is a circle, and the ratio
of the areas is exactly 4π

3
√
3
.

5.6 General solution of the two-dimensional grid problem

We are finally in a position to solve the two-dimensional grid problem for arbitrary bounded convex sets of non-empty
interior.

Theorem 5.18. There is an algorithm which, given two bounded convex subset A and B of R2 with non-empty
interior, enumerates all solutions of the two-dimensional grid problem for A and B. Moreover, if A and B are M -
upright, then the algorithm requires O(log(1/M)) arithmetic operations overall, plus a constant number of arithmetic
operations per solution produced.

Proof. Given two such sets A and B, we can first find ellipses A′ and B′ containing A and B, respectively, and
whose areas exceed those of A and B by at most a fixed constant factor N . Such ellipses exist by Proposition 5.17;
moreover, it is not hard to see that they can be found efficiently if A and B are polygons with rational vertices. Since
we assume that each given convex set is equipped with such an enclosing rational polygon (Remark 5.4), A′ and B′

can be found efficiently for arbitrary given A and B.
Next, by Theorem 5.16, we can use O(log(1/M)) arithmetic operations to find a grid operator G such that G(A′)

and G•(B′) are 1/6-upright. It follows that G(A) and G•(B) are N/6-upright. By Lemma 5.8, we can efficiently
enumerate all solutions u of the grid problem for G(A) and G•(B). By Proposition 5.13, G−1u then enumerates the
solutions to the grid problem for A and B.

Remark 5.19. Note that the complexity of O(log(1/M)) overall operations in Theorem 5.18 is exponentially better
than the complexity of O(1/M2) per candidate we obtained in Lemma 5.8. This improvement is entirely due to the
use of grid operators in Theorem 5.16.

5.7 Scaled grid problems

Sometimes we want to find solutions to a grid problem where the points are taken in D[ω] instead of Z[ω]. There are
two variants of this problem: we may either enumerate the solutions for a fixed denominator exponent, or enumerate
all solutions in order of increasing least denominator exponent.

Definition 5.20. Let A and B be subsets of R2. The two-dimensional scaled grid problem for fixed k > 0 is to find
u ∈ 1√

2k
Z[ω] satisfying u ∈ A and u• ∈ B. The two-dimensional scaled grid problem for arbitrary k > 0 is to find

u ∈ D[ω] satisfying u ∈ A and u• ∈ B.

Proposition 5.21. There is an algorithm which, given two bounded convex subsets A and B of R2 with non-empty
interior and an integer k > 0, enumerates all solutions of the two-dimensional scaled grid problem for A, B, and k.
Moreover, if A and B are M -upright, then the algorithm requires O(log(1/M)) arithmetic operations overall, plus a
constant number of arithmetic operations per solution produced.

Proof. Note that u = 1√
2k
v is a solution to the scaled grid problem for A, B, and k if and only if v is a solution to the

(unscaled) grid problem for
√
2kA and (−

√
2)kB. The claim then immediately follows from Proposition 5.18.

Proposition 5.22. There is an algorithm which, given two bounded convex subsets A and B of R2 with non-empty
interior, enumerates (the infinite sequence of) all solutions u of the two-dimensional scaled grid problem for A, B,
and arbitrary k > 0, in order of increasing k. Moreover, if A and B are M -upright, then the algorithm requires
O(log(1/M)) arithmetic operations overall, plus a constant number of arithmetic operations per solution produced.
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Proof. This can be done by applying Lemma 5.21 to each k = 0, 1, 2, . . ., in increasing order. In principle, this
method enumerates each solution multiple times, since each solution for k is also a solution for k + 1. As a slight
optimization, such duplicate enumeration can be avoided by noting that for k > 0, u = 1√

2k
(aω3 + bω2 + cω + d)

is an element of Z[ω]/
√
2k − Z[ω]/

√
2 k−1 if and only if a − c or b − d (or both) are odd. Finally, we note that,

because uprightness is invariant under scaling, the grid operator G in the proof of Proposition 5.18 only needs to be
computed once, rather than once for every k.

We end this section with some lower bounds on the number of solutions to two-dimensional scaled grid problems.

Lemma 5.23. Let A and B be convex subsets of R2, and let k > 0. Assume A contains a circle of radius r and B
contains a circle of radius R, such that rR >

1
2k (1+

√
2)2. Then the scaled grid problem for k has at least 2 solutions.

Proof. By scaling the problem by a factor of
√
2k, we can assume without loss of generality that k = 0. Let δ = r/

√
2

and ∆ = R
√
2, and inscribe two squares of size δ × δ in the first circle, and one square of size ∆×∆ in the second

circle, as shown here:

δδ

x0 x1 x2 x3α α′

y0

y1

β • •

∆

z0 z1

w0

w1

•

α•

•

α′•

β•

Since δ∆ = rR > (1 +
√
2)2, by Lemma 4.4, we can find α, α′, β ∈ Z[

√
2] such that α ∈ [x0, x1], α

• ∈ [z0, z1],
α′ ∈ [x2, x3], α

′• ∈ [z0, z1], β ∈ [y0, y1], and β• ∈ [w0, w1]. Then u = α + iβ and v = α′ + iβ are two different
solutions to the two-dimensional grid problem as claimed.

Lemma 5.24. Let A and B be convex subsets of R2, and assume that the two-dimensional scaled grid problem for k
has at least two distinct solutions. Then for all ℓ > 0, the scaled grid problem for k+2ℓ has at least 2ℓ+1 solutions.

Proof. Let u 6= v be solutions of the scaled grid problem for k. For each j = 0, 1, . . . , 2ℓ, let φ = j
2ℓ , and consider

uj = φu+(1−φ)v. Then uj has denominator exponent k+2ℓ. Also, uj is a convex combination of u and v; moreover,
since φ• = φ, we also know that u•j = φu• + (1 − φ)v• is a convex combination of u• and v•. Since A and B are

convex, it follows that uj is a solution of the scaled grid problem for k + 2ℓ, yielding 2ℓ + 1 distinct solutions.

Remark 5.25. The bound in Lemma 5.24 is sufficient for our purposes, but it is not tight. In fact, the number of
solutions grows as O(4k).

6 Solving a Diophantine equation

We will be interested in solving equations of the following form: given ξ ∈ D[
√
2], find t ∈ D[ω] such that

t†t = ξ. (9)

The following necessary condition is immediate:

Lemma 6.1 (Necessary condition). The equation (9) has a solution only if ξ > 0 and ξ• > 0.

Proof. Assume t†t = ξ. Since t is a complex number, we have ξ = t†t > 0. Similarly, since t• is a complex number,
we have ξ• = (t•)†(t•) > 0.

The following theorem states that the problem of solving the equation (9) can be reduced to the prime factorization
problem for integers.

Theorem 6.2. Let ξ ∈ D[
√
2]. Note that ξ•ξ ∈ D, so we can write ξ•ξ = n

2ℓ
for some n ∈ Z and ℓ ∈ N. There exists

a probabilistic algorithm which, given ξ and, in case n 6= 0, a prime factorization of n, determines whether or not
the equation (9) has a solution, and finds a solution if there is one. Moreover, the expected runtime of this algorithm
is polynomial in the size of n.

Theorem 6.2 is a well-known result in computational algebraic number theory. For the benefit readers who are
not experts in number theory, we give an elementary and more or less self-contained proof in Appendix C.
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7 The approximate synthesis algorithm

7.1 The approximate synthesis problem

Recall that the z-rotation by angle θ is the unitary operator

Rz(θ) = e−iθZ/2 =

(

e−iθ/2 0
0 eiθ/2

)

.

Definition 7.1. Given θ and a precision ε > 0, the approximate synthesis problem for z-rotations is to find an
operator U expressible in the single-qubit Clifford+T gate set, such that

‖Rz(θ)− U‖ 6 ε. (10)

Moreover, we want the T -count of the operator U to be as small as possible; here, the T -count of a Clifford+T circuit
is the number of T -gates appearing in it. The norm in (10) is the operator norm.

It is known from [10] that a single-qubit operator can be exactly represented over the Clifford+T gate set if and
only if it can be written of the form

U =

(

u −t†ωℓ
t u†ωℓ

)

, (11)

where u, t ∈ D[ω] and ℓ is an integer. The following lemma shows that, for the purposes of approximate synthesis,
we may assume without loss of generality that ℓ = 0.

Lemma 7.2. If ε < |1− eiπ/8|, then all solutions of the approximate synthesis problem have the form

U =

(

u −t†
t u†

)

. (12)

If ε > |1− eiπ/8|, then there exists a solution of T -count 0 (i.e., a Clifford operator), and it is also of the form (12).

Proof. To prove the first claim, assume ε < |1 − eiπ/8|. Let U be of the form (11), satisfying (10). Let eiφ1 and
eiφ2 be the eigenvalues of URz(θ)

−1, with φ1, φ2 ∈ [−π, π]. Using (10), we have ‖I − URz(θ)
−1‖ 6 ε < |1 − eiπ/8|.

On the other hand, ‖I − URz(θ)
−1‖ = max{|1 − eiφ1 |, |1 − eiφ2 |}. It follows that |1 − eiφj | < |1 − eiπ/8| for

j = 1, 2, hence −π/8 < φj < π/8, hence −π/4 < φ1 + φ2 < π/4, so |1 − ei(φ1+φ2)| < |1 − eiπ/4| = |1 − ω|. On
other hand, we have ei(φ1+φ2) = det(URz(θ)

−1) = ωℓ, hence |1 − ωℓ| < |1 − ω|, which implies ωℓ = 1. Therefore,
U is of the form (12). To prove the second claim, assume ε > |1 − eiπ/8|. Let j be the integer closest to 2θ

π ,

so that |j − 2θ
π | 6

1
2 , or equivalently, |j π4 − θ

2 | 6
π
8 . Let U be as in (12), with u = ω−j and t = 0. Then

‖Rz(θ) − U‖ = |eiθ/2 − u†| = |1 − u†e−iθ/2| = |1 − ei(j
π
4
− θ

2
)| 6 |1 − ei

π
8 | 6 ε. So (10) holds. But U = Sjω−j is a

Clifford operator, so has T -count 0.

Our strategy is therefore to approximate Rz(θ) by an operator U of the form (12), with u, t ∈ D[ω], and then use
the exact synthesis algorithm of [10] to synthesize U into a sequence of Clifford+T gates with minimal T -count. The
following lemma relates the T -count of the resulting circuit to the least denominator exponent k of u.

Lemma 7.3. Let U be a unitary operator as in (12), where u, t ∈ D[ω], and let k be the least denominator exponent
of u. Then the T -count of U is either 2k − 2 or 2k. Moreover, if k > 0 and U has T -count 2k, then U ′ = TUT †

has T -count 2k − 2. We further note that ‖Rz(θ) − U ′‖ = ‖Rz(θ) − U‖, so for the purpose of solving (10), it does
not matter whether U or U ′ is used. Hence, without loss of generality, we may assume that U as in (12) always has
T -count exactly 2k − 2 when k > 0, and 0 when k = 0.

Proof. Because U is unitary, we have t†t + u†u = 1. We first claim that t and u have the same least denominator
exponent. Indeed, in the ring Z[ω], an element s is divisible by

√
2 if and only if s†s is divisible by 2. The left-to-right

implication is obvious, and the right-to-left implication follows, e.g., from Lemma 2 of [6]. Then for any k > 0, we
have

√
2ku ∈ Z[ω] iff 2ku†u ∈ Z[ω] iff 2k(1 − t†t) ∈ Z[ω] iff 2kt†t ∈ Z[ω] iff

√
2kt ∈ Z[ω]. This proves that u and t

have the same denominator exponents, and in particular, the same least denominator exponent.
The claims about the T -counts of U and U ′ follow by inspection of Figure 2 of [7]. Using the terminology of

Definitions 7.4 and 7.6 of [7], this figure shows every possible k-residue of a Clifford+T operator, modulo a right
action of the group 〈S,X, ω〉. Because U is of the form (12), only a subset of the k-residues is actually possible, and
the figure shows that for this subset, the T -count is 2k or 2k− 2. Moreover, in each of the possible cases where k > 0
and U has T -count 2k, the figure also shows that U ′ = TUT † has T -count 2k − 2.

For the final claim, we have ‖Rz(θ)−U‖ = ‖TRz(θ)T
†−TUT †‖ = ‖Rz(θ)−U ′‖ because Rz(θ) and T commute.
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So our task is to find an operator U of the form (12), satisfying (10), and such that the denominator exponent of
u is as small as possible. It is useful to first re-express (10) as a property of u. Let z = e−iθ/2. Using u†u+ t†t = 1
and z†z = 1, we have

‖Rz(θ)− U‖2 = ‖u− z‖2 + ‖t‖2 = (u − z)†(u− z) + t†t = u†u+ t†t− z†u− u†z + z†z = 2− 2Re(z†u).

So (10) is equivalent to 2 − 2Re(z†u) 6 ε2, or equivalently, Re(z†u) > 1 − ε2

2 . If we identify the complex numbers
z = x + yi and u = a + bi with 2-dimensional real vectors ~z = (x, y)T and ~u = (a, b)T , then Re(z†u) is just their
inner product ~z · ~u, and therefore (10) is equivalent to

~z · ~u > 1− ε2

2
. (13)

In summary, the approximate synthesis problem reduces to the following:

Problem 7.4. Given an angle θ and a precision ε > 0, find u, t ∈ D[ω] such that

(a) t†t+ u†u = 1,

(b) ~z · ~u > 1− ε2/2, where z = e−iθ/2, with notation as above,

(c) and such that u has the smallest denominator exponent we can find.

7.2 Reduction to a grid problem and a Diophantine equation

As we will now show, Problem 7.4 can be reduced to a scaled grid problem and a Diophantine equation, and therefore
it can be efficiently solved by the methods of Sections 5 and 6. Let D be the closed unit disk, regarded either as a
subset of C or of R2.

Lemma 7.5. If u, t ∈ D[ω] and t†t+ u†u = 1, then u ∈ D and u• ∈ D.

Proof. Note that u†u = 1− t†t 6 1, so u ∈ D. Similarly, (u•)†(u•) = 1− (t•)†(t•) 6 1, so u• ∈ D.

The condition ~z · ~u > 1 − ε2/2 from Problem 7.4(b) defines a certain subset of the unit disk, which we call the
ε-region for θ:

Rε = {~u ∈ D | ~u · ~z > 1− ε2

2
}.

D

i

1

~z

ε2

2

Rε

θ

2

(14)

By Lemma 7.5 and Problem 7.4(b), a necessary condition for a solution to Problem 7.4 is that u ∈ Rε and u• ∈ D.
This is an instance of a scaled two-dimensional grid problem; note that both the ε-region and the unit disk are
convex, and are effectively given in the sense of Remark 5.4. Therefore, by Proposition 5.22, there exists an efficient
algorithm that enumerates all such u in increasing order of least denominator exponent.

For each u ∈ D[ω] satisfying the grid problem, it remains to check whether the equation t†t + u†u = 1 has a
solution t ∈ D[ω]. This is equivalent to solving the Diophantine equation

t†t = 1− u†u,

which is of the form (9). Let ξ = 1 − u†u ∈ D[
√
2], and write ξ•ξ = n

2ℓ
, where n ∈ Z and ℓ ∈ N. By Theorem 6.2,

there is an efficient algorithm that can solve this equation (or determine that no solution exists), given a prime
factorization of n.
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7.3 The main algorithm

Putting together the results of Sections 7.1 and 7.2, we obtain the following algorithm for solving the approximate
synthesis problem:

Algorithm 7.6. Given θ and ε, let A = Rε be the ε-region, and let B = D be the unit disk.

1. Use Proposition 5.22 to enumerate the infinite sequence of solutions to the scaled grid problem u ∈ A and
u• ∈ B, where u ∈ D[ω], in the order of increasing least denominator exponent k.

2. For each such solution u:

(a) Let ξ = 1− u†u ∈ D[
√
2], and write ξ•ξ = n

2ℓ , where n ∈ Z and ℓ > 0 is minimal.

(b) Attempt to find a prime factorization of n. If n 6= 0 but no prime factorization is found, skip step 2(c)
and continue with the next u.

(c) Use the algorithm of Theorem 6.2 to solve the equation t†t = ξ. If a solution t exists, go to step 3;
otherwise, continue with the next u.

3. Define U as in equation (12), let U ′ = TUT †, and use the exact synthesis algorithm of [10] to find a Clifford+T
circuit implementing either U or U ′, whichever has smaller T -count. Output this circuit and stop.

8 Analysis of the algorithm

8.1 Correctness

Proposition 8.1 (Correctness). If Algorithm 7.6 terminates, then it yields a valid solution to the approximate
synthesis problem, i.e., it yields a Clifford+T circuit approximating Rz(θ) up to ε.

Proof. By construction. By steps 2(a) and 2(c) of the algorithm, we have t†t+ u†u = 1, so U is unitary. By step 1
of the algorithm, u belongs to the ε-region, so (13) holds. This implies that U satisfies (10). Moreover, as noted in
Lemma 7.3, U ′ also satisfies (10), so whichever of these operators is returned approximates Rz(θ) up to ε.

8.2 Optimality

The optimality of the algorithm hinges on step 2(b), “attempt to find a prime factorization of n”. In the presence of
a factoring oracle (such as a quantum computer), this can always be done. In this case, Algorithm 7.6 is guaranteed
to find an optimal solution to the approximate synthesis problem. In the absence of a factoring oracle, we must
potentially discard some candidate solutions u, until we find one for which n can be factored. We analyze these two
situations in Propositions 8.2 and 8.8.

Proposition 8.2 (Optimality in the presence of a factoring oracle). In the presence of an oracle for integer factoring,
the circuit returned by Algorithm 7.6 has the smallest T -count of any single-qubit Clifford+T circuit approximating
Rz(θ) up to ε.

Proof. By construction, step 1 of the algorithm enumerates all solutions u of the scaled grid problem in order of
increasing denominator exponent k. Step 2(a) always succeeds, and step 2(b) always succeeds by using the factoring
oracle. By Theorem 6.2, step 2(c) succeeds if and only if the equation t†t+ u†u = 1 has a solution. Therefore, when
step 2(c) succeeds, the algorithm has found a solution of Problem 7.4 for which u has the lowest possible denominator
exponent k. Let m be the T -count of the final solution. By Lemma 7.3, we have m = 2k − 2, except when k = 0, in
which case m = 0.

To show that this T -count is minimal, let Ū be any solution of the approximate synthesis problem with T -count
m̄. By Lemma 7.2, we may assume without loss of generality that

Ū =

(

ū −t̄†
t̄ ū†

)

.

Let k̄ be the denominator exponent of ū. By minimality of k, we have k 6 k̄, hence m 6 m̄.
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We emphasize that the optimality in Proposition 8.2 is absolute, i.e., not merely asymptotic or up to an additive
constant. Of all the Clifford+T operators approximating Rz(θ) to within ε, the algorithm finds one with the lowest
T -count.

To analyze the algorithm in the absence of a factoring oracle, we must address the question of how many candidates
must be generated before steps 2(b) and 2(c) of the algorithm succeed. In this case, the algorithm may still use any
classical algorithm to try to factor the number n in step 2(b), but the amount of effort extended on any particular
n must be capped. In our complexity analysis for this case, in Proposition 8.8 below, we conservatively assume that
the only n that the algorithm can successfully factor are those n that are already prime. In reality the algorithm
might do a little better. In order to complete the analysis, we must rely on a number-theoretic assumption about
the distribution of prime numbers.

Hypothesis 8.3. Each number n produced in step 2(a) of Algorithm 7.6 is asymptotically as likely to be prime
as a randomly chosen odd number of comparable size. Moreover, the primality of each n can be modelled as an
independent random event.

Lemma 8.4. Each of the numbers n produced in step 2(a) of Algorithm 7.6 satisfies n > 0, and either n = 0 or
n ≡ 1 (mod8).

Proof. See Appendix D.

Lemma 8.5. Let u be a candidate produced in step 1 of Algorithm 7.6, let k be its least denominator exponent, and
let n be the integer computed in step 2(a). Then n 6 4k.

Proof. By assumption, we can write u = v/
√
2k, where v ∈ Z[ω]. From step 2(a) of the algorithm, we have

ξ = 1 − u†u = 1
2k
(2k − v†v) = α

2k
, where α ∈ Z[

√
2]. Therefore ξ•ξ = α•α

22k
= n

2ℓ
. Since α•α is an integer and ℓ is

minimal, we have ℓ 6 2k. Also, by assumption, both u and u• are in the unit disk, so u†u 6 1 and (u•)†(u•) 6 1. It
follows that 0 6 ξ, ξ• 6 1, hence ξ•ξ 6 1. Therefore, n

2ℓ
6 1, which implies n 6 2ℓ 6 4k as claimed.

Lemma 8.6. Let b > 0 be an arbitrary fixed constant. Then for a > 1,

∞
∑

x=1

(

1− 1

a+ b lnx

)x

= O(a).

Proof. See Appendix E.

Definition 8.7. Let U ′, U ′′ be two solutions of the approximate synthesis problem of the form

U ′ =

(

u′ −t′†
t′ u′†

)

, U ′′ =

(

u′′ −t′′†
t′′ u′′†

)

. (15)

We say that U ′ and U ′′ are equivalent solutions if u′ = u′′.

Proposition 8.8 (Near-optimality in the absence of a factoring oracle). Let m be the T -count of the solution of the
approximate synthesis problem found by Algorithm 7.6 in the absence of an oracle for integer factoring. Then

(a) The approximate synthesis problem has an expected number of at most O(log(1/ε)) non-equivalent solutions
with T -count less than m.

(b) The expected value of m is m′′ + O(log(log(1/ε))), where m′ and m′′ are the T -counts of the optimal and
second-to-optimal solutions of the approximate synthesis problem (up to equivalence), and m′ 6 m′′.

Proof. If ε > |1− eiπ/8|, then by Lemma 7.2, there is a solution with T -count 0, and the algorithm easily finds it. In
this case, there is nothing to show. So assume without loss of generality that ε < |1 − eiπ/8|. Then by Lemma 7.2,
all solutions are of the form (12).

(a) Consider the list u1, u2, . . . of candidates generated in step 1 of the algorithm. Let k1, k2, . . . be their respective
least denominator exponents, and let n1, n2, . . . be the corresponding integers calculated in step 2(a). By Lemma 8.5,
we have nj 6 4kj for all j. By Hypothesis 8.3, the probability that nj is prime is asymptotically no smaller than that
of a randomly chosen odd integer less than 4kj , which, by the well-known prime number theorem, is greater than

pj :=
2

ln(4kj )
=

1

kj ln 2
. (16)

15



Note that u1 and u2 are two distinct solutions to the scaled grid problem of step 1 of the algorithm. Since the
candidates are enumerated in order of increasing denominator exponent, k2 is a denominator exponent for both u1
and u2. It follows by Lemma 5.24 that there are at least 2ℓ+1 distinct candidates of denominator exponent k2 +2ℓ,
for all ℓ > 0. In other words, for all j, if j 6 2ℓ+1, we have kj 6 k2+2ℓ. In particular, this holds for ℓ = ⌊1+log2 j⌋,
and therefore,

kj 6 k2 + 2(1 + log2 j). (17)

Combining (17) with (16), we have

pj >
1

(k2 + 2(1 + log2 j)) ln 2
=

1

(k2 + 2) ln 2 + 2 ln j
(18)

Let j0 be the smallest index such that nj0 is prime. By Hypothesis 8.3, we can treat the primality of each nj as an
independent random event. Therefore,

P (j0 > j) = P (n1, . . . , nj are not prime)

6 (1 − p1)(1− p2) · · · (1− pj)

6 (1 − pj)
j

6

(

1− 1

(k2 + 2) ln 2 + 2 ln j

)j

.

The expected value of j0 is

E(j0) =

∞
∑

j=0

P (j0 > j) 6 1 +

∞
∑

j=1

(

1− 1

(k2 + 2) ln 2 + 2 ln j

)j

= O(k2), (19)

where we have used Lemma 8.6 to estimate the sum.
Next, we will estimate k2. The width of the ε-region Rε, as shown in (14), is ε2/2 at the widest point, and we

can inscribe a disk of radius r = ε2/4 in it. Also, the closed unit disk D has radius R = 1. It follows by Lemma 5.23
that the scaled grid problem for Rε and D, as in step 1 of the algorithm, has at least two solutions, provided that

rR =
ε2

4
>

(1 +
√
2)2

2k
, (20)

or equivalently, provided that
k > 2 + 2 log2(1 +

√
2) + 2 log2(1/ε). (21)

We therefore have k2 6 k for all k satisfying (21). It follows that

k2 = O(log(1/ε)), (22)

and therefore, using (19), also
E(j0) = O(log(1/ε)). (23)

To finish the proof of part (a), recall that j0 was defined to be the smallest index such that nj0 is prime. This
ensures that step 2(b) of the algorithm succeeds for the candidate uj0 . Furthermore, we have n ≡ 1 (mod 8) by
Lemma 8.4, and therefore the equation t†t = ξ has a solution by Proposition C.26. Hence the remaining steps of the
algorithm also succeed for uj0 .

Now let r be the number of non-equivalent solutions of the approximate synthesis problem of T -count strictly
less than m. As noted above, any such solution U is of the form (12). Then the least denominator exponent of u
is strictly smaller than kj0 , so that u = uj for some j < j0. In this way, each of the r non-equivalent solutions is
mapped to a different index j < j0. It follows that r < j0, and hence E(r) 6 E(j0) = O(log(1/ε)), as was to be
shown.

(b) Let U ′ be an optimal solution of the approximate synthesis problem, and let U ′′ be optimal among the solutions
that are not equivalent to U ′. Let u′ and u′′ be as in (15), and let k′, k′′ be the least denominator exponents of u′

and u′′, respectively, with k′ 6 k′′. Let k2 and j0 be as in the proof of part (a). Note that, by definition, k2 6 k′′. Let
k be the least denominator exponent of the solution of the approximate synthesis problem found by the algorithm.
Then k 6 kj0 . Using (17), we have

k 6 kj0 6 k2 + 2(1 + log2 j0) 6 k′′ + 2(1 + log2 j0).
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Recall from Lemma 7.3 that 2k − 2 6 m 6 2k, and similarly 2k′′ − 2 6 m′′ 6 2k′′. Hence m 6 2k 6 2k′′ + 4(1 +
log2 j0) 6 m′′ +6+ 4 log2 j0. These calculations apply to any one run of the algorithm. Taking expected values over
many randomized runs, we therefore have

E(m) 6 m′′ + 6 + 4E(log2 j0) 6 m′′ + 6 + 4 log2E(j0). (24)

Note that we have used the law E(log j0) 6 log(E(j0)), which holds because log is a concave function. Combining
(24) with (23), we therefore have the desired result:

E(m) = m′′ +O(log(log(1/ε))). (25)

Remark 8.9. In the near-optimal case of Proposition 8.8, our algorithm can additionally be used to compute a firm
lower bound for the T -count of any solution of the approximate synthesis problem for the given θ and ε. Namely, the
algorithm can consider the first candidate uj for which the Diophantine equation solver does not fail — i.e., either it
solves the equation or it times out. If kj is the least denominator exponent of uj, then a lower bound for the T -count
is 2kj − 2 (or 0 when kj = 0). Note that this is not the usual information-theoretic lower bound that applies in the
average case, but an actual lower bound for each particular problem instance.

8.3 Worst-case behavior

In [14], an approximate synthesis algorithms for z-rotations was given that always returns a solution of T -count at
most K + 4 log2(1/ε), where K is a constant approximately equal to 10. We note that Algorithm 7.6 enumerates
all the solutions of the grid problem for the ε-region, whereas the algorithm of [14] only enumerates a subset of the
solutions. Also, Algorithm 7.6 can solve the Diophantine equation in all the cases in which the algorithm of [14] can
solve it. It follows that in all cases, the solution returned by Algorithm 7.6 is at least as good as that returned by
the algorithm of [14]. In particular, Algorithm 7.6 always returns a solution of T -count at most K + 4 log2(1/ε).
Moreover, it is known from [14, Section 9], that there are certain combinations of θ and ε for which this T -count is
actually optimal to within a constant number of gates. Thus our algorithm’s performance is K + 4 log2(1/ε) in the
worst case, but this worst case behavior is only achieved in those cases where it is actually optimal.

One may ask whether a more precise statement can be made about the angles θ for which this worst-case behavior
occurs. We believe that this is indeed possible. Let Q(

√
2) be the field of rational numbers extended with

√
2.

Conjecture 8.10. Fix an angle θ, and consider the T -count as ε→ 0. Then the T -count behaves as K+4 log2(1/ε)
when tan θ

2 ∈ Q(
√
2), and as K + 3 log2(1/ε) otherwise.

Giving a rigorous proof of this conjecture is beyond the scope of this paper and probably difficult, but we will
sketch a plausibility argument. We believe that the first part, showing that the T -count behaves no better than
K + 4 log2(1/ε) when tan θ

2 ∈ Q(
√
2), could be made rigorous without too much difficulty. In addition, we also offer

experimental evidence supporting Conjecture 8.10 in Section 10.
The essential point is this. Consider the grid associated to a convex bounded set B as in Figure 5. Note that the

slope r of any line passing through two grid points satisfies r ∈ Q(
√
2) (unless the line is vertical, in which case the

slope is infinite). Conversely, fix some real number r. Let us call a line of slope r a grid line if it passes through at
least one grid point. We first wish to show that if r ∈ Q(

√
2), then the set of grid lines is discrete, i.e., there is a

minimum distance between each pair of grid lines. To see why this is so, note that r ∈ 1
nZ[

√
2] for some n ∈ Z. Each

grid line is uniquely determined by its y-intercept, i.e., its point of intersection with the y-axis. Consider a grid line
with y-intercept b, and passing through the grid point u ∈ Z[ω]. Using Lemma 5.5, we can assume without loss of
generality that u = α+βi, where α, β ∈ Z[

√
2]; the case where u = α+βi+ω is analogous. Then we have b = β−rα,

and therefore b ∈ 1
nZ[

√
2]. Moreover, the line with y-intercept b• and slope r• contains u•, and therefore intersects

B. Since B is bounded, it follows that b• lies in a certain finite interval B′ of real numbers determined only by B
and r•. The two relations b ∈ 1

nZ[
√
2] and b• ∈ B′ determine a one-dimensional grid problem, and therefore the set

of solutions is discrete. This shows that the set of grid lines is discrete when r ∈ Q(
√
2).

Recall from (14) that for given θ and ε, the ε-region is bounded by a circular arc and a straight line. The slope
of the straight line is r = −1/ tan θ

2 , and is independent of ε. If r ∈ Q(
√
2), then the ε-region is “parallel” to the grid

lines of slope r, as shown in Figure 5(a). In this case, the number of solutions to the grid problem is not dominated
by the area, but by the width of the ε-region. More specifically, for the scaled grid problem of Algorithm 7.6 to have
a solution for a given denominator exponent k, it is a necessary condition that the ε-region intersects some grid line.

The distance between the grid lines scales as 1
2k
, and the width of the ε-region is ε2

2 , and therefore, we expect the
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(a)

Rε

β

α

b
r

u

(b)

u•

r•

B

b•

B′

Figure 5: Part (a) shows the grid points and grid lines (of slope r ∈ Q(
√
2)) for a convex set B. Part (b) shows the

set B and the dual grid lines (of slope r•), all of whose y-intercepts lie in an interval B′.

ε-region to intersect at least one grid line when 1
2k 6 cε2, for some constant c. Equivalently k > K + 2 log 1

ε . By

Lemmas 7.3 and 9.7, the T -count scales as 2k, i.e., K + 4 log 1
ε .

On the other hand, if r 6∈ Q(
√
2), then the set of grid lines is dense, and in this case, it appears that the solution

to the grid problem is dominated by the area of the ε-region. In this case, the number of grid points per area scales
as 4k, and the area of the ε-region is proportional to ε3; hence we expect a grid point to fall in the ε-region when
1
4k 6 cε3, or equivalently, 2k > K + 3 log 1

ε , yielding the typical T -count of K + 3 log 1
ε in that case.

8.4 Time complexity of the algorithm

Proposition 8.11 (Complexity). Algorithm 7.6 runs in expected time O(polylog(1/ε)). This is true whether or not
a factorization oracle is used.

Proof. Let M be the uprightness of the ε-region. Let j0 be the average number of candidates tried in steps 2(a)–(c)
of the algorithm, and let kj0 be the least denominator exponent of the final candidate. Let n be the largest integer
that appears in step 2(a) of the algorithm.

By Proposition 5.22, step 1 of the algorithm requires O(log(1/M)) arithmetic operations, plus a constant number
per candidate. For each of the j0 candidates, step 2(a) requires O(1) arithmetic operations. Step 2(b) also requires
O(1) arithmetic operations, either due to the use of a factoring oracle, or else, because we can put an arbitrary fixed
bound on the amount of effort invested in factoring any given integer. At minimum, this will succeed when the
integer in question is prime, which is sufficient for the estimates of Proposition 8.8. Step 2(c) requires O(polylog(n))
operations by Theorem 6.2. Finally, step 3 requires O(kj0 ) arithmetic operations; see, e.g., Theorem 5.1 of [7]. So
the total expected number of arithmetic operations is

O(log(1/M)) + j0 ·O(polylog(n)) +O(kj0 ). (26)

Recall that the ε-region Rε, shown in (14), contains a disk of radius ε2/4. Hence, area(Rε) >
π
16ε

4. On the other
hand, the square [−1, 1]× [−1, 1] is a (not very tight) bounding box for Rε. It follows that

M = up(Rε) =
area(Rε)

area(BBox(Rε))
= Ω(ε4),

hence log(1/M) = O(log(1/ε)). From (23), the expected value of j0 is O(log(1/ε)). Combining (17) with (22), we
therefore have

kj0 6 k2 + 2(1 + log2 j0) = O(log(1/ε)) +O(log(log(1/ε))) = O(log(1/ε)).

From Lemma 8.5, and the fact that candidates are enumerated in order of increasing denominator exponent, we have
n 6 4kj0 , hence

polylog(n) = O(poly(kj0 )) = O(polylog(1/ε)).

Combining all of these estimates with (26), the expected number of arithmetic operations for the algorithm is
O(polylog(1/ε)). Moreover, each individual arithmetic operation can be performed with precision O(log(1/ε)),
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taking time O(polylog(1/ε)). Therefore the total expected time complexity of the algorithm is O(polylog(1/ε)), as
desired.

9 Approximation up to a phase

So far, we have considered the problem of approximate synthesis “on the nose”, i.e., the operator U in Definition 7.1
was literally required to approximate Rz(θ) in the operator norm. However, it is well-known that global phases have
no observable effect in quantum mechanics, so in quantum computing, it is also common to consider the problem of
approximate synthesis “up to a phase”. This is made precise in the following definition.

Definition 9.1. Given θ and some ε > 0, the approximate synthesis problem for z-rotations up to a phase is to find
an operator U expressible in the single-qubit Clifford+T gate set, and a unit scalar λ, such that

‖Rz(θ) − λU‖ 6 ε. (27)

Moreover, it is desirable to find U of smallest possible T -count. As before, the norm in (27) is the operator norm.

In this section, we will give a version of Algorithm 7.6 that optimally solves the approximate synthesis problem
up to a phase. The central insight is that it is in fact sufficient to restrict λ to only two possible phases, namely
λ = 1 and λ =

√
ω = eiπ/8. A similar technique was also used in [11].

First, note that if W is a unitary 2 × 2-matrix and detW = 1, then trW is real. This is obvious, because
detW = 1 ensures that the two eigenvalues of W are each other’s complex conjugates.

Lemma 9.2. Let W be a unitary 2× 2-matrix, and assume that detW = 1 and trW > 0. Then for all unit scalars
λ, we have

‖I −W‖ 6 ‖I − λW‖.

Proof. We may assume without loss of generality that W is diagonal. Since detW = 1, we can write

W =

(

eiφ 0
0 e−iφ

)

for some φ. By symmetry, we can assume without loss of generality that 0 6 φ 6 π. Since trW > 0, we have
φ 6 π/2. Now consider a unit scalar λ = eiψ, where −π 6 ψ 6 π. Then ‖I−λW‖ = max{|1− ei(ψ+φ)|, |1− ei(ψ−φ)|}
and ‖I −W‖ = |1 − eiφ|. If ψ > 0, then |1− eiφ| 6 |1 − ei(ψ+φ)|. Similarly, if ψ 6 0, then |1 − eiφ| 6 |1 − ei(ψ−φ)|.
In either case, we have ‖I −W‖ 6 ‖I − λW‖, as claimed.

Lemma 9.3. Fix ε, a unitary operator R with detR = 1, and a Clifford+T operator U . The following are equivalent:

(1) There exists a unit scalar λ such that
‖R− λU‖ 6 ε;

(2) There exists n ∈ Z such that
‖R− einπ/8U‖ 6 ε.

Proof. It is obvious that (2) implies (1). For the opposite implication, first note that, because U is a Clifford+T
operator, we have detU = ωk for some k ∈ Z, and therefore det(R−1U) = ωk. Let V = e−ikπ/8R−1U , so that
detV = 1. If tr V > 0, let W = V ; otherwise, let W = −V . Either way, we have W = einπ/8R−1U , where n ∈ Z,
and detW = 1, trW > 0. Let λ′ = e−inπ/8λ. By Lemma 9.2, we have

‖I −W‖ 6 ‖I − λ′W‖
=⇒ ‖I − einπ/8R−1U‖ 6 ‖I − λ′einπ/8R−1U‖
=⇒ ‖R− einπ/8U‖ 6 ‖R− λ′einπ/8U‖,
=⇒ ‖R− einπ/8U‖ 6 ‖R− λU‖,

which implies the desired claim.

Remark 9.4. A version of Lemma 9.3 also applies to gate sets other than Clifford+T , as long as the gate set has
discrete determinants.

Corollary 9.5. In Definition 9.1, it suffices without loss of generality to consider only the two scalars λ = 1 and
λ = eiπ/8.
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Proof. Let U be a Clifford+T operator satisfying (27) for some unit scalar λ. By Lemma 9.3, there exists a λ of the
form einπ/8 also satisfying (27). Then we can write λ = ωkλ′, where k ∈ Z and λ′ ∈ {1, eiπ/8}. Letting U ′ = ωkU ,
we have λ′U ′ = λU , and therefore

‖Rz(θ)− λ′U ′‖ 6 ε,

as claimed. Moreover, since ω = eiπ/4 is a Clifford operator, U and U ′ have the same T -count.

To solve the approximate synthesis problem up to a phase, we therefore need an algorithm for finding optimal
solutions of (27) in case λ = 1 and λ = eiπ/8 For λ = 1, this is of course just Algorithm 7.6. So all that remains to
do is to find an algorithm for solving

‖Rz(θ) − eiπ/8U‖ 6 ε. (28)

We use a sequence of steps very similar to those of Section 7.1 to reduce this to a grid problem and a Diophantine
equation. We first consider the form of U .

Lemma 9.6. If ε < |1− eiπ/8|, then all solutions of (28) have the form

U =

(

u −t†ω−1

t u†ω−1

)

. (29)

Proof. This is completely analogous to the proof of Lemma 7.2, using eiπ/8U in place of U .

Recall that δ = 1 + ω, and note that δ
|δ| = eiπ/8. Also note that δω−1 = δ†, and that the element δ is invertible

in D[ω] with inverse δ−1 = (ω − i)/
√
2. Suppose that U is of the form (29). Let u′ = δu and t′ = δt. We have:

‖Rz(θ)− eiπ/8U‖ =

∥

∥

∥

∥

Rz(θ)−
δ

|δ|

(

u −t†ω−1

t u†ω−1

)∥

∥

∥

∥

=

∥

∥

∥

∥

Rz(θ)−
1

|δ|

(

δu −δ†t†
δt δ†u†

)∥

∥

∥

∥

=

∥

∥

∥

∥

Rz(θ)−
1

|δ|

(

u′ −t′†
t′ u′†

)∥

∥

∥

∥

.

Recall the definition of the ε-region Rε from (14). Using exactly the same argument as in Section 7, it follows that

(28) holds if and only if u′

|δ| ∈ Rε, i.e., u
′ ∈ |δ|Rε.

As before, in order for U to be unitary, of course it must satisfy u†u+ t†t = 1, and a necessary condition for this is
u, u• ∈ D. The latter condition can be equivalently re-expressed in terms of u′ by requiring u′ ∈ |δ| D and u′• ∈ |δ•| D.
Therefore, finding solutions to (28) of the form (29) reduces to the two-dimensional grid problem u′ ∈ |δ|Rε and
u′• ∈ |δ•| D, together with the usual Diophantine equation u†u + t†t = 1. The last remaining piece of the puzzle is
to compute the T -count of U , and in particular, to ensure that potential solutions are found in order of increasing
T -count.

Lemma 9.7. Let U be a Clifford+T operator of the form (29), and let k be the least denominator exponent of
u′ = δu. Then the T -count of U is either 2k − 1 or 2k + 1. Moreover, if k > 0 and U has T -count 2k + 1, then
U ′ = TUT † has T -count 2k − 1.

Proof. This can be proved by a tedious but easy induction, analogous to Lemma 7.3.

We therefore arrive at the following algorithm for solving (28). Here we assume ε < |1−eiπ/8|, so that Lemma 9.6
applies.

Algorithm 9.8. Given θ and ε, let A = |δ|Rε, and let B = |δ•| D.

1. Use Proposition 5.22 to enumerate the infinite sequence of solutions to the scaled grid problem u′ ∈ A and
u′• ∈ B, where u′ ∈ D[ω], in the order of increasing least denominator exponent k.

2. For each such solution u′:

(a) Let u = u′/δ, let ξ = 1− u†u ∈ D[
√
2], and write ξ•ξ = n

2ℓ
, where n ∈ Z and ℓ > 0 is minimal.

(b) Attempt to find a prime factorization of n. If n 6= 0 but no prime factorization is found, skip step 2(c)
and continue with the next u′.

20



(c) Use the algorithm of Theorem 6.2 to solve the equation t†t = ξ. If a solution t exists, go to step 3;
otherwise, continue with the next u′.

3. Define U as in equation (29), let U ′ = TUT †, and use the exact synthesis algorithm of [10] to find a Clifford+T
circuit implementing either U or U ′, whichever has smaller T -count. Output this circuit and stop.

Algorithm 9.8 is optimal in the presence of a factoring oracle, and near-optimal in the absence of a factoring oracle,
in the same sense as Algorithm 7.6. Its expected time complexity is O(polylog(1/ε)). The proofs are completely
analogous to those of Section 8. We then arrive at the following composite algorithm for the approximate synthesis
problem for z-rotations up to a phase:

Algorithm 9.9 (Approximate synthesis up to a phase). Given θ and ε, run both Algorithms 7.6 and 9.8, and return
whichever circuit has the smaller T -count.

Proposition 9.10 (Correctness, time complexity, and optimality). Algorithm 9.9 yields a valid solution to the
approximate synthesis problem up to a phase. Its expected running time is O(polylog(1/ε)). In the presence of
a factoring oracle, the algorithm is optimal, i.e., the returned circuit has the smallest T -count of any single-qubit
Clifford+T circuit approximating Rz(θ) up to ε and up to a phase. Moreover, in the absence of a factoring oracle,
the algorithm is near-optimal in the following sense. Let m be the T -count of the solution found. Then:

(a) The approximate synthesis problem has an expected number of at most O(log(1/ε)) non-equivalent solutions
with T -count less than m.

(b) The expected value of m is m′′′ + O(log(log(1/ε))), where m′′′ is the T -count of the third-to-optimal solution
(up to equivalence) of the approximate synthesis problem up to a phase.

Proof. The correctness and time complexity of Algorithm 9.9 follows from that of Algorithms 7.6 and 9.8. The
optimality results follow from those of Algorithms 7.6 and 9.8, keeping in mind that Algorithm 7.6 finds an optimal
(or near-optimal) solution for the phase λ = 1, Algorithm 9.8 finds an optimal (or near-optimal) solution for the
phase λ = eiπ/8, and by Corollary 9.5, these are the only two phases that need to be considered.

The only subtlety that must be pointed out is that in part (b) of the near-optimality, we use the T -count of the
third-to-optimal solution, rather than the second-to-optimal one as in Proposition 8.8. This is because the optimal
and second-to-optimal solutions may belong to Algorithms 7.6 and 9.8, respectively, so that it may not be until the
third-to-optimal solution that the near-optimality result of either Algorithm 7.6 or Algorithm 9.8 can be invoked.

Remark 9.11. Algorithms 7.6 and 9.8 share the same ε-region up to scaling, and therefore the uprightness computation
of Theorem 5.16 only needs to be done once.

Remark 9.12. By Lemmas 7.3 and 9.7, Algorithm 7.6 always produces circuits with even T -count, and Algorithm 9.8
always produces circuits with odd T -count. Instead of running both algorithms to completion, it is possible to
interleave the two algorithms, so that all potential solutions are considered in order of increasing T -count. This is a
slight optimization which does not, however, affect the asymptotic time complexity.

10 Experimental results

We implemented Algorithm 7.6 in the programming language Haskell; the implementation is available from [13].
Running on a single core of a 3.4GHz Intel i5-3570 CPU, we approximated the operator Rz(π/128) up to various
ε. The results are summarized in the leftmost four columns of Table 1. For example, here is the approximation of
Rz(π/128) up to ε = 10−10:

u =
1√
252

(−26687414ω3 + 10541729ω2 + 10614512ω+ 40727366)

t =
1√
252

(30805761ω3 − 23432014ω2 + 2332111ω+ 20133911)

U = HTSHTSHTSHTHTHTHTSHTHTSHTSHTSHTHTHTSHTSHTHTHTSHTHTSHTHTHTHTHTHTHTSHTSHT
SHTHTSHTHTSHTHTHTHTSHTHTHTSHTHTSHTHTHTHTSHTSHTSHTHTHTSHTSHTSHTSHTHTSHTS
HTSHTSHTHTSHTHTSHTSHTHTHTHTHTSHTHTHTHTSHTSHTSHTHTSHTSHTHTHTSHTHTHTHTHTS

HTSHTHTHTHTHTSHTHTHTHTSHTHTHTHTHTHTHω7

In addition to ε, the T -count of the computed operator, and the actual error, we have also reported the lower bound
on the T -count, which was computed according to Remark 8.9. It can be seen that the actual T -count achieved by
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ε T -count T -bound Actual error Runtime Candidates Time/Candidate
10−10 102 > 102 0.91180 · 10−10 0.0190s 3.0 0.0064s
10−20 200 > 198 0.87670 · 10−20 0.0433s 7.0 0.0061s
10−30 298 > 298 0.99836 · 10−30 0.0600s 7.0 0.0085s
10−40 402 > 400 0.77378 · 10−40 0.0976s 11.7 0.0084s
10−50 500 > 500 0.82008 · 10−50 0.1353s 20.3 0.0067s
10−60 602 > 596 0.61151 · 10−60 0.1548s 16.0 0.0097s
10−70 702 > 698 0.40936 · 10−70 0.1931s 20.9 0.0093s
10−80 804 > 794 0.92372 · 10−80 0.2402s 27.2 0.0088s
10−90 898 > 898 0.96607 · 10−90 0.2696s 22.2 0.0121s
10−100 1000 > 998 0.78879 · 10−100 0.3443s 31.2 0.0110s
10−200 1998 > 1994 0.73266 · 10−200 1.1423s 62.3 0.0183s
10−500 4990 > 4986 0.67156 · 10−500 8.6509s 170.4 0.0508s
10−1000 9974 > 9966 0.80457 · 10−1000 47.9300s 270.4 0.1773s
10−2000 19942 > 19934 0.88272 · 10−2000 383.1024s 556.7 0.6881s

Table 1: Experimental results. The first four columns report the T -count, computed lower bound on the T -count,
and the actual error for approximating the operator Rz(π/128) up to various ε. The remaining columns report the
runtime for each ε, averaged over 50 independent runs of Algorithm 7.6 with random angles θ. The runtime is further
broken down into average number of candidates tried per run of the algorithm, and time spent per candidate.

ε = 10−100 ε = 10−200 ε = 10−300 ε = 10−400 ε = 10−500

θ = 2 tan−1(2 + 3
√
2) 1320 2646 3976 5306 6636

θ = 2 tan−1(5/3) 1314 2646 3966 5306 6636

θ = 2 tan−1((2 + 7
√
2)/5) 1308 2642 3968 5294 6630

θ = 2 tan−1(2 + 3
√
3) 1002 1996 2994 3992 4990

θ = 2 tan−1(
√
5) 998 1998 2996 3990 4990

θ = 2 tan−1(1 + 11
√
7) 1000 1998 2996 3992 4990

4 log2(1/ε) 1329 2658 3986 5315 6644
3 log2(1/ε) 997 1993 2990 3986 4983

Table 2: Worst-case and typical T -counts. The top part of the table shows the T -counts for various combinations of
θ and ε. The bottom part of the table shows the actual values of 4 log2(1/ε) and 3 log2(1/ε) for each ε, rounded to
the closest integer. As predicted by Conjecture 8.10, the T -counts are close to 4 log2(1/ε) when θ = 2 tan−1(r), for
r ∈ Q(

√
2), and close to 3 log2(1/ε) otherwise.

the algorithm exceeds this lower bound by at most a very small amount, which is consistent with O(log(log(1/ε)))
as predicted by Proposition 8.8(b). This excess could be further reduced by increasing the amount of effort spent on
factoring, and will become zero in the presence of a factoring oracle.

Table 1 also shows the runtime as a function of ε. Since the enumeration of solutions to the grid problem in
the algorithm is deterministic, the algorithm tends to find the same one or two solutions each time it is run with
the same parameters. For this reason, we have averaged the runtimes in Table 1 over 50 runs of the algorithm with
random angles θ, for each ε. As shown in Table 1, we were able to achieve approximations up to ε = 10−1000 with
a T -count of under 10000 in less than 50 seconds on average. This compares to a T -count of 13300 and an average
runtime of 504.8 seconds reported in [14] on the same hardware. We also note that the experimental runtimes in
Table 1 are consistent with the polynomial runtime predicted by Proposition 8.11, and appear to be O(log3(1/ε)).

Table 2 shows T -counts as a function of θ and ε. As predicted by Conjecture 8.10, the T -counts are close to
4 log2(1/ε) when θ = 2 tan−1(r), for r ∈ Q(

√
2), and close to 3 log2(1/ε) otherwise.
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11 Conclusion

We have presented a fast new probabilistic algorithm for approximating arbitrary single-qubit z-rotations by Clif-
ford+T circuits. Our algorithm is optimal in the presence of a factoring oracle, i.e., it finds the shortest possible
circuit whatsoever for the given problem instance. In the absence of a factoring oracle, our algorithm is still nearly
optimal. In particular, no quantum computer is required to run our algorithm. The main technical innovation of this
paper is a new efficient algorithm for solving two-dimensional grid problems, such as the ones that arise in candidate
selection for approximate synthesis. We solved this problem by an iterative method that successively increases the
uprightness of a pair of convex sets until the problem is in a form where it can be solved directly.

It is an interesting question whether a similar algorithm can be found for giving optimal or near-optimal ap-
proximations of arbitrary single-qubit operators. In its current form, our method only applies to z-rotations. Since
any arbitrary single-qubit operator can be decomposed into three z-rotations using Euler angles, our algorithm can
currently achieve a T -count of 9 log2(1/ε) + O(log(log(1/ε))). (Interestingly, the average case gate complexity can
always be achieved in this situation, because if the operator to be approximated happens to exhibit worst-case be-
havior, we can always change it by multiplying it by a small number of random Clifford+T gates). However, the
information-theoretic lower bound in this situation remainsK+3 log2(1/ε), so there is still potential for improvement.
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A Proof of Theorem 5.16

This appendix contains a proof of Theorem 5.16. We start by reformulating the problem in more convenient terms.
Recall that the notion of uprightness introduced in Section 5.2 was defined for an arbitrary bounded convex subset
of R2. If the set in question is an ellipse, we can expand the definition of uprightness into an explicit expression.
Recall from Definition 5.15 that an ellipse centered at p can be written as E = {u ∈ R2 | (u − p)†D(u − p) 6 1},
where D is a positive definite matrix whose entries are, e.g., as follows:

D =

[

a b
b d

]

.

We can compute the area of E and the area of its bounding box using D. Indeed, we have area(E) = π/
√

det(D) and

area(BBox(E)) = 4
√
ad/det(D). Substituting these in Definition 5.7 yields the desired expression for uprightness:

up(E) =
area(E)

area(BBox(E))
=
π

4

√

det(D)

ad
. E

BBox(E)

(30)

It follows that the uprightness of E is invariant under translation and scalar multiplication.
Recall that λ =

√
2 + 1. The matrix D corresponding to an ellipse E has determinant 1 if and only if it can be

written in the form

D =

[

eλ−z b
b eλz

]

(31)

for some b, e, z ∈ R with e > 0 and e2 = b2 + 1. In this case, the definition of uprightness (30) simplifies to

up(E) =
π

4e2
=

π

4
√
b2 + 1

. (32)
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Equivalently, if up(E) =M , then

b2 =
π2

16M2
− 1. (33)

Since Theorem 5.16 deals with pairs of ellipses, it is convenient to introduce the following terminology for dis-
cussing pairs of matrices.

Definition A.1. A state is a pair of real symmetric positive definite matrices of determinant 1. Given a state (D,∆)
with

D =

[

eλ−z b
b eλz

]

∆ =

[

ελ−ζ β
β ελζ

]

(34)

we define its skew as Skew(D,∆) = b2 + β2 and its bias as Bias(D,∆) = ζ − z.

Note that the skew of a state is small if and only if both b2 and β2 are small, which happens, by (32), if and only
if the ellipses corresponding to D and ∆ both have large uprightness. So our strategy for increasing the uprightness
will be to reduce the skew. In what follows, we use (D,∆) to denote an arbitrary state and always assume that the
entries of D and ∆ are given as in (34). For future reference, we record here another useful property of states.

Remark A.2. If (D,∆) is a state with b > 0, then −be 6 −b2. Indeed:

e2 = b2 + 1 =⇒ e2 > b2 =⇒ e > b =⇒ − be 6 −b2.

Similarly, if b 6 0, then be 6 −b2. Analogous inequalities also hold for β and ε.

The action of a grid operator on an ellipse can be adapted to states in a natural way, provided that the operator
is special.

Definition A.3. The action of special grid operators on states is defined as follows. Here, G† denotes the transpose
of G, and G• is defined by applying (−)• separately to each matrix entry, as in Remark 5.12.

(D,∆) ·G = (G†DG,G•†∆G•).

Lemma A.4. Let (D,∆) be a state, and let A and B be the ellipses centered at the origin that are defined by D and
∆, respectively. Then the ellipses G(A) and G•(B) are defined by the matrices D′ and ∆′, where

(D′,∆′) = (D,∆) ·G−1

Proof. We have
G(A) = {G(u) ∈ R2 | u†Du 6 1}

= {v ∈ R2 | (G−1v)†D(G−1v) 6 1}
= {v ∈ R2 | v†(G−1)†DG−1v 6 1},

so the ellipse G(A) is defined by the positive operator D′ = (G−1)†DG−1. The proof for G•(B) is similar.

The main ingredient in the proof of Theorem 5.16 is the following Step Lemma.

Lemma A.5 (Step Lemma). For any state (D,∆), if Skew(D,∆) > 15, then there exists a special grid operator G
such that Skew((D,∆) ·G) 6 0.9 Skew(D,∆). Moreover, G can be computed using a constant number of arithmetic
operations.

Before proving the Step Lemma, we show how it can be used to derive Theorem 5.16, whose statement we
reproduce here.

Theorem. Suppose A,B ⊆ R2 are ellipses. Then there exists a grid operator G such that G(A) and G•(B) are
1/6-upright. Moreover, if A and B are M -upright, then G can be efficiently computed in O(log(1/M)) arithmetic
operations.

Proof. Let D and ∆ be the matrices defining A and B respectively, in the sense of Definition 5.15. Since uprightness
is invariant under translations and scaling, we may without loss of generality assume that both ellipses are centered
at the origin, and that detD = det∆ = 1.

The pair (D,∆) is a state. By applying Lemma A.5 repeatedly, we get grid operators G1, . . . , Gn such that:

Skew((D,∆) ·G1 . . . Gn) 6 15. (35)
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R =
1√
2

[

1 −1
1 1

]

A =

[

1 −2
0 1

]

B =

[

1
√
2

0 1

]

K =
1√
2

[

−λ−1 −1
λ 1

]

X =

[

0 1
1 0

]

Z =

[

1 0
0 −1

]

Figure 6: List of useful grid operators.

Now let (D′,∆′) = (D,∆) ·G1 . . . Gn and set G = (G1 · · ·Gn)−1. By Lemma A.4, the ellipses G(A) and G•(B) are
defined by the matrices D′ and ∆′, respectively. Let b and β be the anti-diagonal entries of the matrices D′ and ∆′,
respectively. We have:

b2 + β2 = Skew(D′,∆′) = Skew((D,∆) ·G−1) = Skew((D,∆) ·G1 . . .Gn) 6 15,

hence b2 6 15 and β2 6 15. Using (32), we get

up(G(A)) =
π

4
√
b2 + 1

>
π

4
√
16

> 1/6 and up(G•(B)) =
π

4
√

β2 + 1
>

π

4
√
16

> 1/6,

as desired.
To bound the number of operations, note that each application of Gj reduces the skew by at least 10 percent.

Therefore, the number n in (35) satisfies n 6 log0.9(15/Skew(D,∆)) = O(log(Skew(D,∆))). Using (33), we have

log(Skew(D,∆)) = log(b2 + β2) 6 log((
π2

16M2
− 1) + (

π2

16M2
− 1)) = O(log(1/M)).

It follows that the computation of G requires O(log(1/M)) applications of the Step Lemma, each of which requires
a constant number of arithmetic operations, proving the final claim of the theorem.

The remainder of this appendix is devoted to proving the Step Lemma. To each state, we associate the pair
(z, ζ). The proof of the Step Lemma is essentially a case distinction on the location of the pair (z, ζ) in the plane.
We find coverings of the plane with the property that if the point (z, ζ) belongs to some region O of our covering,
then it is easy to compute a special grid operator G such that Skew((D,∆) ·G) 6 0.9 Skew(D,∆). The relevant grid
operators are given in Figure 6. Each one of the next 5 subsections is dedicated to a particular region of the plane.
We prove the Step Lemma in Section A.6.

A.1 The Shift Lemma

In this section, we consider states (D,∆) such that |Bias(D,∆)| > 1. Any such state can be “shifted” to a state
(D′,∆′) of equal skew but with |Bias(D′,∆′)| 6 1.

Definition A.6. The shift operators σ and τ are defined by:

σ =
√
λ−1

[

λ 0
0 1

]

, τ =
√
λ−1

[

1 0
0 −λ

]

Even though σ and τ are not grid operators, we can use them to define an operation on states called a shift by
k. By abuse of notation, we write this operation as an action.

Definition A.7. Given a state (D,∆) and k ∈ Z, the k-shift of (D,∆) is defined as:

(D,∆) · Shiftk = (σkDσk, τk∆τk).

The notation (D,∆) · Shiftk is justified by the following lemma.

Lemma A.8. The shift of a state is a state and moreover:

Skew((D,∆) · Shiftk) = Skew(D,∆) and Bias((D,∆) · Shiftk) = Bias(D,∆) + 2k
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Proof. Compute (D,∆) · Shiftk:

(D,∆) · Shiftk = (σkDσk, τk∆τk)

= (σk
[

eλ−z b
b eλz

]

σk, τk
[

ελ−ζ β
β ελζ

]

τk)

= (

[

eλ−z+k b
b eλz−k

]

,

[

ελ−ζ−k (−1)kβ
(−1)kβ ελζ+k

]

)

The resulting matrices are clearly symmetric and positive definite. Moreover, since σk and τk have determinant ±1,
both σkDσk and τk∆τk have determinant 1. Finally:

• Skew((D,∆) · Shiftk) = b2 + ((−1)kβ)2 = b2 + β2 = Skew(D,∆) and

• Bias((D,∆) · Shiftk) = (ζ + k)− (z − k) = Bias(D,∆) + 2k,

which completes the proof.

For every special grid operator G, there is a special grid operator G′ whose action on a state corresponds to
shifting the state by k, applying G and then shifting the state by −k.
Lemma A.9. If G is a special grid operator and k ∈ Z, then G′ = σkGσk is a special grid operator and moreover
G′• = (−τ)kG•τk.

Proof. It suffices to show this for k = 1. Suppose G =

[

w x
y z

]

is a special grid operator and note that:

G′ = σGσ =

[

λw x
y λ−1z

]

=

[

λ−1 0
0 λ−1

] [

λ 0
0 1

]

G

[

λ 0
0 1

]

.

Since all the factors in the above product are grid operators, the result is also a grid operator. Moreover det(σGσ) =
det(G) = 1 so that σGσ is special. Finally:

G′• = (σGσ)• =

[

λ•w• x•

y• (λ−1)•z•

]

=

[

−λ−1w• x•

y• −λz•
]

= −τG•τ.

Lemma A.10. If G is a grid operator, then:

(((D,∆) · Shiftk) ·G) · Shiftk = (D,∆) · (σkGσk).
Proof. Write G′ = σkGσk. Simple computation then yields the result:

(((D,∆) · Shiftk) ·G) · Shiftk = ((σkDσk, τk∆τk) ·G) · Shiftk
= (G†σkDσkG, G•†τk∆τkG•) · Shiftk
= (σkG†σkDσkGσk, τkG•†τk∆τkG•τk)
= (σkG†σkDσkGσk, ((−τ)kG•†τk)∆((−τ)kG•τk))
= (G′†DG′, G′•†∆G′•)
= (D,∆) ·G′

= (D,∆) · (σkGσk).

Shifts allow us to consider only states (D,∆) with Bias(D,∆) ∈ [−1, 1] in the proof of the Step Lemma.

Lemma A.11. If the Step Lemma holds for all states (D,∆) with Bias(D,∆) ∈ [−1, 1], then it holds for all states.

Proof. Let (D,∆) be some state with Skew(D,∆) > 15. Let x = Bias(D,∆) and set k = ⌊ 1−x
2 ⌋. Then by Lemma A.8,

we have Skew((D,∆) · Shiftk) = Skew(D,∆) and Bias((D,∆) · Shiftk) ∈ [−1, 1]. Then by assumption, there exists
a special grid operator G such that Skew(((D,∆) · Shiftk) · G) 6 0.9 Skew((D,∆) · Shiftk). Now by Lemma A.9 we
know that G′ = σk G σk is a special grid operator. Moreover, by Lemma A.10 and A.8, we have:

Skew((D,∆) ·G′) = Skew((((D,∆) · Shiftk) ·G) · Shiftk)
= Skew(((D,∆) · Shiftk) ·G)
6 0.9 Skew((D,∆) · Shiftk)
= 0.9 Skew(D,∆),

which completes the proof.
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A.2 The R Lemma

Definition A.12. The hyperbolic sine in base λ is defined as:

sinhλ(x) =
λx − λ−x

2
.

Lemma A.13. Recall the operator R from Figure 6. If (D,∆) is such that Skew(D,∆) > 15, and such that
−0.8 6 z 6 0.8 and −0.8 6 ζ 6 0.8, then:

Skew((D,∆) ·R) 6 0.9 Skew(D,∆).

Proof. Compute the action of R on (D,∆):

R†DR =
1

2

[

1 1
−1 1

] [

eλ−z b
b eλz

] [

1 −1
1 1

]

=

[

. . . e(λz−λ−z)
2

e(λz−λ−z)
2 . . .

]

=

[

. . . e sinhλ(z)
e sinhλ(z) . . .

]

,

R•†∆R• =
1

2

[

−1 −1
1 −1

] [

ελ−ζ β
β ελζ

] [

−1 1
−1 −1

]

=

[

. . . ε(λζ−λ−ζ)
2

ε(λζ−λ−ζ)
2 . . .

]

=

[

. . . ε sinhλ(ζ)
ε sinhλ(ζ) . . .

]

.

Therefore Skew((D,∆) · R) = e2 sinh2λ(z) + ε2 sinh2λ(ζ). But recall that e
2 = b2 + 1 and ε2 = β2 + 1, so that in fact:

Skew((D,∆) · R) = (b2 + 1) sinh2λ(z) + (β2 + 1) sinh2λ(ζ).

We assumed −0.8 6 z, ζ 6 0.8 and this implies that sinh2λ(ζ), sinh
2
λ(z) 6 sinh2λ(0.8). Writing y = sinh2λ(0.8) for

brevity, and using the assumption that Skew(D,∆) > 15, we get:

Skew((D,∆) ·R) = (b2 + 1) sinh2λ(z) + (β2 + 1) sinh2λ(ζ)
6 (b2 + 1)y + (β2 + 1)y
= (b2 + β2 + 2)y
6 Skew(D,∆)(1 + 2

15 )y.

This completes the proof, since (1 + 2
15 )y = (1 + 2

15 ) sinh
2
λ(0.8) ≈ 0.663 6 0.9.

A.3 The K Lemma

Definition A.14. The hyperbolic cosine in base λ is defined as:

coshλ(x) =
λx + λ−x

2
.

Lemma A.15. Recall the operator K from Figure 6. If (D,∆) is such that Bias(D,∆) ∈ [−1, 1], Skew(D,∆) > 15,
and such that b, β > 0, z 6 0.3, and 0.8 6 ζ, then:

Skew((D,∆) ·K) 6 0.9 Skew(D,∆).

Proof. Compute the action of K on (D,∆):

K†DK

=
1

2

[

−λ−1 λ
−1 1

] [

eλ−z b
b eλz

] [

−λ−1 −1
λ 1

]

=
1

2

[

. . . e(λz+1 + λ−z−1)− 2
√
2b

e(λz+1 + λ−z−1)− 2
√
2b . . .

]

=

[

. . . e coshλ(z + 1)−
√
2b

e coshλ(z + 1)−
√
2b . . .

]

,
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K•†∆K•

=
1

2

[

λ −λ−1

−1 1

] [

ελ−ζ β
β ελζ

] [

λ −1
−λ−1 1

]

=
1

2

[

. . . −ε(λζ−1 + λ−ζ+1) + 2
√
2β

−ε(λζ−1 + λ−ζ+1) + 2
√
2β . . .

]

=

[

. . .
√
2β − ε coshλ(ζ − 1)√

2β − ε coshλ(ζ − 1) . . .

]

.

Therefore:
Skew((D,∆) ·K) = (

√
2b− e coshλ(z + 1))2 + (

√
2β − ε coshλ(ζ − 1))2. (36)

But recall that e2 = b2 + 1, and from Remark A.2 that b > 0 implies −be 6 −b2, so:
(
√
2b− e coshλ(z + 1))2

= 2b2 − 2
√
2 be coshλ(z + 1) + e2 cosh2λ(z + 1)

6 2b2 − 2
√
2 b2 coshλ(z + 1) + (b2 + 1) cosh2λ(z + 1)

= b2(2− 2
√
2 coshλ(z + 1) + cosh2λ(z + 1)) + cosh2λ(z + 1)

= b2(
√
2− coshλ(z + 1))2 + cosh2λ(z + 1). (37)

Reasoning analogously, we also have

(
√
2β − ε coshλ(ζ − 1))2 6 β2(

√
2− coshλ(ζ − 1))2 + cosh2λ(ζ − 1). (38)

By assumption, Bias(D,∆) ∈ [−1, 1], thus ζ 6 z + 1. This, together with the assumptions 0.8 6 ζ and z 6 0.3,
implies that both z + 1 and ζ − 1 are in the interval [−0.2, 1.3]. On this interval, the function cosh2λ(x) assumes its
maximum at x = 1.3, and the function f(x) = (

√
2− coshλ(x))

2 assumes its maximum at x = 0. Therefore,

b2(
√
2− coshλ(z + 1))2 + cosh2λ(z + 1) 6 b2(

√
2− coshλ(0))

2 + cosh2λ(1.3). (39)

and

β2(
√
2− coshλ(ζ − 1))2 + cosh2λ(ζ − 1) 6 β2(

√
2− coshλ(0))

2 + cosh2λ(1.3). (40)

Combining (36)–(40), together with the assumption that Skew(D,∆) > 15, yields:

Skew((D,∆) ·K) = (
√
2b− e coshλ(z + 1))2 + (

√
2β − ε coshλ(ζ − 1))2

6 (b2 + β2)(
√
2− coshλ(0))

2 + 2 cosh2λ(1.3)

= Skew(D,∆)(
√
2− coshλ(0))

2 + 2 cosh2λ(1.3)

6 Skew(D,∆)((
√
2− coshλ(0))

2 +
2

15
cosh2λ(1.3))

This completes the proof since (
√
2− coshλ(0))

2 + 2
15 cosh

2
λ(1.3) ≈ 0.571 6 0.9.

A.4 The A Lemma

Definition A.16. Let g(x) = (1− 2x)2.

Lemma A.17. Recall the operator A from Figure 6. If (D,∆) is such that Bias(D,∆) ∈ [−1, 1], Skew(D,∆) > 15,
and such that b, β > 0 and 0.3 6 z, ζ, then there exists n ∈ Z such that:

Skew((D,∆) ·An) 6 0.9 Skew(D,∆).

Proof. Let c = min{z, ζ} and n = max{1, ⌊λc

2 ⌋}. Compute the action of An on (D,∆):

An†DAn =

[

1 0
−2n 1

] [

eλ−z b
b eλz

] [

1 −2n
0 1

]

=

[

. . . b− 2neλ−z

b− 2neλ−z . . .

]

,

An•†∆An• = An†∆An

=

[

. . . β − 2nελ−ζ

β − 2nελ−ζ . . .

]

.
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Therefore:
Skew((D,∆) · An) = (b − 2neλ−z)2 + (β − 2nελ−ζ)2

But recall that e2 = b2 +1 and ε2 = β2 +1, and from Remark A.2 that b, β > 0 implies −be 6 −b2 and −εβ 6 −β2.
Using these facts, we can expand the above formula as follows:

Skew((D,∆) · An)
= (b− 2neλ−z)2 + (β − 2nελ−ζ)2

= b2 − 4nbeλ−z + 4n2e2λ−2z + β2 − 4nβελ−ζ + 4n2ε2λ−2ζ

6 b2 − 4nb2λ−z + 4n2(b2 + 1)λ−2z + β2 − 4nβ2λ−ζ + 4n2(β2 + 1)λ−2ζ

= b2(1− 4nλ−z + 4n2λ−2z) + β2(1− 4nλ−ζ + 4n2λ−2ζ) + 4n2(λ−2z + λ−2ζ)

= b2(1− 2nλ−z)2 + β2(1− 2nλ−ζ)2 + 4n2(λ−2z + λ−2ζ)

= b2g(nλ−z) + β2g(nλ−ζ) + 4n2(λ−2z + λ−2ζ).

Writing y = max{g(nλ−z), g(nλ−ζ)} for brevity, and using the assumption that Skew(D,∆) > 15 together with the
fact that c 6 z, ζ, we get:

Skew((D,∆) · An) 6 b2y + β2y + 8n2λ−2c

= Skew(D,∆)y + 8n2λ−2c

6 Skew(D,∆)(y +
8

15
n2λ−2c).

To finish the proof, it remains to show that y + 8
15n

2λ−2c 6 0.9. There are two cases:

• If ⌊λc

2 ⌋ > 1, then λc

4 6 n 6
λc

2 . From n 6
λc

2 , we have 2nλ−c 6 1, and so 8
15n

2λ−2c 6
2
15 . Moreover, because

Bias(D,∆) ∈ [−1, 1], we have c 6 z, ζ 6 c + 1. Hence 1
4λ = λc

4 λ
−c−1 6 nλ−c−1 6 nλ−z, nλ−ζ 6 nλ−c 6 1

2 .
On the interval [ 1

4λ ,
1
2 ], the function g(x) assumes its maximum at x = 1

4λ . This implies that y 6 g( 1
4λ ). This

completes the present case since we get:

y +
8

15
n2λ−2c

6 g(
1

4λ
) +

2

15
≈ 0.762 6 0.9.

• If ⌊λc

2 ⌋ < 1, then n = 1 and λc < 2. From 0.3 6 c, we have 8
15n

2λ−2c 6 8
15λ

−0.6. Moreover, because
Bias(D,∆) ∈ [−1, 1], we have 0.3 6 c 6 z, ζ 6 c+ 1. With λc 6 2, this implies that 1

2λ 6 λ−c−1 6 λ−z , λ−ζ 6
λ−0.3. Therefore both λ−z and λ−ζ are in the interval [ 1

2λ , λ
−0.3]. On this interval, the function g(x) assumes

its maximum at x = 1
2λ , and therefore y 6 g( 1

2λ). This completes the proof since:

y +
8

15
n2λ−2c

6 g(
1

2λ
) +

8

15
λ−0.6 ≈ 0.657 6 0.9.

A.5 The B Lemma

Definition A.18. Let h(x) = (1 −
√
2x)2.

Lemma A.19. Recall the operator B from Figure 6. If (D,∆) is such that Bias(D,∆) ∈ [−1, 1], Skew(D,∆) > 15,
and such that b 6 0 6 β and −0.2 6 z, ζ, then there exists n ∈ Z such that:

Skew((D,∆) ·Bn) 6 0.9 Skew(D,∆).

Proof. Let c = min{z, ζ}, n = max{1, ⌊ λc

√
2
⌋} and compute the action of Bn on (D,∆):

Bn†DBn =

[

1 0√
2n 1

] [

eλ−z b
b eλz

] [

1
√
2n

0 1

]

=

[

. . . b+
√
2neλ−z

b+
√
2neλ−z . . .

]

,

Bn•†DBn• =

[

1 0

−
√
2n 1

] [

ελ−ζ β
β ελζ

] [

1 −
√
2n

0 1

]

=

[

. . . β −
√
2nελ−ζ

β −
√
2nελ−ζ . . .

]

.
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Therefore:
Skew((D,∆) · Bn) = (b +

√
2neλ−z)2 + (β −

√
2nελ−ζ)2.

But recall that e2 = b2+1, that ε2 = β2+1, and from Remark A.2 that b 6 0 6 β implies be 6 −b2 and −βε 6 −β2.
Using these facts, we can expand the above formula as follows:

Skew((D,∆) ·Bn)
= (b+

√
2neλ−z)2 + (β −

√
2nελ−ζ)2

= b2 + 2
√
2nbeλ−z + 2n2e2λ−2z + β2 − 2

√
2nβελ−ζ + 2n2ε2λ−2ζ

6 b2 − 2
√
2nb2λ−z + 2n2(b2 + 1)λ−2z + β2 − 2

√
2nβ2λ−ζ + 2n2(β2 + 1)λ−2ζ

= b2(1 − 2
√
2nλ−z + 2n2λ−2z) + β2(1− 2

√
2nλ−ζ + 2n2λ−2ζ) + 2n2(λ−2z + λ−2ζ)

= b2(1 −
√
2nλ−z)2 + β2(1−

√
2nλ−ζ)2 + 2n2(λ−2z + λ−2ζ).

= b2h(nλ−z) + β2h(nλ−ζ) + 2n2(λ−2z + λ−2ζ).

Writing y = max{h(nλ−z), h(nλ−ζ)} for brevity, and using the assumption that Skew(D,∆) > 15, together with the
fact that c 6 z, ζ, we get:

Skew((D,∆) ·Bn) 6 b2y + β2y + 4n2λ−2c

= Skew(D,∆)y + 4n2λ−2c

6 Skew(D,∆)(y +
4

15
n2λ−2c).

To finish the proof, it remains to show that y + 4
15n

2λ−2c 6 0.9. There are two cases:

• If ⌊ λc

√
2
⌋ > 1, then λc

2
√
2
6 n 6

λc

√
2
. From n 6

λc

√
2
, we have 2n2λ−2c 6 1, and so 4n2λ−2c

15 6
2
15 . Moreover,

because Bias(D,∆) ∈ [−1, 1], we have c 6 z, ζ 6 c + 1. Hence 1
2
√
2λ

= λc

2
√
2
λ−c−1 6 nλ−c−1 6 nλ−z, nλ−ζ 6

nλ−c 6 1√
2
. On the interval [ 1

2
√
2λ
, 1√

2
], the function h(x) assumes its maximum at x = 1

2
√
2 λ

. This implies

that y 6 h( 1
2
√
2λ

). This completes the present case since we get:

y +
4

15
n2λ−2c

6 h(
1

2
√
2λ

) +
2

15
≈ 0.762 6 0.9.

• If ⌊ λc

√
2
⌋ < 1, then n = 1 and λc <

√
2. From −0.2 6 c, we have 4

15n
2λ−2c 6

4
15λ

0.4. Moreover, because

Bias(D,∆) ∈ [−1, 1], we have −0.2 6 c 6 z, ζ 6 c + 1. With λc 6
√
2, this implies that 1√

2λ
6 λ−c−1 6

λ−z, λ−ζ 6 λ0.2. Therefore both λ−z and λ−ζ are in the interval [ 1√
2 λ
, λ0.2]. On this interval, the function

h(x) assumes its maximum at x = λ0.2, and therefore y 6 h(λ0.2). This completes the proof since:

y +
4

15
n2λ−2c

6 h(λ0.2) +
4

15
λ0.4 ≈ 0.851 6 0.9.

A.6 Proof of the Step Lemma

The proof of the Step Lemma is now basically a case distinction, using the cases enumerated in Sections A.1–A.5, as
well as some additional symmetric cases. In particular, the following remark will allow us to use the grid operators
X and Z to reduce the number of cases to consider.

Remark A.20. The grid operator Z negates the anti-diagonal entries of a state while the operator X swaps the
diagonal entries of a state. This follows by simple computation:

(D,∆) · Z =

([

eλ−z −b
−b eλz

]

,

[

ελ−ζ −β
−β ελζ

])

, (D,∆) ·X =

([

eλz b
b eλ−z

]

,

[

ελζ β
β ελ−ζ

])

.

Moreover, Bias((D,∆) · Z) = Bias(D,∆) and Bias((D,∆) ·X) = −Bias(D,∆).
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Figure 7: (a) A covering of the region z − ζ ∈ [−1, 1] and z + ζ > 0 for the case b > 0. (b) A covering of the region
z − ζ ∈ [−1, 1] and z + ζ > 0 for the case b 6 0.

Lemma (Step Lemma). For any state (D,∆), if Skew(D,∆) > 15, then there exists a special grid operator G
such that Skew((D,∆) ·G) 6 0.9 Skew(D,∆). Moreover, G can be computed using a constant number of arithmetic
operations.

Proof. Let (D,∆) be a state such that Skew(D,∆) > 15. By Lemma A.11 we can assume w.l.o.g. that Bias(D,∆) ∈
[−1, 1]. Moreover, by Remark A.20, we can also assume that β > 0 and z + ζ > 0. Note that the application of the
grid operators X and/or Z in Remark A.20 preserves the fact that Bias(D,∆) ∈ [−1, 1]. We now treat in turn the
cases b > 0 and b 6 0.

Case 1 b > 0. A covering of the strip defined by z−ζ ∈ [−1, 1] and z+ζ > 0 is depicted in Figure 7(a). The R region
(in green) and the A region (in red) are defined as the intersection of this space with {(z, ζ) | −0.8 6 z, ζ 6 0.8}
and {(z, ζ) | z 6 0.3 and 0.8 6 ζ} respectively. The K and K• regions (both in blue) fill the remaining space.
We now consider in turn the possible locations of the pair (z, ζ) in this covering.

1. If −0.8 6 z, ζ 6 0.8, then Skew((D,∆) ·R) 6 0.9 Skew(D,∆) by Lemma A.13.

2. If z 6 0.3 and 0.8 6 ζ, then Skew((D,∆) ·K) 6 0.9 Skew(D,∆) by Lemma A.15.

3. If 0.3 6 z, ζ, then there exists n ∈ Z such that Skew((D,∆) · An) 6 0.9 Skew(D,∆) by Lemma A.17.

4. If 0.8 6 z and ζ 6 0.3, then note that (D,∆) ·K• = (∆, D) ·K, and therefore by Lemma A.15:

Skew((D,∆) ·K•) = Skew((∆, D) ·K) 6 0.9 Skew(∆, D) = 0.9 Skew(D,∆).

Case 2 b 6 0. As above, we use a covering of the strip defined by z − ζ ∈ [−1, 1] and z + ζ > 0 and consider
the possible locations of (z, ζ) in this space. The relevant covering is depicted in Figure 7(b), where the R
region (in green) is defined as above and the B region (in red) is defined as the intersection of the strip with
{(z, ζ) | z, ζ > −0.2}.

1. If −0.8 6 z, ζ 6 0.8, then Skew((D,∆) ·R) 6 0.9 Skew(D,∆) by Lemma A.13.

2. If z, ζ > −0.2 then there exists n ∈ Z such that Skew((D,∆) ·Bn) 6 0.9 Skew(D,∆) by Lemma A.19.

Finally, note that only a constant number of calculations are required to decide which of the above cases applies.
Moreover, each case only requires a constant number of operations. Specifically, the computation of k and σk in
Lemma A.11, of n and An in Lemma A.17, and of n and Bn in Lemma A.19 each require just a fixed number of
operations, and each of the remaining cases produces a fixed grid operator.
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B Proof of Proposition 5.17

We prove Proposition 5.17, whose statement we reproduce here.

Proposition. Let A be a bounded convex subset of R2 with non-empty interior. Then there exists an ellipse E such
that A ⊆ E, and such that

area(E) 6
4π

3
√
3
area(A). (41)

Proof. We may assume without loss of generality that A is compact, for it it is not, we can replace A by its closure,
which has the same area as A because A is convex. Let D be the closed unit disk, and consider the collection
Aff(A,D) of all affine transformations f : R2 → R2 satisfying f(A) ⊆ D. Then Aff(A,D), with the natural topology,
is a compact set. Therefore, there exists some f ∈ Aff(A,D) maximizing the area of f(A). We claim that f is
invertible. Indeed, since A is bounded, there exists some λ > 0 such that λA ⊆ D. Since λA has non-zero area,
and multiplication by λ is an affine map, it follows that f(A) has non-zero area as well, and so f is invertible. Let
E = f−1(D). We claim that E is the desired ellipse.

A
f7−−−−→ f(A)

D

f−1

7−−−−→ A

E = f−1(D)

We have A ⊆ E by construction. We must show (41). Because affine transformations preserve ratios of areas, we
may equivalently show

area(D) 6
4π

3
√
3
area(f(A)).

Let ∂D be the boundary of D, and consider points p where f(A) “touches” the boundary, i.e., points p ∈ f(A)∩ ∂D.
We claim that any arc segment of ∂D of length 2π/3 radians (120 degrees) contains at least one such point. To prove
this, assume, for the sake of contradiction, that there is such an arc segment Q not containing any point of f(A).
By rotational symmetry, we may without loss of generality assume that Q is the arc from −π/3 to π/3 radians on
the unit circle. Let z1 and z2 be the endpoints of Q, as shown here:

g(D).

f(A) Q

D

•
w1

•
w2

•z1

•
z2

•(−1, 0)

Since both Q and f(A) are compact, there exists some d > 0 such that the distance between any point of A and
any point of Q is at least d. Let w1 and w2 be the two points on the unit circle whose distance from Q is d/2. Now
consider the affine transformation g that fixes (−1, 0) and maps w1 to z1 and w2 to z2. Then g(D) is an ellipse
whose boundary passes through the points (−1, 0), z1, and z2, shown as a dashed line in the above illustration. It is
therefore bisected by Q. Since the map g moves no point of the unit disk by more than distance d, the set g(f(A))
does not intersect Q. It follows that g(f(A)) is contained in D. On the other hand, a calculation shows that the area
of g(f(A)) is slightly greater than that of f(A), contradicting the assumption that the area of f(A) was maximal.

We have proved that every arc segment of length 2π/3 radians on the boundary of D contains a point of f(A). It
follows that there is some finite cyclic sequence of points p1, . . . , pn ∈ f(A)∩ ∂D such that consecutive points are no
more than 2π/3 radians apart. By connecting each pi to the center, we partition each of the sets f(A) and D into n
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pieces B1, . . . , Bn and C1, . . . , Cn, respectively.

B1

B2B3

B4

B5

C3

C4

C5

•

•
p1

•
p2

•
p3

•
p4

•
p5

The fact that the inner angles are less than 2π/3 immediately implies that area(Ci) 6
4π
3
√
3
area(Bi) for all i; hence

also area(D) 6 4π
3
√
3
area(f(A)). This finishes the proof of the proposition.

C Proof of Theorem 6.2

Consider the rings Z and D, together with their respective extensions Z[
√
2], Z[ω] and D[

√
2], D[ω], as introduced in

Section 3. We wish to give an efficient method for solving equations of the form t†t = ξ, for given ξ ∈ D[
√
2] and

unknown t ∈ D[ω]. To do this, we first classify the primes in Z[
√
2] and Z[ω], then show how to solve the equation

t†t = ξ in the case where ξ ∈ Z[
√
2] and t ∈ Z[ω], which we finally extend to the general case. None of the results

in this section are original; they are well-known from the theory of cyclotomic fields, which goes back to the 19th
century work of Gauss and Kummer. Nevertheless, we hope that the following detailed treatment may be useful to
readers who are not experts in algebraic number theory. Moreover, we hope to give sufficient details to enable an
interested reader, in principle, to implement the algorithm. This will also aid in our complexity analysis.

A fundamental property of the rings Z, Z[
√
2], and Z[ω] is that they are Euclidean domains; this implies that the

notions of divisibility, greatest common divisor, and unique prime factorization all make sense in these rings. Recall
that in a ring, a unit is an invertible element. In a Euclidean domain, we write x | y if x is a divisor of y, and x ∼ y
if x | y and y |x; equivalently, x ∼ y iff there exists a unit u that xu = y. An element x is prime if x is not a unit,
and x = ab implies that either a or b is a unit. Note that if x is prime and x | ab, then x | a or x | b; this follows from
Euclid’s algorithm.

C.1 Units in Z[
√
2]

Definition C.1. We say that ξ ∈ Z[
√
2] is doubly positive if ξ > 0 and ξ• > 0.

Lemma C.2. The units of Z[
√
2] are of the form u = (−1)nλm, where λ = 1 +

√
2. Moreover, a unit u is doubly

positive if and only if u is a square in Z[
√
2].

Proof. Lemma 10 of [14].

Lemma C.3. Let ξ ∈ Z[
√
2], and consider n = ξ•ξ. If n is a unit in Z, then ξ is a unit in Z[

√
2].

Proof. If n is a unit, then there exists m ∈ Z such that nm = 1, hence ξξ•m = 1, hence ξ is invertible in Z[
√
2].

C.2 Primes in Z[
√
2]

Lemma C.4. Let ξ ∈ Z[
√
2], and consider n = ξ•ξ. If n is prime in Z, then ξ is prime in Z[

√
2].

Proof. Suppose ξ = αβ in Z[
√
2], and consider n = ξ•ξ = α•αβ•β. Since α•α and β•β are integers and n is prime,

we must have that either α•α or β•β is a unit in Z; hence α or β is a unit in Z[
√
2]. So ξ is prime.

Lemma C.5. For every prime ξ of Z[
√
2], there exists a unique (up to a unit) prime p of Z such that ξ | p.

Proof. To show existence, consider n = ξ•ξ. Note that ξ 6= 0, hence n 6= 0. Let n = p1p2 · · · pk be a prime
factorization of n. Since ξ | p1p2 · · · pk and ξ is prime in Z[

√
2], there exists some i such that ξ | pi.

To show uniqueness, assume ξ | p and ξ | q, where p 6∼ q. Then gcd(p, q) = 1, hence by Euclid’s algorithm, we can
write 1 = np+mq, for integers n and m. Then ξ |np+mq = 1, which is absurd since ξ is prime.
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Lemma C.6. Let ξ be a prime of Z[
√
2], and let p be the unique (up to a unit) prime of Z such that ξ | p. Then

exactly one of the following holds: ξ ∼ p or ξ•ξ ∼ p.

Proof. First note that at most one of these properties can hold, because otherwise ξ ∼ ξ•ξ, which implies that ξ• is
a unit, which is absurd since it is prime.

We now show that at least one of the properties holds. Since ξ | p and p is an integer, we have ξ• | p, hence ξ•ξ | p2.
Also, ξ•ξ is an integer, so either ξ•ξ ∼ 1, ξ•ξ ∼ p, or ξ•ξ ∼ p2. The first of these cases is absurd, since ξ would then
be a unit. In the second case, we have ξ•ξ ∼ p, which is to be shown. In the third case, since ξ | p, there is α ∈ Z[

√
2]

such that ξα = p. Then we have ξ•ξα•α = p2 ∼ ξ•ξ, which implies that α is a unit, hence ξ ∼ p.

Lemma C.7. Let p be a prime of Z. Then the prime factorization of p in Z[
√
2] consists of one or two factors.

Proof. Let ξ be some prime factor of p in Z[
√
2]. By Lemma C.6, either ξ ∼ p or ξ•ξ ∼ p. Either way, this gives a

prime factorization of p in Z[
√
2].

We now determine the prime factorization in Z[
√
2] of every prime p of Z. It turns out that there are 5 cases,

depending whether p is even, or p ≡ 1, 3, 5, 7 (mod8).

Lemma C.8. The prime factorization of p = 2 in Z[
√
2] is p =

√
2 ·

√
2. The prime factorization of p = −2 in

Z[
√
2] is p = −

√
2 ·

√
2.

Proof. We only need to show that
√
2 is prime in Z[

√
2], but this follows from Lemma C.4.

Lemma C.9. Let p be a prime of Z such that p ≡ 3 (mod8) or p ≡ 5 (mod8). Then p is prime in Z[
√
2].

Proof. Let ξ be a prime factor of p in Z[
√
2]. By Lemma C.6, we know that ξ ∼ p or ξ•ξ ∼ p. In the former

case, p is prime and we are done. In the latter case, writing ξ = a + b
√
2, we have ξ•ξ = a2 − 2b2 = ±p, hence

a2 − 2b2 ≡ ±3 (mod8). By easy case distinction, we see that a2 can only be 0, 1, or 4 modulo 8, and 2b2 can only
be 0 or 2 modulo 8, so a2 − 2b2 ≡ ±3 (mod 8) is plainly impossible.

Lemma C.10. Let ξ ∈ Z[
√
2] such that ξ ∼ ξ•. Then either ξ ∼ n, or ξ ∼ n

√
2, for some n ∈ Z.

Proof. By assumption, ξ ∼ ξ•, so there exists a unit u ∈ Z[
√
2] such that ξ• = uξ. By Lemma C.2, the units of

Z[
√
2] are exactly of the form u = (−1)nλm, where λ = 1 +

√
2. Applying the automorphism to ξ• = uξ, we get

ξ = u•ξ•, hence ξ•ξ = u•uξ•ξ, hence u•u = 1, hence (λ•λ)m = 1. But λ•λ = −1, so m is even; say m = 2k. Let
ξ′ = λkξ. Note that ξ′ ∼ ξ. Then we have

ξ′• = (λ•)kξ• = (−λ)−kuξ = (−1)−kλ−k(−1)nλmξ = ±λkξ = ±ξ′. (42)

We can write ξ′ = a+ b
√
2 for some a, b ∈ Z. From (42), we have either a− b

√
2 = a+ b

√
2, or a− b

√
2 = −(a+ b

√
2).

In the first case, b = 0, and therefore ξ ∼ ξ′ = a. In the second case, a = 0, and therefore ξ ∼ ξ′ = b
√
2.

Lemma C.11. Let p be a prime of Z such that p ≡ 1 (mod 8) or p ≡ 7 (mod 8). Then p has a prime factorization
of the form p ∼ ξ•ξ in Z[

√
2]; moreover, ξ 6∼ ξ•, so that the two prime factors are distinct.

Proof. It is well-known (by quadratic reciprocity) that if p is a prime with p ≡ ±1 (mod8), then 2 is a quadratic
residue modulo p. Therefore, the equation x2 ≡ 2 (mod p) has an integer solution; let x be such a solution. Let
α = x+

√
2. Then α•α = x2−2 ≡ 0 (mod p), and hence p |α•α. On the other hand, clearly p ∤ α (since α/p 6∈ Z[

√
2]),

and similarly p ∤ α•, which shows that p is not a prime in Z[
√
2]. By Lemma C.6, p ∼ ξ•ξ for some prime ξ of Z[

√
2].

The final claim follows from Lemma C.10, because if ξ ∼ ξ•, then either ξ ∼ n or ξ ∼ n
√
2. In the first case,

n2 | ξ•ξ ∼ p, but p is prime, so that n = ±1, contradicting that ξ is prime. In the second case, 2n2 | ξ•ξ ∼ p,
contradicting the assumption that p is odd.

Lemma C.12. Let p be a prime of Z. A prime factorization of p in Z[
√
2] can be computed in probabilistic polynomial

time.

Proof. Assume without loss of generality that p > 0. If p = 2, then p =
√
22 is the desired prime factorization

by Lemma C.8. If p ≡ 3, 5 (mod8), then p is already prime in Z[
√
2] by Lemma C.9. The remaining case is when

p ≡ 1, 7 (mod8). In this case the prime factorization is of the form p ∼ ξ•ξ by Lemma C.11. Moreover, the
proof of Lemma C.11 indicates how such ξ can be computed, namely as ξ = gcd(p, x +

√
2), where x is a solution

of x2 ≡ 2 (mod p). The equation x2 ≡ 2 (mod p) can be solved in probabilistic polynomial time by a well-known
algorithm, see [12].
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C.3 Primes in Z[ω]

Lemma C.13. Let ξ be a prime in Z[
√
2]. Then either ξ is prime in Z[ω], or else ξ ∼ t†t where t is some prime of

Z[ω]. In particular, the prime factorization of ξ in Z[ω] consists of either one or two factors.

Proof. This is similar to the proof of Lemma C.7. Let t be some prime factor of ξ in Z[ω]. Then t | ξ, therefore
t† | ξ† = ξ, therefore t†t | ξ2 in Z[ω]. But both t†t and ξ are elements of Z[

√
2], so t†t | ξ2 in Z[

√
2]. Since ξ is prime

in Z[
√
2], there are only three possibilities: t†t ∼ 1, t†t ∼ ξ, and t†t ∼ ξ2. In the first case, t is a unit, contradicting

the fact that it is prime in Z[ω]. In the second case, we are done. In the third case, since t | ξ, there is a ∈ Z[ω] such
that at = ξ. Then a†at†t = ξ†ξ = ξ2 = t†t, which implies a†a = 1. Therefore a is a unit, and t ∼ ξ. Therefore ξ is
prime in Z[ω] and we are done.

C.4 The Diophantine equation t†t = ξ

We are interested in solving equations of the form

t†t = ξ, (43)

where ξ ∈ D[
√
2] is given, and t ∈ D[ω] is unknown.

Definition C.14. Recall that for elements ξ, ξ′ ∈ Z[
√
2], the notation ξ ∼ ξ′ means that ξ, ξ′ differ by a unit, i.e.,

there exists a unit u ∈ Z[
√
2] such that ξ = uξ′. We extend this notation also to the ring D[

√
2]: for ξ, ξ′ ∈ D[

√
2],

we write ξ ∼ ξ′ iff there exists a unit u ∈ Z[
√
2] such that ξ = uξ′. Note that we have taken u to be a unit of the

ring Z[
√
2], not of D[

√
2].

It will often be convenient to replace (43) by the following weaker condition.

Definition C.15. We say that ξ ∈ D[
√
2] is †-decomposable if the equation

t†t ∼ ξ (44)

has a solution t ∈ D[ω].

Solutions to (43) can be recovered from solutions to (44) by using the following observation:

Lemma C.16. Let ξ ∈ D[
√
2]. Then equation (43) has a solution if and only if ξ is doubly positive and †-

decomposable.

Proof. If ξ is a solution to (43), then it is obviously †-decomposable. It is also doubly positive by Lemma 6.1.
Conversely, assume t†t ∼ ξ. Then there exists a unit u of Z[

√
2] such that ξ = ut†t. Since both ξ and t†t are doubly

positive, it follows that u is doubly positive, and hence u is a square of the ring Z[
√
2] by Lemma C.2; say u = v2.

Since v ∈ Z[
√
2], we have v = v†. Setting t′ = vt, we have ξ = v†vt†t = t′†t′, which finishes the proof.

C.5 The case ξ ∈ Z[
√
2]

Lemma C.17. Suppose t†t ∼ ξ for t ∈ D[ω] and ξ ∈ Z[
√
2]. Then t ∈ Z[ω].

Proof. Note that, in Z[ω], we have
√
2k | t if and only if 2k | t†t. Choose t′ ∈ Z[ω] and k > 0 such that t = t′/

√
2k.

Then t′†t′ = 2kξ, hence 2k | t′†t′, hence
√
2k | t′, hence t ∈ Z[ω].

Lemma C.18. If x, y, z are three elements of a Euclidean domain, then

gcd(xy, z) | gcd(x, z) · gcd(y, z).

Proof. By considering the prime factorization of z.

Lemma C.19. Suppose ξ = αβ, where α, β ∈ Z[
√
2] and gcd(α, β) = 1. Then ξ is †-decomposable iff α and β are

†-decomposable.

Proof. For the right-to-left implication, assume α ∼ s†s and β ∼ r†r. Clearly ξ = αβ ∼ (sr)†sr. For the left-
to-right implication, assume ξ ∼ t†t. Note that t ∈ Z[ω] by Lemma C.17. To show that α is †-decomposable, let
s = gcd(t, α). We claim that s†s ∼ α. Clearly, since s |α and s† |α, we have s†s |α2. One the other hand, we
know that s†s | t†t ∼ ξ = αβ. Since α and β are relatively prime, it follows that s†s |α. Conversely, note that by
Lemma C.18, α = gcd(t†t, α) | gcd(t†, α) ·gcd(t, α) = s†s. Therefore s†s ∼ α and α is †-decomposable. The argument
for β is similar.
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Lemma C.20. Suppose that ξ ∈ Z[
√
2] is prime. Let p > 0 be the unique positive prime in Z such that ξ | p. Then

ξ is †-decomposable if and only if p = 2 or p ≡ 1, 3, 5 (mod8).

Proof. We consider each case in turn. If p = 2, then ξ ∼
√
2. Let δ = 1 + ω; a simple calculation shows that

δ†δ = λ
√
2 ∼ ξ. So ξ is †-decomposable.

If p ≡ 1 (mod 4), then by quadratic reciprocity, there exists some integer u such that u2 ≡ −1 (mod p). Therefore
ξ | p |u2 + 1 = (u + i)(u − i). Let t = gcd(ξ, u + i). We claim that ξ ∼ t†t. Note that t | ξ, hence t† | ξ† = ξ, hence
t†t | ξ2. Since ξ is prime in Z[

√
2], there are 3 possibilities: t†t ∼ 1, t†t ∼ ξ, or t†t ∼ ξ2. The first case is not

possible, because in this case, t would be a unit, so that ξ is relatively prime to u+ i, hence to u− i, hence to u2+1,
contradicting ξ |u2 + 1. In the second case, we have t†t ∼ ξ, which was to be shown. In the third case, we have
t†t ∼ ξ2. Since t | ξ, there exists some s ∈ Z[ω] such that ts = ξ. But then t†ts†s = ξ†ξ = ξ2 ∼ t†t, so that s is a unit.
In this case, we have t ∼ ξ, therefore ξ |u+ i, therefore also ξ = ξ† |u− i, hence ξ |(u+ i)− (u− i) ∼ 2, contradicting
the fact that p is the only prime integer divisible by ξ.

The case p ≡ 3 (mod 8) is very similar. In this case, by quadratic reciprocity, −2 is a square modulo p, so
that there exists some integer u such that u2 ≡ −2 (mod p). Therefore ξ | p |u2 + 2 = (u + i

√
2)(u − i

√
2). Let

t = gcd(ξ, u + i
√
2). We claim that ξ ∼ t†t. Note that t | ξ, hence t† | ξ† = ξ, so t†t | ξ2. So again we have the three

possibilities t†t ∼ 1, t†t ∼ ξ, or t†t ∼ ξ2. The first case is not possible, because in this case, t would be a unit, so
that ξ is relatively prime to u+ i

√
2, hence to u− i

√
2, hence to u2 + 2, contradicting ξ |u2 + 2. In the second case,

we have t†t ∼ ξ, which was to be shown. In the third case, we have t†t ∼ ξ2. Since t | ξ, there exists some s ∈ Z[ω]
such that ts = ξ. But then t†ts†s = ξ†ξ = ξ2 ∼ t†t, so that s is a unit. In this case, we have t ∼ ξ, therefore
ξ |u+ i

√
2, therefore also ξ = ξ† |u− i

√
2, hence ξ | i(u− i

√
2)− i(u+ i

√
2) = 2

√
2. On the other hand, ξ | p, therefore

ξ | gcd(p, 2
√
2) = 1, contradicting the fact that ξ is not a unit.

Finally, if p ≡ 7 (mod8), then p ∼ ξ•ξ by Lemma C.11. Assume that ξ is †-decomposable as ξ ∼ t†t. Then

(t†t)•(t†t) ∼ ξ•ξ ∼ p.

Note that t•t ∈ Z[i], so we can write t•t = a+ bi for some a, b ∈ Z. But then we have

p ∼ (t•t)(t•t)† = (a+ bi)(a− bi) = a2 + b2.

But a2 and b2 can only be congruent to 0, 1, or 4 modulo 8, contradicting p ≡ 7 (mod 8). Therefore ξ is not
†-decomposable, which is what was claimed.

Lemma C.21. Suppose ξ ∈ Z[
√
2] is prime. Let p > 0 be the unique positive prime in Z such that ξ | p. Let m be a

positive integer. Then ξm is †-decomposable if and only if m is even or p ≡ 1, 2, 3, 5 (mod8).

Proof. Ifm is even, then note that ξ ∈ Z[
√
2], so ξ = ξ†; therefore, t = ξm/2 will be a solution. If p ≡ 1, 2, 3, 5 (mod8),

then by Lemma C.20, there exists s ∈ Z[ω] with s†s ∼ ξ; therefore t = sm is a solution of t†t ∼ ξm. The only remaining
case is then m is odd and p ≡ 7 (mod8). In this case, there can be no solution. For assume on the contrary that
t†t = ξm. Then as in the proof of Lemma C.20, we can write t•t = a+ bi for some a, b ∈ Z, and we get

pm ∼ (t•t)(t•t)† = (a+ bi)(a− bi) = a2 + b2,

contradicting pm ≡ 7 (mod8).

Remark C.22. The proofs of Lemmas C.20 and C.21 are constructive, and immediately yield efficient algorithms for
determining t, provided that we have an efficient method of solving u2 ≡ −1 (mod p) when p is a prime congruent
to 1 (mod4) and of solving u2 ≡ −2 (mod p) when p is a prime congruent to 3 (mod 8). These last problems can be
solved in probabilistic polynomial time by a well-known algorithm, see [12].

Lemma C.23. Given ξ ∈ Z[
√
2], together with its prime factorization in Z[

√
2], there exists an algorithm that

determines, in probabilistic polynomial time, whether the equation t†t ∼ ξ has a solution or not, and finds a solution
if there is one.

Proof. Let ξ ∼ ξm1

1 ξm2

2 · · · ξmk

k be a prime factorization of ξ in Z[
√
2], where ξ1, . . . , ξk are distinct (i.e., pairwise

non-associate) primes. By Lemma C.19, t†t ∼ ξ has a solution if and only if t†t ∼ ξmi

i has a solution for all i. By
Lemma C.21, t†t ∼ ξmi

i has a solution if and only if mi is even or p ≡ 1, 2, 3, 5 (mod8). Since these conditions are
easy to check, we can therefore determine the existence of a solution efficiently, i.e., in polynomial time.

Moreover, once a solution has been shown to exist, the actual solution can be efficiently computed. Namely, for
each i, find ti such that t†i ti ∼ ξmi

i as in Lemma C.21. Then t ∼ t1t2 · · · tk satisfies t†t ∼ ξm1

1 ξm2

2 · · · ξmk

k ∼ ξ. By
Remark C.22, all of this can be computed in probabilistic polynomial time.
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Proposition C.24. Let ξ ∈ Z[
√
2], and let n = ξ•ξ. Note that n is an integer. Given the prime factorization of

n, there exists an algorithm that determines, in probabilistic polynomial time, whether the equation t†t ∼ ξ has a
solution or not, and finds a solution if there is one.

Proof. Suppose that n = ±pm1

1 · · · pmk

k is the prime factorization of n, where p1, . . . , pk are distinct positive primes.

Each pi can be efficiently factored into primes of Z[
√
2] by Lemma C.12; this yields the prime factorization of

n = ξ•ξ in Z[
√
2]. From this, it is easy to obtain a prime factorization of ξ. The rest of the claim then follows from

Lemma C.23.

C.6 The case ξ ∈ D[
√
2]

The following lemma can be used to reduce the problem of †-decomposability in D[
√
2] to †-decomposability in Z[

√
2].

Lemma C.25. Consider ξ ∈ D[
√
2]. Then ξ is †-decomposable if and only if

√
2 ξ is †-decomposable.

Proof. Recall that δ = 1 + ω satisfies δ†δ = λ
√
2 ∼

√
2. Also note that δ is invertible in D[ω]; specifically, δ−1 =

δλ−1ω−1/
√
2 ∈ D[ω]. Assume that ξ is †-decomposable, so that t†t ∼ ξ. Letting t′ = δt, we have t′†t′ = δ†δt†t ∼√

2t†t ∼
√
2 ξ, so that

√
2 ξ is †-decomposable. The converse is proved similarly, using δ−1 instead of δ.

We can now prove Theorem 6.2, whose statement we reproduce here.

Theorem. Let ξ ∈ D[
√
2]. Note that ξ•ξ ∈ D, so we can write ξ•ξ = n

2ℓ
for some n ∈ Z and ℓ ∈ N. There exists a

probabilistic algorithm which, given ξ and, in case n 6= 0, a prime factorization of n, determines whether or not the
equation t†t = ξ has a solution, and finds a solution if there is one. Moreover, the expected runtime of this algorithm
is polynomial in the size of n.

Proof. Let ξ be an element of D[
√
2] with ξ•ξ = n

2ℓ
for some n ∈ Z. First, the algorithm can easily check whether ξ

is doubly positive, and if it is not, there is no solution. Next, if n = 0, then ξ = 0, and t = 0 is obviously a solution,
so there is nothing to do. Otherwise, let ξ′ =

√
2ℓξ. Since ξ′ ∈ Z[

√
2] and ξ′•ξ′ = n, and a factorization of n is given,

we can use Proposition C.24 to efficiently determine whether s†s ∼ ξ′ has a solution. By Lemma C.25 this is the
case if and only if the equation t†t ∼ ξ also has a solution, in which case it is given by t = δ−ℓs. Finally, since ξ is
doubly positive, we can solve t′†t′ = ξ by Lemma C.16.

We conclude this appendix with a useful fact: the algorithm of Theorem 6.2 always succeeds in case n is a prime
that is congruent to 1 modulo 8.

Proposition C.26. Let ξ = D[
√
2] be doubly positive, with ξ•ξ = n

2ℓ for some n ∈ Z. If n is prime and n ≡ 1 (mod 8),

then the equation t†t = ξ has a solution.

Proof. Let ξ′ =
√
2ℓξ. Then ξ′ ∈ Z[

√
2] and ξ′•ξ′ = n. Then ξ′ is prime by Lemma C.4 and †-decomposable by

Lemma C.20. By Lemma C.25, ξ is †-decomposable, so that the equation t†t = ξ can be solved by Lemma C.16.

D Proof of Lemma 8.4

Definition D.1. Recall that δ = 1 + ω. Every element u ∈ D[ω] can be written in the form

u =
1

δk
(aω3 + bω2 + cω + d), (45)

where a, b, c, d ∈ Z and k > 0. The smallest k such that u can be written in this form is called the least δ-exponent
of u.

Remark D.2. A calculation shows that 1
δ (aω

3 + bω2 + cω + d) is equal to

1

2

[

(a− b+ c− d)ω3 + (a+ b− c+ d)ω2 + (−a+ b + c− d)ω + (a− b+ c+ d)
]

.

It follows that an element aω3 + bω2 + cω + d ∈ Z[ω] is divisible by δ if and only if a+ b+ c+ d is even.

We can now prove Lemma 8.4, whose statement we reproduce here.

Lemma. Each of the numbers n produced in step 2(a) of Algorithm 7.6 satisfies n > 0, and either n = 0 or
n ≡ 1 (mod8).
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Proof. Recall that in step 2(a) of Algorithm 7.6, we are given u ∈ D[ω] such that u ∈ D and u• ∈ D. We let
ξ = 1 − u†u and write ξ•ξ = n

2ℓ , where ℓ > 0 is minimal. We must show that n > 0, and that either n = 0 or
n ≡ 1 (mod8).

The first claim is trivial, since by assumption u†u 6 1 and (u†u)• 6 1, and therefore ξ, ξ• > 0, which implies
n > 0. For the second claim, write u in the form (45), with least δ-exponent k.

• Case 1: k 6 1. In this case, one can show by a direct calculation (for example with the help of the algorithm
from Proposition 5.21) that the scaled two-dimensional grid problem only has the 9 solutions u = 0 and u = ωj ,
where j = 0, . . . , 7. In the first case, n = 1, and in the remaining 8 cases, n = 0, so the claim follows.

• Case 2: k > 2. We calculate

u†u =
1

(δ†δ)k
(A+B

√
2),

where A = a2+b2+c2+d2 and B = cd+bc+ab−da. Note that, since k is the least δ-exponent of u, Remark D.2
implies that a + b + c + d is odd. It easily follows that A is odd; moreover, since B ≡ (a + c)(b + d) (mod 2),
it also follows that B is even. Also note that (δ†δ)k = (λ

√
2)k is an element of Z[

√
2], and is divisible by 2

since k > 2. Therefore, we have (δ†δ)k = C +D
√
2 for some C,D ∈ Z where C,D are both even. We further

calculate

ξ = 1− u†u =
1

(δ†δ)k
(C +D

√
2−A−B

√
2) =

1

(δ†δ)k
(x+ y

√
2),

where x = C − A is odd and y = D − B is even. Noting that (δ†δ)•(δ†δ) = 2 and that x2 − 2y2 ≡ 1 (mod8),
we therefore have

ξ•ξ =
1

((δ†δ)•(δ†δ))k
(x2 − 2y2) =

1

2k
(x2 − 2y2).

It follows that ℓ = k and n = x2 − 2y2, and therefore n ≡ 1 (mod8), which was to be shown.

E Proof of Lemma 8.6

Lemma E.1. (a)
√
x > lnx for all x > 0.

(b) 3
√
x > (ln x)2 for all x > 1.

(c) (1− a
x)
x 6 e−a, for all x > a > 0.

Proof. By elementary calculus. For (a) and (b), note that the functions f(x) = lnx/
√
x and g(x) = (lnx)2/3

√
x, on

the given domains, take their maxima at x = e2 and x = e4, respectively, and in both cases, the maximum is less
than 1. For (c), first note that for all z ∈ R, z + 1 6 ez; the claim follows by letting z = − a

x .

We can now prove Lemma 8.6, whose statement we reproduce here.

Lemma. Let b > 0 be an arbitrary fixed constant. Then for a > 1,

∞
∑

x=1

(

1− 1

a+ b lnx

)x

= O(a).

Proof. Let
x0 = 16a2 + 144b2. (46)

We claim that for all x > x0,
(

1− 1

a+ b lnx

)x

6
1

x2
. (47)

Indeed, from x > 16a2, we get √
x

2
> 2a. (48)

From x > 144b2, we get √
x

6
> 2b. (49)
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Combining (48) and (49) with Lemma E.1(a) and (b), we have

x =

√
x

2
·
√
x+

√
x

6
· 3
√
x > 2a lnx+ 2b(lnx)2 = 2 lnx(a+ b lnx),

hence
1

a+ b lnx
>

2 lnx

x
,

hence
(

1− 1

a+ b lnx

)x

6

(

1− 2 lnx

x

)x

6 e−2 ln x =
1

x2

where the final inequality uses Lemma E.1(c). This finishes the proof of (47). The lemma now immediately follows,
because we have

∞
∑

x=1

(

1− 1

a+ b lnx

)x

=

⌊x0⌋
∑

x=1

(

1− 1

a+ b lnx

)x

+

∞
∑

x=⌊x0⌋+1

(

1− 1

a+ b lnx

)x

6

⌊x0⌋
∑

x=1

(

1− 1

a+ b lnx0

)x

+

∞
∑

x=⌊x0⌋+1

1

x2

6

∞
∑

x=0

(

1− 1

a+ b lnx0

)x

+

∞
∑

x=1

1

x2

= a+ b lnx0 +
π2

6
= a+ b ln(16a2 + 144b2) +

π2

6
= O(a).
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