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Abstract
Many promising quantum algorithms in economics, medical science, and material science rely on
circuits that are parameterized by a large number of angles. To ensure that these algorithms are
efficient, these parameterized circuits must be heavily optimized. However, most quantum circuit
optimizers are not verified, so this procedure is known to be error-prone. For this reason, there is
growing interest in the design of equivalence checking algorithms for parameterized quantum circuits.
In this paper, we define a generalized class of parameterized circuits with arbitrary rotations and
show that this problem is decidable for cyclotomic gate sets. We propose a cutoff-based procedure
which reduces the problem of verifying the equivalence of parameterized quantum circuits to the
problem of verifying the equivalence of finitely many parameter-free quantum circuits. Because
the number of parameter-free circuits grows exponentially with the number of parameters, we
also propose a probabilistic variant of the algorithm for cases when the number of parameters is
intractably large. We show that our techniques extend to equivalence modulo global phase, and
describe an efficient angle sampling procedure for cyclotomic gate sets.
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1 Introduction

In quantum mechanics, unitary operators describe how the probability distributions of
quantum systems evolve over time. In quantum computing, primitive operators (known as
quantum gates) are composed in sequence and parallel, to create quantum circuits which
prepare quantum systems with desirable probability distributions. By sampling from these
distributions, answers can be obtained to many high-value problems, such as those from
economics [21], medical science [16,43], and material science [32]. In these algorithms, an
initial guess is made for the correct probability distribution, and then each sample is used to
further refine the distribution. To make this search tractable, the probability distributions
are sampled from a family of parameterized quantum circuits, known as ansatz circuits.

In practice, the structure of the ansatz circuit is static, so that the parameters only
vary the operators which appear within the circuits. The parameterized operators within
ansatz circuits can be understood geometrically as rotations by arbitrary angles. As a
result, the gate sets used to construct ansatz circuits are necessarily infinite. In contrast,
the gate sets implemented by real quantum computers are finite, due to limitations related
to error-correction [17]. This means that for each parameter refinement, the ansatz circuit
must be recompiled and optimized again. However, the compilation and optimization of
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quantum circuits are known to be highly error-prone [22, 54], so it is desirable to verify
both the equivalence of the optimized circuit to the original circuit, and more generally, the
correctness of each optimization. In both cases, it is necessary to reason equationally about
parameterized relations between quantum circuits.

The problem of parameterized equivalence-checking has been well-studied in the context of
distributed system. Given a set of parameters P and two programs parameterized by P , say C1
and C2, the parameterized-equivalence checking problem asks whether C1(θ) = C2(θ),∀θ ∈ P .
When P is finite, this problem can be solved by simply testing the elements of P . When
P is infinite, one approach to this problem is to find a cutoff n for which checking the
equivalence of C1 and C2 for n distinct elements of P implies the equivalence of C1 and C2
for all elements of P [18]. Formally, one tries to find an n ∈ N such that for all D ⊆ P , if
|D| ≥ n, then ∀θ ∈ D · C1(θ) = C2(θ) implies ∀θ ∈ P · C1(θ) = C2(θ). Typically, the choice
of n (and sometimes even D) will depend on both C1 and C2, and therefore this technique
requires domain-specific insights (see, e.g., [2, 24,27,29,37,49]). When n becomes intractably
large, probabilistic techniques have also been employed [15].

Cutoff-based techniques have yet to see wide application in the domain of parameterized
quantum circuit equivalence-checking. In 2020, Miller-Bakewell developed a framework which
adapts cutoff-based techniques to quantum circuits [35], though these techniques have yet
to be applied in practice. The key insight of this work was to note that parameterized
quantum circuits are analytic for realistic gate sets, and (up to a change of variable) can
often be expressed as matrices over complex Laurent polynomials. The positive and negative
degrees of these Laurent polynomials can be over-approximated in an inductive manner,
and correspond to a cutoff for parameterized verification. The main challenge in applying
the Miller-Bakewell framework is to identify an appropriate change-of-variables such that
all parameterized matrices become matrices over complex Laurent polynomials. Once this
change-of-variable has been identified, further steps may be taken, such as deriving a closed-
form equation for the cutoff. In Miller-Bakewell’s paper, the framework was applied to ZX-,
ZW-, and ZH-diagrams, though closed-form bounds were not derived.

In this paper, we propose a cutoff-based technique for quantum circuits with arbitrary
rotations with linear arguments. This technique can be understood as an instantiation
of the Miller-Bakewell framework, insofar as each parameterized circuit is realized as a
matrix over complex Laurent polynomials. However, the circuits considered in this paper
correspond to ZXW-diagrams (i.e., with matrix exponentiation) [45], which are not addressed
in Miller-Bakewell’s original work. We derive closed-form equations for these cutoffs, which
depend only on the coefficients of the parameters in the circuits. Furthermore, we provide an
alternative proof for the correctness of the Miller-Bakewell framework, which depends on the
distribution of zeros of Laurent polynomials as opposed to polynomial interpolation. This
change in perspective motivates a probabilistic variant of the Miller-Bakewell framework,
which is applicable for circuits with intractably large cutoffs.

In Sec. 3, we provide the syntax and semantics for our circuit language. In Sec. 4, we
illustrate our technique on a simple real-world example. In Sec. 5, we prove a cutoff theorem,
and propose a probabilistic variant. In Sec. 6, we identify and solve several challenges faced
when implementing this technique.

2 Background

We write N for the set of natural numbers (including zero), Z for the set of integers, Q for
the set of rational numbers, R for the set of real numbers, and C for the set of complex
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(a) The roots of unity in Q(ζ8). (b) Q(ζ6) = Q(ζ3) since ζ6 = −(ζ3)2.

Figure 1 Geometry of the cyclotomic numbers. The basis vectors of Q[ζn] form the vertices of a
regular n-gon on the complex unit circle, with one vertex at (1, 0).

numbers. If z ∈ C, then z denotes the complex conjugate of z. If n ∈ N, then [n] denotes the
set {j ∈ N : 1 ≤ j ≤ n} so that [0] = ∅. If a ∈ R, then a+ = max(0, a) and a− = min(0, a).

2.1 Linear Algebra
We assume familiarity with the basics of linear algebra. Otherwise, we refer the reader to an
introductory text, such as [7]. Let M be a complex matrix. We let Mj,k denote the entry of
M in the j-th row and the k-th column. We recall the following definitions. The conjugate
of M is the matrix M such that M j,k = Mj,k. The transpose of M is the matrix MT such
that (MT )j,k = Mk,j . The adjoint of M is the matrix MT , and is denoted M†. A matrix H
is called Hermitian if H = H†. A matrix U is called unitary if U is invertible and U−1 = U†.

2.2 Algebraic Numbers and Computation
We assume the reader is familiar with field theory, as found in standard abstract algebra
textbooks, such as [19]. Let F be a subfield of K. An element α ∈ K is algebraic over F if
there exists a polynomial p ∈ F[x] such that p(α) = 0. We write F(α) to denote the smallest
subfield of K containing both F and α. If deg(p) = n, then it can be shown that the elements
of F(α) form a finite-dimensional F-vector space with basis vectors {1, α, α2, . . . , αn−1}.
Furthermore, this vector space forms an F-algebra under the multiplication of F(α). In the
case where F = Q and K = C, we say that α is an algebraic number. The field of all algebraic
numbers is denoted QAlg. Algebraic numbers are ideal from a computational perspective,
since elements from n-dimensional Q-vector spaces can be represented exactly using only
2n integers (i.e., the numerators and denominators). This is in contrast to floating-point
arithemtic, which is inherently inexact.

A special class of algebraic numbers are the cyclotomic numbers. These are solutions
to polynomial equations of the form xn − 1 = 0. In other words, each cyclotomic number
is a root of unity. We let ζn denote the primitive n-th root of unity, which can be defined
analytically as ζn = ei2π/n. For example, ζ2 = −1 and ζ4 = i. The smallest subfield of C
containing Q and all cyclotomic numbers is referred to as the universal cyclotomic field.
Many algorithms exist to work efficiently with elements of the universal cyclotomic field, such
as [11] and [12]. It is well-known that many quantum gate sets can be defined exactly using
only finite-dimensional sub-fields of the universal cyclotomic field, such as the Clifford+T gate
set [20] and its generalizations [4]. For this reason, recent work in the verification of quantum
programs has advocated for the use of cyclotomic numbers as an exact representation [6].

In this paper, we also utilize analytic properties of cyclotomic numbers. It follows
from Euler’s formula that eiθ = cos(θ) + i sin(θ). We can then think of each cyclotomic
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number as a point of the complex unit circle (see Figure 1a). It follows geometrically that
Q(ζn) = Q(ζ2n) whenever n is odd (see Figure 1b). Moreover, it can be shown by simple
algebraic manipulations that the following equations hold.

cos(θ) = eiθ + e−iθ

2 sin(θ) = eiθ − e−iθ

2i

If θ is a rational multiple of π, say (q/r)2π, this means that both cos(θ) and sin(θ) are
elements of Q(i, ζr). However, identifying roots of unity can be challenging, since not all
elements of norm 1 in the universal cyclotomic field are roots of unity. A well-known example
is (3 + 4i)/5, which has norm 1 but is not a root of unity.

2.3 Multivariate Laurent Polynomials
Let R be a ring. Then R[x1, . . . , xk] denotes the ring of multivariate polynomials with
coefficients in R and indeterminates x1 through xk. An arbitrary element f ∈ R[x1, . . . , xk] is
of the form f(x1, . . . , xk) =

∑
t∈T (at

∏k
j=1 xj

tj ) for some finite T ⊆ Nk \{0}k with a non-zero
sequence {at}t∈T over R. We write degxj

(f) for the degree of f in variable xj and deg(f) for
the total degree of f , where degxj

(f) = max{tj : t ∈ T} and deg(f) = max{
∑k

j=1 tj : t ∈ T}.
When R is an integral domain, the following hold for all f, g ∈ R[x1, . . . , xk] and j ∈ [k].

degxj
(fg) = degxj

(f) + degxj
(g) deg(fg) = deg(f) + deg(g)

degxj
(f + g) ≤ max{degxj

(f), degxj
(g)} deg(f + g) ≤ max{deg(f), deg(g)}

It is well known that when k = 1 and R is an integral domain, either f = 0 or f has at
most deg(f) zeros. A consequence is that for any S ⊆ R, if f ̸= 0 and |S| > degx1(f), then
there exists an s ∈ S such f(s) ̸= 0. Moreover, if s is sampled uniformly from S, then
Pr(f(x) = 0) ≤ deg(f)/|S|. The latter two remarks generalize to multivariate polynomials.
Further generalization to Laurent polynomials are possible, by clearing the denominators.
▶ Theorem 2.1 (Combinatorial Nullstellensatz [3]). Let F be a field and f a polynomial in
F[x1, x2, . . . , xk] with total degree d1 + d2 + · · · + dk such that the coefficient of

∏k
j=1 x

dj

j is
nonzero in f . If S1, S2, . . . , Sk are subsets of F with |Sj | > dj for each j, then there exists
x ∈ S1 × S2 × · · · × Sk such that f(x) ̸= 0.
▶ Theorem 2.2 (DeMillo–Lipton–Schwartz–Zippel Lemma [15,44,55]). Let R be an integral
domain and f ∈ R[x1, x2, . . . , xk] a polynomial with total degree d. For each finite subset S
of R, if s1, s2, . . . , sk are sampled at random, both independently and uniformly from S, then
Pr(f(s1, s2, . . . , sk) = 0) ≤ d/|S|.

We can further generalize multivariate polynomials to multivariate Laurent polynomials,
denoted R[x1, x

−1
1 , . . . , xk, x

−1
k ]. In this setting, T ⊆ Zk, so that powers may be positive

or negative. For example, f(x1, x2) = x1x2 − x−3
1 + 5 is a Laurent polynomial from

Z[x1, x
−1
1 , x2, x

−1
2 ]. Since the exponents in a Laurent polynomial may be both positive and

negative, each Laurent polynomial has both positive and negative degrees. We write deg+
xj

(f)
for the positive degree of f in variable xj and deg−

xj
for the negative degree of f in variable

xj , where deg+
xj

(f) = max{t+j : t ∈ T} and deg−
xj

(f) = max{−t−j : t ∈ T}. Similarly, the
total positive degree of f is deg+(f) = max{

∑k
j=1 t

+
j : t ∈ T}.

3 A Syntax and Semantics for Parameterized Circuits

This section begins by reviewing quantum states, quantum operators, and their composition,
as in [38, Ch. 4]. This background material is then used to give syntax and parameterized
semantics for quantum circuits with arbitrary gates, and rotations around arbitrary axes.
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3.1 Quantum States
The primitive unit of information in quantum computing is the qubit. As in classical
computing, a qubit can be in the states zero and one, denoted |0⟩ and |1⟩. However, a
qubit may also be in a superposition of the states |0⟩ and |1⟩. Formally, this means that
the state of a qubit |ψ⟩ can be described as α |0⟩ + β |1⟩ for any α ∈ C and β ∈ C satisfying
|α|2 + |β|2 = 1. To simplify calculations, we think of |0⟩ and |1⟩ as the standard basis vectors
for C2 to obtain the following vector equation: |ψ⟩ = α |0⟩ + β |1⟩ = α

[
1
0
]

+ β
[

0
1
]

=
[ α

β

]
.

Of course, the quantum algorithms described in the introduction of this paper require
more than a single qubit of information. Given an n-qubit quantum system, there are clearly
2n possible basis states. For example, when n = 2, these are |00⟩, |01⟩, |10⟩, and |11⟩. As
before, an n-qubit quantum system may also be in an arbitrary superposition of these basis
states with the modulus-squared of the coefficients summing to 1. For example, an arbitrary
2-qubit quantum system has state |ψ⟩ = α |00⟩ + β |01⟩ + γ |10⟩ + ρ |11⟩ for any α, β, γ, ρ ∈ C
satisfying |α|2 + |β|2 + |γ|2 + |ρ|2 = 1. This means that the states of an n-qubit quantum
system correspond to the unit vectors in C2n .

3.2 Quantum Operations
A quantum program evolves the state of a quantum system, after which all qubits are
measured. Given a quantum state |ψ⟩ =

∑2n

j=1 αj |j⟩, the probability of observing state |j⟩ is
|αj |2. Then the paradigm of quantum computing is to construct an n-qubit quantum system
whose probability distribution assigns high probability to the correct output.

The evolution of a quantum system is described by a linear transformation of its state
space. Since the laws of physics are reversible, then this transformation must be invertible.
Moreover, the inverse of this transformation should be its conjugate transpose. This means
that operations on n-qubit systems correspond to unitary matrices. Given an n-qubit state
|ψ⟩ and an (2n) × (2n) dimensional matrix M , the state obtained by applying M to |ψ⟩ is
M |ψ⟩. For example, the following four matrices are unitary operations on a qubit.

I =
[

1 0
0 1

]
X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]
Y =

[
0 −i

i 0

]
The matrix I corresponds to a no-op and the matrix X corresponds to a not gate. The
matrix Z can be understood as adjusting the coefficient of |1⟩ by a factor of (−1). This has
no classical analogue. The gate Y is equal to (−iZ)X, and therefore, corresponds to a not
gate followed by some non-classical operation.

An important construct in classical computing is the if-then statement. This can be
generalized to quantum computing as follows. Let M be a unitary transformation on an
n-qubit quantum system. Then there exists a unitary transformation I2n ⊕M on an (n+ 1)-
qubit quantum system, such that I2n ⊕M applies M to the last n qubits of a basis state if
and only if the first qubit of the basis is in state |1⟩. Formally, I2n is the (2n) × (2n) identity
matrix, and I2n ⊕ M is the direct sum of I2n with M . In terms of matrices, I2n ⊕ M is
simply the block diagonal matrix with blocks I2n and M , as shown below.

I2n ⊕ M =
[

I2n 0
0 M

]
I2 ⊕ X =

[
I2 0
0 X

]
=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The matrix for I2 ⊕X, known as a cnot gate, is given above. This generalizes the classical
conditional statement: if the first bit is in state |1⟩, then apply a not gate to the second bit.

So far, all of the operations discussed are parameter-free. However, quantum algorithms
also make use of rotation gates, which are parameterized by an angle of rotation. As the
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name suggests, a rotation gate is defined by its axis-of-rotation. Formally, each axis M is a
Hermitian unitary matrix. Then one can define, as a generalization of Euler’s formula, the
rotation RM (θ) as follows.

RM (θ) = e−iMθ/2 =
∞∑

n=0

(−iMθ/2)n

n! = cos(−θ/2)I + i sin(−θ/2)M

This definition can be extended to k parameters by taking any transformation f : Rk → R.
For example, given f(θ1, θ2) = θ1 + θ2, we can define a two parameter rotation RM (f) where
RM (f)(θ1, θ2) = RM (f(θ1, θ2)) = RM (θ1 + θ2). In this work, we consider the family F of
k-variable rational-linear functions with affine translations by rational multiples of π. That
is, the set F is defined to be {f(θ) = a1θ1 + a2θ2 + · · · + akθk + qπ | a1, a2, . . . , ak, q ∈ Q}.

The most common rotations in quantum circuits are the I-, X-, Y -, and Z-rotations.
However, there are many single qubit rotations not of this form. For example, given any
coefficients α, β, γ ∈ R, if α2 + β2 + γ2 = 1, the matrix αX + βY + γZ is also a Hermitian
unitary matrix. Note that the matrix RI(−2θ) is typically referred to as a global phase gate,
rather than an I-rotation.

▶ Example 3.1 (Real Amplitude Ansatz Circuit). In quantum machine learning, convolutional
layers are often implemented using the real amplitude ansatz circuit [1, 5, 28, 34, 52]. This
circuit is composed from one or more layers of Z-rotations, each followed by a layer of
controlled-not gates. Since Z-rotations do not commute with the targets of controlled-not
gates, then these layers can interact in non-trivial ways. The choice of parameter to each
Z-rotation is treated as a weight in the quantum machine learning model.

3.3 Composing Quantum Operations
Just like classical operations, quantum operations can also be composed in sequence and in
parallel. Of the two, sequential composition is the simplest to describe. Assume that both M
and N are operations on an n-qubit quantum system. If N is applied to an n-qubit system
|ψ⟩, then the state N |ψ⟩ is obtained. If M is then applied to this intermediate state, then
the state M(N |ψ⟩) is obtained. This is equivalent to applying MN to |ψ⟩. In other words,
the sequential composition of quantum operations corresponds to matrix multiplication.

Now let M denote a quantum operation on an m-qubit quantum system and N denote a
quantum operation on an n-qubit quantum system. Intuitively, the parallel composition of
M and N should act on the first m-qubits by M , and the last n-qubits by N . However, this
composition must also respect superposition, through a property known an bilinearity. To
compute this new operation, the Kronecker tensor product is required, which is denoted ⊗
and defined as follows for matrices of any dimension.

c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n

...
...

. . .
...

cm,1 cm,2 · · · cm,n

⊗ M =


c1,1M c1,2M · · · c1,nM

c2,1M c2,2M · · · c2,nM
...

...
. . .

...
cm,1M cm,2M · · · cm,nM


It follows that (M ⊗N)(|ψ⟩ ⊗ |φ⟩) = (M |ϕ⟩) ⊗ (N |φ⟩) as desired.

3.4 Quantum Circuits
Quantum circuits are constructed from primitive gates, under sequential and parallel compos-
ition. In this section, we first define what we take to be primitive gates, and then define what
it means to be a circuit over this gate set. The distinction between syntax and semantics is
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G

(a) G ∈ G

G

(b) C(G)

RH(f(θ))

(c) RH(f)

C1

C2

(d) C1//C2

C1 C2

(e) C2 ◦ C1

Figure 2 The graphical language for circuits in Circ(G, H).

emphasized. In both cases, we introduce inductive principles which will be used later in this
paper. Formally, these circuits correspond to diagrams in a certain PROP category [9], with
semantics given functorially [31], though this is only used to prove the inductive principles
used throughout the paper, and to establish that our semantics and circuit transformations
are well-defined (see Appx. A for more details).

In what follows, C(−) is a function symbol used to denote conditional control. A gate
set is a collection of basic gates, closed under conditional control. A basic gate is a complex
matrix (e.g. unitary operations, state preparation, post-selection) or parameterized rotation.
Formally, we take some set G of complex matrices and some set H of Hermitian unitary
matrices. The associated gate set, denoted Σ(G,H) is defined inductively as follows.

If G ∈ G, then G ∈ Σ(G,H).
If M ∈ H, then RM (f) ∈ Σ(G,H) for each parameterization f ∈ F .
If G ∈ Σ(G,H) and G is unitary, then C(G) ∈ Σ(G,H).

We let in(−) and out(−) denote the input and output arities of these gates, which are defined
as follows.

If G ∈ G is (2n) × (2m), then in(G) = n and out(G) = m.
If M ∈ H is (2n) × (2n) and f ∈ F , then in(RM (f)) = out(RM (f)) = n.
If G ∈ Σ(G,H), then in(C(G)) = in(G) + 1 and out(C(G)) = out(G) + 1.

We let [[−]] denote the parameterized semantics of each gate, which are defined as expected.
If G ∈ G, then [[G]](θ) = G.
If M ∈ H and f ∈ F , then [[RM (f)]](θ) = cos(−f(θ)/2)I + i sin(−f(θ)/2)M .
If G ∈ Σ(G,H) with G an (2n) × (2n) unitary, then [[C(G)]](θ) = I2n ⊕ [[G]](θ).

Since this gate set is defined inductively, then to prove that every gate satisfies a predicate
P , it suffices to use well-founded induction (see Appx. A).

▶ Proposition 3.2. Assume that a predicate P on Σ(G,H) satisfies the following.
Base Case (1). ∀G ∈ G, P (G).
Base Case (2). ∀M ∈ H,∀f ∈ F , P (RM (f)).
Control Induction. ∀G ∈ Σ(G,H), G unitary and P (G) implies P (C(G)).

Then P (G) holds for each G ∈ Σ(G,H).

Circuits are then constructed from the elements of Σ(G,H) through sequential and parallel
composition. We let (◦) denote sequential composition and (//) denote parallel composition,
to distinguish between syntactic compositions and their semantic counterparts. Of course,
sequential composition requires that the outputs of the first sub-circuit matches the inputs
of the second sub-circuit. To handle this, we extend in(−) and out(−) as follows.

in(C1//C2) = in(C1) + in(C2) and out(C1//C2) = out(C1) + out(C2).
in(C2 ◦ C1) = in(C1) and out(C2 ◦ C1) = out(C2).

Then Circ(G,H), the family of circuits over the gate set Σ(G,H), is defined inductively as
follows where ϵ denotes the empty wire with in(ϵ) = out(ϵ) = 1.

If C ∈ Σ(G,H), then C ∈ Circ(G,H).
If C1, C2 ∈ Circ(G,H), then C1//C2 ∈ Circ(G,H).
If C1, C2 ∈ Circ(G,H) and in(C2) = out(C1), then C2 ◦ C1 ∈ Circ(G,H).

MFCS 2025
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RZ(2θ)
=

RZ(θ) RZ(−θ)

Figure 3 A parameterized equality used to compile controlled rotations.

A graphical language for Circ(G,H) is given in Figure 2. The semantic map [[−]] extends to
these circuits as expected: [[C2//C1]](θ) = [[C2]](θ)⊗[[C1]](θ), [[C2◦C1]](θ) = ([[C2]](θ))([[C1]](θ)),
and [[ϵ]] = I2. As with quantum gates, an inductive principle also holds for quantum circuits.

▶ Proposition 3.3. Assume that a predicate P on Circ(G,H) satisfies the following.
Base Case (1). P (ϵ).
Base Case (2). ∀G ∈ Σ(G,H), P (G).
Parallel Induction. If C1, C2 ∈ Circ(G,H) such that P (C1) and P (C2), then P (C1//C2).
Sequential Induction. If C1, C2 ∈ Circ(G,H) such that in(C2) = out(C1) with P (C1)
and P (C2), then P (C2 ◦ C1).

Then P (C) holds for each C ∈ Circ(G,H).

4 A Motivating Example: Circuit Compilation

We now discuss the verification of a concrete circuit equation. The example is simple but
illustrative of the techniques we will develop in the next section. Consider the equation in
Figure 3. A naive approach to establishing this equation is to evaluate the right-hand side to
obtain the following operator.

(I ⊕ X)(I ⊗ RZ(−θ))(I ⊕ X)(I ⊗ RZ(θ)) =
[

RZ(−θ)RZ(θ) 0
0 XRZ(−θ)XRZ (θ)

]
Then, by further simplification, we obtain the following equations.

RZ(−θ)RZ(θ) =
[

e−iθ/2eiθ/2 0
0 eiθ/2e−iθ/2

]
XRZ(−θ)XRZ(θ) =

[
e−iθ/2e−iθ/2 0

0 eiθ/2eiθ/2

]
Using the identities eaeb = ea+b and e0 = 1, it then follows that XRZ(−θ)XRZ(θ) = RZ(2θ)
and RZ(−θ)RZ(θ) = I. Consequently,

(I ⊕ X)(I ⊗ RZ(−θ))(I ⊕ X)(I ⊗ RZ(θ)) =
[

I 0
0 RZ(2θ)

]
= (I ⊕ RZ(2θ)).

This establishes the equation in Figure 3 for all choices of θ. However, this proof depends on
the parameterized equations ea+b = eaeb and e0 = 1. In general, it is challenging to find a
complete set of parameterized relations for a parameterized gate set [36]. Moreover, given an
arbitrary set of complete relations, the problem of deciding if two expressions are equivalent
is known to be undecidable [39]. For these reasons, we adopt a different approach.

A perhaps surprising result is that all parameterized circuit equalities can be established
by checking only a finite number of rotation angles. In other words, if the equality in Figure 3
did not hold, then a counterexample could be found by checking only a fixed number of
instances. To do this, we first convert the equality into a family of polynomials, such that
the equality holds if and only if all of the polynomials are identically zero. We then find an
integer n such that each of the polynomials has degree at most n. Since non-zero polynomials
of degree n have at most n roots, then either the polynomial is zero and will evaluate to zero
on n+ 1 angles, or the polynomial is non-zero and at least one of the n+ 1 angles yields a
non-zero result.
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To obtain the desired polynomials, we apply the change-of-variable e−iθ/2 7→ z. Under
this change of variable, the following equalities hold.

RZ(−θ)RZ(θ) =
[

z−1z 0
0 zz−1

]
=
[

1 0
0 1

]
= z−2

[
z2 0
0 z2

]
XRZ(−θ)XRZ(θ) =

[
z−1z−1 0

0 zz

]
=
[

z−2 0
0 z2

]
= z−2

[
1 0
0 z4

]
Continuing in this fashion, we can find that each matrix entry on the left-hand side or
the right-hand side of Figure 3 has degree at most four. Then the difference between the
left-hand side and the right-hand side also has degree at most four. Note that the z−2

terms correspond to a removable singularity at z = 0, which does not fall on the complex
unit circle, and can be safely ignored. Since degree four polynomials have at most four
roots, then it suffices to check the equality in Figure 3 using only 5 angles from [0, 4π).
For example, consider the five angles θj = jπ/2 for 0 ≤ j ≤ 4. It is easily verified that
(I ⊕ RZ(2θj)) = (I ⊕ X)(I ⊗ RZ(−θj))(I ⊕ X)(I ⊗ RZ(θj)) for all 0 ≤ j ≤ 4. Then
f(θ) = (I ⊕RZ(2θ)) − (I ⊕X)(I ⊗RZ(−θ))(I ⊕X)(I ⊗RZ(θ)) has at least five roots. Since
each entry of f(θ) has degree at most four, then f is identically zero and Figure 3 must hold.
Note that the angles were sampled from [0, 4π) since e−iθj/2 has period 4π.

While this example was admittedly simplistic, we will see in the next section, that the
technique generalizes to all parameterized circuits. In particular, just as in this example, we
will see that computing the polynomials is inconsequential. Instead, it will suffice to find an
efficient procedure which provides a reason bound on each degree.

5 Equivalence Checking Techniques

In this section, we consider parameterized quantum circuits where all coefficients are from Z,
rather than Q. We denote these circuits CircZ(G,H). It is first shown that up to a change of
variable, these circuits admit semantics as matrices over the ring of Laurent polynomials
C[z1, z

−1
1 , . . . , zk, z

−1
k ]. This is then combined with Thm. 2.1 to establish a cutoff-based

equivalence checking theorem for these circuits. Using Thm. 2.2, a probabilistic variant is
also obtained. In Sec. 6, we show how these results generalize back to parameterized circuits
with rational coefficients.

5.1 Polynomial Semantics
This section shows that, up to a change of variable, each circuit Circ(G,H) has semantics
given by a matrix with entries corresponding to complex Laurent polynomials. Moreover,
these polynomials are shown to have degrees bounded by certain sums of the coefficients
which appear in the circuit. It follows that the techniques used in Sec. 4 can be generalized
to all integral circuits in CircZ(G,H).

As a first step, a new semantic interpretation [[−]]Poly is provided for CircZ(G,H), which
interprets each circuit in CircZ(G,H) as a polynomial over C[z1, z

−1
1 , . . . , zk, z

−1
k ]. Since

parameters only appear in trigonometric terms, then a first step is to give Laurent polynomials
which abstract the trigonometric terms. Let α ∈ Zk, q ∈ Q, and f(θ) = α1θ1 + · · ·αkθk + q.

cos
(

−f(θ)
2

)
= ei(−f(θ)/2) + e−i(−f(θ)/2)

2 = e−iq/2

2

k∏
j=1

(
e−iθj /2)aj + eiq/2

2

k∏
j=1

(
eiθj /2)aj

sin
(

−f(θ)
2

)
= ei(−f(θ)/2) − e−i(−f(θ)/2)

2i
= e−iq/2

2i

k∏
j=1

(
e−iθj /2)aj − eiq/2

2i

k∏
j=1

(
eiθj /2)aj
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By substituting zj = e−iθj/2 for each j ∈ [k] and letting c = e−iq/2, the following Laurent
polynomials are obtained.

CPoly(f) = c

2

k∏
j=1

z
αj

j + 1
2c

k∏
j=1

z
−αj

j SPoly(f) = −ic

2

k∏
j=1

z
αj

j + i

2c

k∏
j=1

z
−αj

j

Then the following equations hold by construction.

CPoly(f)
(
e−iθ1/2, . . . , e−iθk/2) = e−iq/2

2

k∏
j=1

(
e−iθj /2)aj + eiq/2

2

k∏
j=1

(
eiθj /2)aj = cos

(
−f(θ)

2

)

SPoly(f)
(
e−iθ1/2, . . . , e−iθk/2) = e−iq/2

2i

k∏
j=1

(
e−iθj /2)aj − eiq/2

2i

k∏
j=1

(
eiθj /2)aj = sin

(
−f(θ)

2

)

Given these polynomials, [[−]]Poly is defined inductively on the gates as follows.
If G ∈ G, then [[G]]Poly = G.
If M ∈ H and f ∈ F , then [[RM (f)]]Poly = CPoly(f)I + iSPoly(f)M .
If G ∈ Σ(G,H) with G an (2n) × (2n) unitary, then [[C(G)]]Poly = I2n ⊕ [[G]]Poly.

The semantics extend as expected to sequential and parallel composition. This makes precise
the change of variable used in Sec. 4.

▶ Definition 5.1 (Polynomial Abstraction). A polynomial abstraction is a function [[−]]∗ from
CircZ(G,H) to collection of matrices over C[z1, z

−1
1 , . . . , zk, z

−1
k ] such that [[C]](θ1, . . . , θk) =

[[C]]∗
(
e−iθ1/2, . . . , e−iθk/2) for all C ∈ CircZ(G,H).

▶ Theorem 5.2. [[−]]Poly is a polynomial abstraction.

▶ Example 5.3 (Polynomial Semantics). The calculations from Sec. 4 can be revisited from
the perspective of polynomial semantics. Of course, the circuit in Figure 3 is somewhat
uninteresting, since the circuit has only one parameter. Instead, we will consider a new
circuit with two parameters ρ1 and ρ2 obtained through the substitution θ = f(ρ1, ρ2) where
f(ρ1, ρ2) = ρ1 − 2ρ2. The sine and cosine polynomials for f are as follows.

CPoly(f) = 1
2z1z

−2
2 + 1

2z
−1
1 z2

2 SPoly(f) = −i
2 z1z

−2
2 + i

2z
−1
1 z2

2

Then CPoly(f) + i SPoly(f) = z1z
−2
2 and CPoly(f) − i SPoly(f) = z−1

1 z2
2 . Let C1 denote the

right-hand side of the equation in Figure 3. To compute [[C1]]Poly, we start by evaluating each
gate. Clearly [[C(X)]]Poly = I2 ⊕X. Moreover,

[[ϵ//RZ(f)]]Poly = I2 ⊗ [[RZ(f)]]Poly = I2 ⊗
[

z1z−2
2 0

0 z−1
1 z2

2

]
,

[[ϵ//RZ(−f)]]Poly = I2 ⊗ [[RZ(−f)]]Poly = I2 ⊗
[

z−1
1 z2

2 0
0 z1z−2

2

]
.

It follows by calculations similar to those in Sec. 4 that,

[[C1]]Poly = [[C(X)]]Poly[[ϵ//RZ(−f)]]Poly[[C(X)]]Poly[[ϵ//RZ(f)]]Poly = I2 ⊕
[

z−2
1 z4

2 0
0 z2

1z−4
2

]
.

Then [[C1]]Poly(e−iρ1/2, e−iρ2/2) = I ⊕RZ(2f(ρ1, ρ2)) = [[C1]](ρ1, ρ2) as expected. ◀
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To check that [[C1]] = [[C2]], it suffices to check symbolically that [[C1]]Poly = [[C2]]Poly.
However, it is often too computationally expensive to compute the polynomials explicitly.
Instead, one could first upper-bound the degree of each polynomial, and then combine these
degree bounds with the theorems of Sec. 2.3. It is not hard to see that for each component
of [[RH(f)]]Poly, its degrees are all bounded by the coefficients of f . This property extends to
all circuits in CircZ(G,H) by studying their coefficient sequences. Intuitively, the coefficient
sequence of a circuit C is a sequence A(C) over Qk such that A(C)j is the list of coefficients
for the j-th rotation in C. More formally, let (Qk)∗ denote the set of all finite sequences over
Qk and (·) denote sequence concatenation. Then A(−) is defined inductively as follows.

If G ∈ G, then A(G) = ϵ.
If M ∈ H and f(θ) = a1θ1 + · · · + akθk + q, then A(RM (f)) = ((a1, . . . , ak)).
If G ∈ Σ(G,H), then A(C(G)) = A(G).
If C1, C2 ∈ Circ(G,H), then A(C1//C2) = A(C1) ·A(C2).
If C1, C2 ∈ Circ(G,H) and in(C2) = out(C1), then A(C2 ◦ C1) = A(C2) ·A(C1).

Then CircZ(G,H) is precisely the set of circuits in CircZ(G,H) such that A(C) ∈ (Zk)∗. We
define ΣZ(G,H) analogously. The following definition generalizes the coefficient bound of the
degree of a gate to a coefficient bound on the degree of all circuits.

▶ Definition 5.4 (Coefficient Bounded Semantics). Let [[−]]∗ be a polynomial abstraction. A
circuit C ∈ Circ(G,H) with in(C) = n and out(C) = m is coefficient bounded with respect to
[[−]]∗, denoted Bnd∗(C), if for each s ∈ [2n] and t ∈ [2m] with f = ([[C]]∗)s,t,

(B1). deg+
zj

(f) ≤
∑

a∈A(C) |aj | for each j ∈ [k],
(B2). deg−

zj
(f) ≤

∑
a∈A(C) |aj | for each j ∈ [k],

(B3). deg+(f) ≤
∑

a∈A(C) κ(a) where κ(a) = max{
∑k

j=1 a
+
j ,
∑k

j=1 −a−
j }.

▶ Example 5.5 (Coefficient Bounded Semantics). Recall C1 from Ex. 5.3. It will be shown that
BndPoly(C1) holds. First, the coefficient sequence of C1 must be computed. As illustrated
in the previous example, C1 contains only the rotations: R1 = C(RZ(−ρ1 + 2ρ2)) and
R2 = C(RZ(ρ1 − 2ρ2)). The coefficient sequences of these rotations are β = (−1, 2) and
γ = (1,−2) respectively. Then A(C2) = A(R1) · A(R2) = (β) · (γ) = (β, γ). Moreover,
κ(β) = max{0 + 2, 1 + 0} = 2 and κ(γ) = max{1 + 0, 0 + 2} = 2. By inspecting the matrices
in Ex. 5.3, it is clear that the following bounds hold for all j ∈ [2] and s, t ∈ [4].

deg+
zj

(([[R1]]Poly)s,t) ≤ |βj | deg−
zj

(([[R1]]Poly)s,t) ≤ |βj | deg+(([[R1]]Poly)s,t) ≤ κ(β)

deg+
zj

(([[R2]]Poly)s,t) ≤ |γj | deg−
zj

(([[R2]]Poly)s,t) ≤ |γj | deg+(([[R2]]Poly)s,t) ≤ κ(γ)

The κ terms can be thought of as adding together the maximum positive degrees of the
two terms in each sine or cosine polynomial It turns out that these bounds compose ad-
ditively under the composition of matrices, motivating properties (B1) through to (B3).
In this example

∑
α∈A(C1) |α1| = | − 1| + |1| = 2,

∑
α∈A(C1) |α2| = |2| + | − 2| = 4, and∑

α∈A(C1) κ(α) = 2 + 2 = 4 By inspecting the final matrix in Ex. 5.3, it is clear that the
following bounds hold for all s, t ∈ [4] where f = ([[C1]]Poly)s,t.

deg+
z1 (f) ≤ 2 deg−

z1 (f) ≤ 2 deg+
z2 (f) ≤ 4 deg−

z2 (f) ≤ 4 deg+(f) ≤ 4

Then C1 satisfies (B1) through to (B3). Therefore, BndPoly(C1) holds ◀

This rationale given in Ex. 5.5 extends to all circuits in CircZ(G,H). Since primitive gates
map to constant matrices, then they trivially satisfy BndPoly(−). By construction of CPoly(f)
and SPoly(f), then rotation matrices also satisfy BndPoly(−). It is then easy to show, using
Prop. 3.2, that every gate in ΣZ(G,H) satisfies BndPoly(−). With a slightly more careful
analysis, it can then be shown that this invariant is closed under sequential and parallel
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RX(θ1 + 2θ2)

RX(−θ2)

(a) The circuit for α = ((1, 2), (0, −1)).

RX(nθ) Z RX(nθ)

(b) (RX(nθ)) ◦ Z ◦ (RX(nθ))

Figure 4 Circuits used in Ex. 5.8 and Ex. 5.9 to illustrate the precision of Bnd(−).

composition. Intuitively, both matrix multiplication and the Kronecker tensor product yields
sums of products of polynomials, in which each term can be shown to satisfy the degree
bounds. Then by Prop. 3.3, every circuit in CircZ(G,H) also satisfies BndPoly(−). Given
these coefficient bounded semantics, the singularity factoring techniques of Sec. 4 can then
be applied to obtain Cor. 5.7. All proof details can be found in Appx. B.

▶ Theorem 5.6. If C ∈ CircZ(G,H), then BndPoly(C).

▶ Corollary 5.7. If C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H) with in(C1) = in(C2) = n and
out(C1) = out(C2) = m, then for each pair of indices s ∈ [2n] and t ∈ [2m], there exists a
polynomial f ∈ C[x1, . . . , xk] such that,

(D1). degxj
(f) ≤ 2λj for each j ∈ [k],

(D2). deg(f) ≤ max{
∑

a∈A(C) κ(a) : C ∈ {C1, C2}} +
∑k

j=1 λj,
(D3). ([[C1]] − [[C2]])s,t (θ) = 0 if and only if f(e−iθ1/2, . . . , e−iθk/2) = 0,

where λj = max{
∑

a∈A(C) |aj | : C ∈ {C1, C2}} for each j ∈ [k].

An interesting observation is that the bounds obtained through Thm. 5.6 were tight
in Ex. 5.5. A natural question is whether these bounds are always tight, with respect to
the granularity of the abstraction. We answer this question in the positive, by showing
that for each coefficient sequence α, there exists a circuit C with A(C) = α such that the
corresponding bound is tight. Of course, it is not possible to reconstruct a circuit from its
coefficient sequence, so some information must be lost. To this end, we exhibit a family of
circuits in Ex. 5.9, each of degree zero, for which arbitrarily large bounds can be obtained.
In this example, relations exist between the rotations that depend on the axes-of-rotation
and the parameter-free gates in the circuit, both of which are not captured by the coefficient
sequence. In particular, both examples rely on the relations (RX(β))(RX(γ)) = RX(β + γ)
and Z(RX(β)) = (RX(−β))Z.

▶ Example 5.8 (Necessary Bounds). Let α be any sequence over Zk with |α| = n. For each j ∈
[n], define a linear function fj(θ) = (αj)1θ1 + · · · + (αj)kθk and a rotation gate Gj = RX(fj).
Now consider the circuit C = G1// · · · //Gn (see Figure 4a). It follows that A(C) = α.
Moreover, ([[C]](θ))0,0 =

∏n
j=1 cos(fj(θ)/2). With regard to the polynomial semantics,

[[C]]Poly = 2−n
∏

a∈α(
∏k

j=1 z
aj

k −
∏k

j=1 z
−aj

k ). Clearly deg+
xj

(([[C]]Poly)0,0) =
∑

a∈α |aj | and
deg−

xj
(g) =

∑
a∈α |aj | for each j ∈ [k]. Then BndPoly(C) is tight. Since α was arbitrary, then

every coefficient sequence is realizable with tight bounds. ◀

▶ Example 5.9 (Impact of Circuit Relations). Fix k = 1 as the number of parameters and
let n ∈ N. Consider the circuit C = RX(nθ) ◦ Z ◦ RX(nθ), as illustrated in Figure 4b. It
follows that [[C]](θ) = (RX(nθ))Z(RX(nθ)) = (RX(nθ))(RX(−nθ))Z = RX(0)Z = Z. Since
[[C]](θ) is constant, its associated polynomials have degree zero. However, BndPoly(C) yields
an upper bound of

∑
a∈A(C) |a1| = |n| + |n| = 2n, which exceeds the true degree by 2n. Since

n was arbitrary, this error can be made arbitrarily large. ◀
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5.2 A Cutoff Theorem for Parameterized Equivalence
This section shows that parameterized equivalence checking reduces to parameter-free equival-
ence checking for quantum circuits (Thm. 5.10). The proof proceeds as follows. First, Cor. 5.7
is used to characterize a family of polynomials which are identically zero if and only if the
two circuits are equal. Using Thm. 2.1, a finite set of points S ⊆ Qk can be constructed to
determine if these polynomials are identically zero. The points in S are in bijection with a
set of points on the complex unit circle under the transformation x 7→ e−ix/2. It follows that
each polynomial is identically zero if and only if [[C1]](s) = [[C2]](s) for all points s ∈ S. Note
that the polynomials are never explicitly constructed. All proof details are in Appx. C.

▶ Theorem 5.10. Let C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H) with in(C1) = in(C2) and
out(C1) = out(C2). If S1, S2, . . . , Sk ⊆ [0, 4π) such that |Sj | > 2λj for each j ∈ [k], then
[[C1]](θ) = [[C2]](θ) for all θ ∈ Rk if and only if [[C1]](v) = [[C2]](v) for all v ∈ S1 ×S2 ×· · ·×Sk.

▶ Corollary 5.11. If G and H consist of matrices over the universal cyclotomic field, then
the parameterized equivalence checking problem is decidable for CircZ(G,H).

As k grows large, the utility of Thm. 5.10 decreases. For example, if each λj is b, then
|S1 × · · · × Sk| = (2b + 1)k. That is, the number of instances grows exponentially with k.
However, this exponential growth can be overcome by a probabilistic algorithm. Fix a finite
subset S of [0, 4π)k and assume that s is chosen at random from S. If [[C1]](s) = [[C2]](s),
then conclude that [[C1]] = [[C2]], otherwise conclude that [[C2]] ̸= [[C2]]. Clearly, this algorithm
has no false negatives, since [[C1]](s) ̸= [[C2]](s) implies [[C2]] ̸= [[C2]]. A more interesting
question is the false positive rate. Note that a false positive occurs when [[C1]](s) = [[C2]](s)
but [[C1]] ̸= [[C2]]. It is shown in the following theorem that the probability of a false positive
decreases with order O(1/|S|), as an application of Thm. 2.2.

▶ Theorem 5.12. Let C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H) with in(C1) = in(C2),
out(C1) = out(C2), and [[C1]] ̸= [[C2]]. For each finite subset S ⊆ [0, 4π), if s1, . . . , sk

are sampled at random both independently and uniformly from S, then

Pr ([[C1]](s1, . . . , sk) = [[C2]](s1, . . . , sk)) ≤ d/|S|

where d = max{
∑

α∈A(C) κ(α) : C ∈ {C1, C2}} +
∑k

j=1 λj.

6 Extending to Rational Coefficients and Global Phase

The methods presented in Sec. 5 face several limitations. In particular, both Thm. 5.10 and
Thm. 5.12 assume that the circuits are integral, and do not allow for equivalence up to global
phase. In this section, we show how to extend the techniques of Sec. 5 to handle rational
circuits and global phase. We also expand Thm. 5.12 into an algorithm, and consider the
problem of angle sampling given a gate set over the universal cyclotomic field.

6.1 Verifying Circuits with Rational Coefficients
Most parameterized quantum circuits have fractional coefficients. For example, the equality
in Figure 3 is typically stated with a parameter θ on the left-hand side and the parameters
±θ/2 on the right-hand side. The circuits in Figure 3 are related to these fractional circuits
by the substitution f(θ) = θ/2. Conceptually, f : Rk → Rk reparameterizes the circuit, by
inducing a bijection between the parameter space of the rational circuits and the parameter
space of the integral circuits. This generalizes to all examples (see Appx. D for proofs).
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▶ Lemma 6.1. Let C1, C2 ∈ Circ(G,H). If f : Rk → Rk is a bijective function, then
[[C1]] = [[C2]] if and only if [[C1]] ◦ f = [[C2]] ◦ f .

The goal of this section is to construct a syntactic transformation which eliminates all
rational coefficients, which preserving the semantic interpretation via a bijective reparameter-
ization. A syntactic reparameterization is a map F : Circ(G,H) → Circ(G,H) with a bijective
function f : Rk → Rk such that [[F (C)]] = [[C]] ◦ f . The simplest syntactic reparameterization
is a linear rescaling of the parameters in the circuit by a non-zero rational vector. For each
vector v ∈ (Q \ {0})k, define the map Fv : Circ(G,H) → Circ(G,H) as follows.

If G ∈ G, then Fv(G) = G.
If M ∈ H and f(θ) = a1θ1 + a2θ2 + · · · + akθk + q, then Fv(RM (f)) = RM (g) where
g(θ) = (v1a1)θ1 + (v2a2)θ2 + · · · + (vkak)θk + q.
If G ∈ Σ(G,H), then Fv(C(G)) = C(Fv(G)).
If C1, C2 ∈ Circ(G,H), then Fv(C1//C2) = Fv(C1)//Fv(C2).
If C1, C2 ∈ Circ(G,H), then Fv(C2 ◦ C1) = Fv(C2) ◦ Fv(C1).

▶ Theorem 6.2. For each v ∈ (Q\{0})k, f : Rk → Rk defined by f(θ) = (v1θ1, v2θ2, . . . , vkθk)
is bijective and Fv is syntactic reparameterization with respect to f .

Now assume that C1 and C2 are circuits in Circ(G,H). For the correct choice of v, both
Fv(C1) and Fv(C2) are elements of CircZ(G,H). Intuitively, each vj must be chosen such
that it clears the denominators of all coefficients tied to θk in both C1 and C2. Formally, let
denom(q) denote the denominator of q ∈ Q and lcm{x1, x2, . . . , xn} denote the least common
multiple of x1, x2, . . . , xn ∈ Z. Then for each j ∈ [k], Xj = {denom(αj) : α ∈ A(C1) ·A(C2)}
is the set of all denominators of coefficients tied to θk in both C1 and C2. Then vj = lcm(Xj)
for each j ∈ [k]. Let circLcm(C1, C2) denote this vector.

▶ Theorem 6.3. If C1, C2 ∈ Circ(G,H) and v = circLcm(C1, C2), then Fv(C1) ∈ CircZ(G,H)
and Fv(C2) ∈ CircZ(G,H). Moreover, [[C1]] = [[C2]] if and only if [[Fv(C1)]] = [[Fv(C2)]].

▶ Corollary 6.4. If G and H consist of matrices over the universal cyclotomic field, then the
parameterized equivalence checking problem is decidable for Circ(G,H).

6.2 Verifying Circuits Modulo Global Phase
In Sec. 5 the circuits C1 and C2 where defined to be equivalence when [[C1]](θ) = [[C2]](θ) for
all θ ∈ Rk. For many applications, this notion of equivalence is far too strict. This is because
C1 and C2 will prepare the same probability distribution provided there exists some function
f : Rk → R such that [[C2]](θ) = eif(θ)π[[C1]](θ) for all θ ∈ Rk. When such a function exists,
we say that C1 and C2 are equivalent modulo global phase. Of course, verifying the existence
of an arbitrary f is infeasible. Prior work has assumed f to be affine linear [23, 41, 51]. That
is, f(θ) = α1θ1 + · · ·αkθk + β. In this section we show how to verify the equivalence of C1
and C2 modulo affine linear global phase, under the following assumptions.
1. All matrices in H are defined over the universal cyclotomic field.
2. All matrices in G are injective and defined over the universal cyclotomic field.
In practice, the second assumption restricts G to unitary operations and state preparation.

Since the universal cyclotomic field is closed under addition and multiplication, then every
global phase will be cyclotomic when evaluated at rational multiples of π. In general, α need
not be rational, since there exists cyclotomic numers of norm 1 which are not roots of unity.
However, the periodicity of [[C1]] an [[C2]] ensure that α ∈ Qk. Using properties of cyclotomic
numbers, such as the fact that Q(ζ2n) = Q(ζn) for odd n, it is then possible to solve for
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α (if it exists). In Appx. E, an algorithm FindPhase(C1, C2) is described to compute these
coefficients. The injectivity of G ensures that all coefficients can be isolated (this condition is
sufficient but not necessary). In the case where C1 and C2 are not equivalent up to global
phase, then arbitrary coefficients are returned. Using f = FindPhase(C1, C2), the global
phase can be added to C2 via a global phase gate RI(f). Then equivalence modulo global
phase reduces to exact equivalence as follows.

▶ Theorem 6.5. Assume G and H consist of matrices over the universal cyclotomic field,
with all gates in G injective. If C1, C2 ∈ CircZ(G,H) and (z, f) = FindPhase(C1, C2), then C1
is equivalent to C2 modulo affine linear global phase if and only if [[C1]] = [[zI ◦RI(f) ◦ C2]].

▶ Corollary 6.6. If G and H satisfy assumptions (1–2), then the parameterized equivalence
checking problem is decidable modulo affine linear global phase for Circ(G,H).

6.3 A Probabilistic Equivalence Checking Procedure
Imagine applying Thm. 5.12 to a pair of quantum circuits C1 and C2. In practice, an end-user
would have some desired upper bound p ∈ (0, 1] on the false positive rate. A simply way to
bound the false positive rate is to require that d/|S| ≤ p, meaning that d/p ≤ |S|. Since d/p
is positive and |S| is a natural number, then the minimum value of |S| which satisfies this
inequality is N = ⌈d/p⌉. Using this optimal solution, the following algorithm is obtained.
1. Compute d = max{

∑
α∈A(C) κ(α) : C ∈ {C1, C2}} +

∑k
j=1 λj .

2. Select a set S ⊆ [0, 4π) such that |S| = ⌈d/p⌉.
3. Sample s1, . . . , sk at random both independently and uniformly from S.
4. Determine if [[C1]](s1, . . . , sk) = [[C2]](s1, . . . , sk).
The most crucial step of this algorithm is the second step. First, the choice of S must ensure
that the values of sin(−) and cos(−) are exact. As outlined in Sec. 2.2, the simplest way to
do this is to sample S from [0, 4π) ∩ Qπ for with for which sin(−) and cos(−) must evaluate
to cyclotomic numbers. This method is particularly effective when G and H consists purely
of matrices over the universal cyclotomic field, in which case all computation can be carried
out over the universal cyclotomic field.

Now, consider the elements of sin(S) and cos(S). For each (j/n)π in S, the elements
sin(j/n) and cos(j/n) will be elements of Q[ζn]. Likewise, if ℓ is the least common denominator
of all fractions in S, then S ⊆ Q[ζℓ]. In the worst case, Q[ζℓ] will be an ℓ-dimensional vector
space. This means that the cost of addition will grow at least linearly with ℓ, and the cost of
multiplication will grow at least quadratically with ℓ.

▶ Theorem 6.7. If k ∈ N, S ⊆ [0, k) ∩ Q and b = |S|, then lcm{denom(s) : s ∈ S} ≥ ⌈b/k⌉.

Let M be the smallest multiple of 4 which is greater than or equal to N . It follows from
Thm. 6.7 that S = {0, (1/M)4π, (2/M)4π, . . . , ((M − 1)/M)4π} minimizes ℓ. This set is also
easy to compute, and is therefore taken to be the definition of S.

7 Related Work

In the introduction, we discussed the cutoff-based techniques [35], which subsumes prior
work such as [25]. In this section, we compare to other approaches.

Circuit Rewriting. It was highlighted in Ex. 5.9 that circuit rewriting intersects with
parameterized equivalence checking. In [41], an incomplete equational theory is given for
a family of parameterized circuits, which is shown to be effective for equivalence checking.
In [47], a complete set of relations are derived, under the assumption that each parameter
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appears exactly once in the circuit. Relations which hold for abstract gate sets, such as
Σ(G,H), have yet to be explored.

Symbolic Techniques. In [51], symbolic techniques are used to determine parameterized
equivalence. Particularly, trigonometric relations, together with the Pythagorean relation
cos(θ)2 + sin(θ)2 = 1, are used to reduce equivalence checking to a family of equations over
the theory of non-linear real arithmetic. This is then solved using the Z3 [14] solver as a
black box. However, the decision problem for non-linear real arithmetic is known to be
double-exponential in the number of variables [10,26], whereas our approach is exponential
in the number of variables.

Probabilistic Techniques. In [50], Thm. 2.2 was used to determine the equivalence of
parameterized quantum circuits. However, our technique yields Laurent polynomials rather
than ordinary polynomials, which we do not compute explicitly. In [41], Peham et al. show
that if v is sampled uniformly at random from [0, 4π)k, then Pr([[C1]](v) = [[C2]](v)) = 0 given
[[C1]] ̸= [[C2]]. However, sampling v from a uniform continuous distribution is impossible on a
digital computer, which can only represent a countable and non-enumerable subset of real
numbers [46]. In Peham et al., floating-point is used, and presumably, the error is assumed
to be uniform as well. In our work, all computation is exact, and therefore, such assumptions
do not apply. Since there does not exist a uniform distribution for countable sets, we instead
sample uniformly from a finite subset of [0, 4π), in which case Thm. 2.2 applies, rather than
the analytic results of Peham et al.

8 Conclusion and Future Work

In this paper, we considered the problem of parameterized equivalence checking for quantum
circuits. We show that the parameterized problem can be reduced to finitely many instances
of the parameter-free problem, regardless of the gate set or axes of rotation. Consequently,
the problem is decidable in the case of gate sets defined over the universal cyclotomic field.
Moreover, we show that when the number of instances becomes intractable large, there exists
a probabilistic variation of the algorithm where the probability of being incorrect can be
made arbitrarily small. We have outlined how the techniques can be implemented in practice,
taking into account rational coefficients, global phase, and angle sampling.

In future work, we would like to explore how these decision procedures can be implemented
efficiently using circuit rewriting and sparse matrix representations. In particular, we would
like to explore angle sampling and circuit evaluation using ZX-diagrams [40], tensor decision-
diagrams [53], and model-counting [33], which have all proven effective in parameter-free
equivalence checking. We would also like to explore how rewriting-based techniques and
symmetry reductions might help to tighten the cutoffs obtained from Bnd(−). For example,
the bound obtained in Ex. 5.9 could be reduced to zero by viewing each relation as a rewriting
rule, and then searching for a derivation which reduces the bound.
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A Categorical Foundations for Syntax and Semantics

This section introduces the category theory necessary to understand why the syntax and
semantics of Sec. 3, the abstractions of Sec. 5, and the syntactic transformations of Sec. 6.1
are all well-defined. First, the syntax for Circ(G,H) is formally defined and the inductive
principles are established. Second, categories are introduced as a mathematical framework for
modeling the semantics of typed operations with sequential composition. Third, premonoidal
categories are introduced to model the composition of concurrent processes. It is shown
that all of the structures studied in this paper are premonoidal categories, and that all of
the transformations studied are free premonoidal functors. Finally, monoidal categories are
introduced to model parallel composition in circuits. It is shown that the semantics and
syntactic transformations respect the monoidal structure as well, whereas the coefficient
sequences do not.

A.1 Syntax and Structural Induction
Universal algebra is the field of mathematics which studies mathematical objects constructed
from free variables, function symbols, and constant symbols. We use the theory of universal
algebra to formally define our syntactic structures and their various interpretations. We
begin with a review of many-sorted universal algebras as described in [8]. We then use this
framework to define the set of all gates and the set of well-formed valid circuits.

Let S be a finite set whose elements are referred to as sorts. An S-signature is defined by
the following data.

A set Σ whose elements are called function symbols.
A function dom : Σ → S∗ called the domain function.
A function cod : Σ → S called the codomain function.

Each S-signature Σ defines a language of (ground) terms, denoted T (Σ). Since Σ is many-
sorted, it is necessary to first define the ground terms of each sort s ∈ S, denoted T (Σ, s).
Formally, for each function symbol f ∈ Σ with domain d = dom(f) and arity n = |d|, and
for all terms t1 ∈ T (Σ, d1), . . . , tn ∈ T (Σ, dn), there is a term f(t1, . . . , tn) ∈ T (Σ, cod(f)).
The base cases for this definition are the constant terms, that is, the function symbols f ∈ Σ
such that |dom(f)| = 0. It can be shown that the ground terms of sort s ∈ S are always
well-defined (and can be obtained by computing a least fixed point). The set of all ground
terms is defined to be T (Σ) =

⋃
s∈S T (Σ, s).

An interpretation of an S-signature is an assignment of sets to each sort, an assignment
of values to each constant term, an an assignment of functions to each function symbol.
Formally, let Σ be an S-signature. An S-interpretation of Σ consists of the following data.

For each s ∈ S, a set Xs whose elements are called values of sort s.
For each f ∈ Σ with |dom(f)| = 0 and s = cod(f), a choice of v(f) ∈ Xs.
For each f ∈ Σ with d = dom(f), s = cod(f), and n = |d|, a choice of function
v(f) : Xd1 × · · · ×Xdn

→ Xs.
Each S-interpretation of Σ defines a unique function v : T (Σ) →

⋃
s∈S Xs which satisfies the

equation v(f(t1, . . . , tn)) = v(f)(v(t1), . . . , v(tn)).
The syntax used in this paper is easily expressible through universal algebra. This construc-

tion is desirable, since the various functions defined on the gate set are merely interpretations.
For the signature of gate terms, there are four types, denoted {UMat,NMat,Herm,Poly}. The
sorts UMat and NMat are used to distinguish the unitary operators from the non-unitary op-
erators. To this end, we partition G into GU ∪GN where, GU = {M ∈ G : MM† = M†M = I}.
The sorts Herm and Poly distinguish the elements of H and F when constructing a rotation.
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Moreover, the function symbols in the gate signature are ΣG = {C,Rot} ∪ G ∪ H ∪ F with
domains and codomains as follows.

C : UMat → UMat and Rot : Herm × Poly → UMat.
If G ∈ G, then dom(G) = () and cod(G) = UMat.
If M ∈ H, then dom(M) = () and cod(M) = Herm.
If p ∈ F , then dom(p) = () and cod(p) = Poly.

Then Σ(G,H) = T (ΣG,UMat) ∪ T (ΣG,NMat). The functions in(−) and out(−) are then
interpretations of ΣG. This is illustrated for in(−).

For each sort s ∈ S, the values of s are N.
v(C) = (n 7→ n+ 1) and v(Rot) = ((n,m) 7→ n).
If G ∈ G is a (2n) × (2m) matrix, then v(G) = n.
If M ∈ G is a (2n) × (2n) matrix, then v(M) = n.
If p ∈ F , then v(p) = 0.

This coincides with the definition given in Sec. 3.
In the circuit signature, there will be a single sort, denoted Circ. Note that this sorting

ignores the number of input wires and output wires on each gate. We will think of the number
of input and output wires as a type associated with each term, once the circuit terms has been
constructed. In the circuit signature, the function symbols are ΣC = {(◦), (//), ϵ} ∪ Σ(G,H)
with the following arities.

(◦) : Circ × Circ → Circ and (//) : Circ × Circ → Circ.
dom(ϵ) = () and cod(ϵ) = Circ where ϵ represents an empty wire.
If G ∈ Σ(G,H), then dom(G) = () and cod(G) = Circ.

Note that not every term in T (Σ) is a well-formed circuit. This is because the sorting does
not account for the number of input and output wires. While it is possible to define an
(infinite) sorting which captures well-formed circuits, this would require infinitely many (◦)
and (//) associated with each valid typing. Instead, we associate a type (n,m) to each valid
circuit C ∈ T (Σ) indicating in(C) = n and out(C) = m, and the symbol ⊥ to each invalid
circuit. Indeed, this is also an interpretation of T (Σ). The interpretation is defined as follows.

For each s ∈ S, the values of s are (N × N) ∪ {⊥}.

v(◦)(x, y) =


⊥ if x = ⊥ or y = ⊥
⊥ if y2 ̸= x1

(y1, x2) otherwise

v(//)(x, y) =
{

⊥ if x = ⊥ or y = ⊥
(x1 + y1, x2 + y2) otherwise

v(ϵ) = (1, 1).
If G ∈ Σ(G,H), then v(G) = (in(G), out(G)).

This defines a unique interpretation type : T (Σ) → (N × N) ∪ {⊥}. Then the well-formed
circuits are Circ(G,H) = {C ∈ T (Σ) : type(C) ̸= ⊥}. Moreover, in(C) = type(C)1 and
out(C) = type(C)2. It is straight-forward to check that Circ(G,H) is closed under parallel
and well-formed sequential composition.

It is now possible to establish the inductive theorems for the gate algebra and the circuit
algebra. Both theorems follow from the principle of well-founded induction [8]. First, a well
quasi-ordering on a set X is a relation (⪰) ⊆ X ×X subject to the following conditions.

Reflexivity. If x ∈ X, then x ⪰ x.
Transitivity. If x ⪰ y and y ⪰ z, then x ⪰ z.
Well-Founded. There does not exist an infinite chain x1 ≻ x2 ≻ x3 ≻ · · · where x ≻ y

denotes x ⪰ y and x ̸= y.
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If (⪰) is well-founded, then the principle of well-founded induction states that a predicate
P (−) holds for all elements of X if and only if,

∀x ∈ X, (∀y ∈ X, x ≻ y =⇒ P (y)) =⇒ P (x).

It can be shown that the inductive nature of T (ΣG) and T (ΣC) yields quasi well-orderings
on their terms. In the case of T (ΣG), the proof of Prop. 3.2 follows almost immediately. In
the case of T (ΣC), some care is needed to show that this well quasi-ordering interacts well
with type(−). Once this is established, the proof of Prop. 3.3 also follows immediately.

Given an S-signature Σ, the quasi well-ordering ⪰Σ is constructed as follows. First,
define R = {(t, tj) ∈ T (Σ) × T (Σ) : t = f(t1, . . . , tn) ∧ j ∈ [n]}. This relation associates
each term in T (Σ) with its top-level sub-terms. However, this relation is neither transitive
nor reflextive. This can be fixed by taking the transitive symmetric closure of R, Formally,
(⪰Σ) =

⋃∞
n=0 R

n, where R0 is the identity relation. Then (⪰Σ) is manifestly reflextive and
transitive. It remains to be shown that (⪰Σ) is well-founded. Recall that the least fixed
point for T (Σ) can be defined as

⋃∞
n=1 Tn(Σ), where Tn(Σ) is the set of terms obtained after

n iterations. Then there exists a function lv : T (Σ) → N such that for each lv(t) is the least
n such that t ∈ Tn(Σ). Clearly, if t ≻Σ t′, then lv(t) > lv(t′). If there did exist an infinite
descending chain x1 ≻Σ x2 ≻Σ x3 ≻Σ · · · in T (Σ), then there would also exist an infinite
descending chain lv(x1) > lv(x2) > lv(x3) > · · · in N. However, (>) is well-founded, so this
is a contradiction. This means that (≻Σ) is well-founded.

▶ Proposition 3.2. Assume that a predicate P on Σ(G,H) satisfies the following.
Base Case (1). ∀G ∈ G, P (G).
Base Case (2). ∀M ∈ H,∀f ∈ F , P (RM (f)).
Control Induction. ∀G ∈ Σ(G,H), G unitary and P (G) implies P (C(G)).

Then P (G) holds for each G ∈ Σ(G,H).

Proof. Since Σ(G,H) ⊆ T (ΣG), then (⪰) restricts to Σ(G,H). Clearly, this preserves
reflexivity, transitivity, and well-foundedness. Then the proof proceeds by well-founded
induction. Let G ∈ Σ(G,H). Assume that for all H ∈ Σ(H,H), if G ⪰ H, then P (H) holds.
There are three cases to consider.
1. Assume that G ∈ G. Then P (G) holds by Base Case (1).
2. Assume that G = Rot(M,f) for some M ∈ H and f ∈ F . Then P (G) holds by Base

Case (2).
3. Assume that G = C(H) for some H ∈ T (Σ,UMat). Then G ≻ H by the definition of (≻).

Since T (Σ,UMat) ⊆ Σ(G,H), then P (H) holds by the inductive hypothesis. Then P (G)
holds by Control Induction.

In each case, P (G) holds. These cases exhaust all function symbols in ΣG except for those
of type Herm and Poly. However, the terms of type Herm and Poly are omitted in Σ(G,H).
Then the cases are exhaustive, and P (G) holds. Since G was arbitrary, then by well-founded
induction, P (G) holds for each G ∈ Σ(G,H). ◀

▶ Lemma A.1. Let C1 ∈ T (ΣC) and C2 ∈ T (ΣC). If either C2 ◦ C1 ∈ Circ(G,H) or
C1//C2 ∈ Circ(G,H), then C1 ∈ Circ(G,H) and C2 ∈ Circ(G,H).

Proof. Let C1 ∈ T (ΣC) and C2 ∈ T (ΣC). There are two cases to consider.
1. Assume that C2 ◦C1 ∈ Circ(G,H). Then type(C2 ◦C1) ∈ N×N by definition. Then there

exists x ∈ N × N and y ∈ N × N such that type(C2) = x, type(C1) = y, and x1 = y2.
Then type(C1) ∈ N × N and type(C2) ∈ N × N.
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2. Assume that C1//C2 ∈ Circ(G,H). Then type(C2//C1) ∈ N × N by definition. Then
type(C1) ∈ N × N and type(C2) ∈ N × N by definition.

In either case, type(C1) ∈ N × N and type(C2) ∈ N × N. It follows by definition that
C1 ∈ Circ(G,H) and C2 ∈ Circ(G,H). ◀

▶ Proposition 3.3. Assume that a predicate P on Circ(G,H) satisfies the following.
Base Case (1). P (ϵ).
Base Case (2). ∀G ∈ Σ(G,H), P (G).
Parallel Induction. If C1, C2 ∈ Circ(G,H) such that P (C1) and P (C2), then P (C1//C2).
Sequential Induction. If C1, C2 ∈ Circ(G,H) such that in(C2) = out(C1) with P (C1)
and P (C2), then P (C2 ◦ C1).

Then P (C) holds for each C ∈ Circ(G,H).

Proof. Since Circ(G,H) ⊆ T (ΣC), then (⪰) restricts to Circ(G,H). Clearly, this preserves
reflexivity, transitivity, and well-foundedness. Then the proof proceeds by well-founded
induction. Let C ∈ Circ(G,H). Assume that for each circuit C ′ ∈ Σ(H,H), if C ⪰ C ′, then
P (C ′) holds. There are four cases to consider.
1. Assume C = ϵ. Then P (G) holds by Base Case (1).
2. Assume C ∈ Σ(G,H). Then P (G) holds by Base Case (2).
3. Assume C = C2◦C1 for some C1 ∈ T (ΣC) and C2 ∈ T (ΣC). It follows that C1 ∈ Circ(G,H)

and C2 ∈ Circ(G,H) by Lemma A.1. Moreover, C ≻ C1 and C ≻ C2 by the definition
of (≻). Then P (C1) and P (C2) hold by the inductive hypothesis. Then P (C) holds by
Sequential Induction.

4. Assume C = C1//C2 for some C1 ∈ T (ΣC) and C2 ∈ T (ΣC). It follows by a symmetric
argument that P (C) holds, in which Sequential Induction is replaced by Parallel
Induction.

These cases exhaust all of the function symbols in ΣC . Then P (C) holds. Since C was
arbitrary, then by well-founded induction, P (C) holds for each C ∈ Circ(G,H). ◀

The remaining subsections will address the semantics of Circ(G,H). In particular, pre-
monoidal semantics and monoidal semantics will be given for Circ(G,H). These should be
understood as interpretations of T (ΣC) restricted to Circ(G,H).

A.2 Categories and Sequential Composition
A (small) category C describes a set of typed operations under sequential composition.
Formally, a category is defined by the following data [30].

A set C0 of types.
For each pair of types (X,Y ) ∈ C0 × C0, a collection of operations C(X,Y ). For each
operation f ∈ C(X,Y ), we write X f−→ Y .
For each triple of types (X,Y, Z) ∈ C0 × C0 × C0, a sequential composition function
◦ : C(Y,Z) × C(X,Y ) → C(X,Z).
For each type X ∈ C0, a trivial operation 1X ∈ C(X,X).

As in a monoid, composition should be associative and the trivial operations should be
identity elements. Then C is subject to the following conditions [30].

If X f−→ Y
g−→ Z

h−→ W , then h ◦ (g ◦ f) = (h ◦ g) ◦ f .
If X f−→ Y , then 1Y ◦ f = f = f ◦ 1X .
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▶ Example A.2 (Monoids Are Categories). This example shows that every monoid defines a
one-type category. Let M be a monoid with identity e.. Then define a category BM such
that (BM)0 = {⋆} and (BM)(⋆, ⋆) = M . In this category, if ⋆ x−→ ⋆

y−→ ⋆, then y ◦ x := yx.
Clearly, (◦) is associative and has a trivial operation given by 1⋆ := e. In particular, B(Qk)∗

is a category. ◀

▶ Example A.3 (Matrices Form Categories). Complex matrices form a category FHilb. The
types in this category are natural numbers, corresponding to the dimensions of complex
vector spaces. That is, FHilb0 = N. The operations in this category are complex matrices.
More concretely, if (n,m) ∈ FHilb0 × FHilb0, then FHilb(n,m) corresponds to the set
of m × n matrices. In this category, if x M−→ y

N−→ z, then N ◦ M := NM . Clearly, (◦) is
associative, with trivial operation for n ∈ FHilb0 given by the n× n identity matrix. ◀

▶ Example A.4 (Circuits Form Categories). Circuits over a gate set form a category C. Let
Σ0 be a set of types and Σ1 be a set of gates, such that each gate G ∈ Σ1 has input type
in(G) and output type out(G). The types in the category correspond to the possible wire
types. That is, C0 = Σ0. The identities in this category are given by circuits without any
gates. That is, for each type X ∈ C0, the identity operation X

1X−−→ X is a wire of type
X without any gates. For each gate G ∈ Σ1, G is a singleton circuit G ∈ C(in(G), out(G)).
Composition in C corresponds to sequential circuit composition. This is clearly unital and
associative. In the case of Circ(G,H), Σ0 = N and Σ1 = Σ(G,H). ◀

A functor is a structure-preserving mapping between categories. Formally, if C and D
are categories, then a functor F : C → D from a category C to a category D consists of the
following data [30].

A translation of types F0 : C0 → D0.
For each pair of types (X,Y ) ∈ C0 × C0, a translation from the type X → Y to the type
F0(X) → F0(Y ) via a family of maps FX,Y : C(X,Y ) → D(F0(X), F0(Y )).

This data is subject to the following conditions [30].
If X ∈ C0, then FX,X(1X) = 1F0(X).
If X f−→ Y

g−→ Z, then FX,Z(g ◦ f) = FY,Z(g) ◦ FX,Y (f).
The functors of interest in this paper preserve both sequential composition and parallel
composition. This is explored in the next subsection.

A.3 Premonoidal Categories and Parallel Composition
In parallel computation, it is possible to run operations both sequentially and in parallel.
Let X f−→ Y and X ′ g−→ Y ′ be two processes running in parallel. Then (Y//g) ◦ (f//X ′)
would denote a serialization of the trace where f executes before g, and (f//Y ′) ◦ (X//g)
would denote a serialization of the trace where g executes before f . If f and g share memory,
for example, then it may be the case that (Y//g) ◦ (f//X ′) ̸= (f//Y ′) ◦ (X//g). Such
operations are described by premonoidal categories [42]. Formally, a premonoidal category C
is a category C with the following data [13].

A trivial type I ∈ C0.
For each type X ∈ C0, a functor X//(−) which executes operations on the right process.
For each type Y ∈ C0, a functor (−)//Y which executes operations on the left process.

This data is subject to the following conditions [13].
1. If (X,Y ) ∈ C0 × C0, then X//(Y ) = (X)//Y , which we denote X//Y .
2. If (X,Y, Z) ∈ C0 × C0 × C0, then (X//Y )//Z = X//(Y//Z).
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3. If X ∈ C0, then I//X = X = X//I.
4. If X f−→ Y , then I//f = f = f//I.
5. If X f−→ Y and (Z,W ) ∈ C0 × C0, then X//(Y//f) = (X//Y )//f .
6. If X f−→ Y and (Z,W ) ∈ C0 × C0, then (f//X)//Y = f//(X//Y ).
7. If X f−→ Y and (Z,W ) ∈ C0 × C0, then (X//f)//Y = X//(f//Y ).
Properties (1–3) ensure that (//) defines a monoid on the types in C0, with I the unit. This
means that even if (Y//g) ◦ (f//X ′) ̸= (f//Y ′) ◦ (X//g), the input and output types will be
the same regardless of the serialization of the trace. Properties (4–7) state that there exists a
unique way to execute an operation f between an idle process of type Z and an idle process
of type Y .

▶ Example A.5 (Monoids Are Premonoidal). Recall the category BM from Ex. A.2. This
category is trivially premonoidal. Since (BM)0 = {⋆}, then a premonoidal structure on BM
is defined by the following data: a type I ∈ C0; a functor ⋆//(−); a functor (−)//⋆. Clearly
I = ⋆ since (BM)0 = {⋆}. Then ⋆//(−) and (−)//⋆ must act trivially by (3) and (4). These
trivial acts trivially satisfy (1–2) and (5–7). Then BM is a premonoidal category with only
trivial composition in the parallel direction. ◀

▶ Example A.6 (FHilb is a Premonoidal Category). Recall the category FHilb form Ex. A.3.
For each n ∈ FHilb0, define n⊗ (−) to be the functor which map each type x to nx and
each matrix x M−→ y to nx In⊗M−−−−→ ny. Likewise, for each n ∈ FHilb0, define (−) ⊗ n to be
the functor which map each type x to xn and each matrix x M−→ y to xn M⊗In−−−−→ yn. Then
n⊗ (−) and (−)⊗m define a premonoidal structure on FHilb with respect to the trivial type
I = 1. It is shown in [48] that the functions which map parameters in Rk to operations in
FHilb also form a premonoidal category. We denote this category Param(Rk,FHilb). ◀

▶ Example A.7 (Circuits Form Premonoidal Categories). Recall from Ex. A.4 that circuits
over a gate set form a category C. For the purpose of this discussion, (⊗) will be used to
denote the premnoidal product, and (//) will be used to denote parallel wire composition.
For each X ∈ C0, define X ⊗ (−) to be the functor which maps each type Y to type X//Y
and each circuit Y C−→ Z to 1X//C. Likewise, for each X ∈ C0 define (−) ⊗ X to be the
functor which maps each type Y to Y//X and each circuit Y C−→ Z to C//1X . That is,
X⊗ (−) acts on circuits by introducing empty wires of type X above the circuit, and (−)⊗X

acts on circuits by introducing empty wires of type X below the circuit. Since the order
the wires are introduced is inconsequential, then properties (1–2) and (5–7) are satisfied.
To satisfy (3–4), a trivial type I must be selected such that parallel composition with I is
the same as doing nothing. The only circuit with this property is the empty circuit, so 1I
must be the empty circuit, and I must be the corresponding type. For example, I = 0 in
Circ(G,H). Note that Circ(G,H) also allows for terms of the form C1//C2, where neither
C1 nor C2 is the identity. By convention, we associate the term C1//C2 with the semantic
value (C1//m) ◦ (n//C2), where in(C1) = n and out(C2) = m. It will be shown in the next
subsection why this convention is reasonable. ◀

A premonoidal functor is a structure-preserving map between premonoidal category.
Formally, if C and D are premonoidal categories, the a premonoidal functor F : C → D is a
functor from C to D satisfying the following properties.

F0(IC) = ID.
If X ∈ C0 and Y

f−→ Z, then FX//Y,X//Z(X//f) = F0(X)//FY,Z(f).
If X f−→ Y and Z ∈ C0, then FX//Z,Y//Z(f//Z) = FX,Y (f)//F0(Z).

MFCS 2025



84:26 Cutoff Theorems for the Equivalence of Parameterized Quantum Circuits (Extended)

It will be shown in the next subsection that [[−]], A(−), and Fv(−) are all premonoidal
functors. It will follow that these maps are well-defined.

A.4 Constructing Premonoidal Functors with Monoidal Signatures
An important construction in category theory is the free premonoidal category. These are
the categories out of which it is easy to define premonoidal functors. It must first be shown
that every premonoidal category has an underlying monoidal signature Σ. It will then be
shown that every monoidal signature Σ generates a premonoidal category Σ∗ such that every
structure-preserving map out of Σ defines a unique premonoidal functor out of Σ∗. This
subsection follows [13].

A monoidal signature is a pair of sets Σ0 and Σ1 equipped with a pair of functions
s : Σ0 → (Σ1)∗ and t : Σ0 → (Σ1)∗. Intuitively, Σ0 is the set of types in the category, and Σ1
is the set of operations in the category. The functions s and t pick out the input type and
output type of each operation. Since the category is premonoidal, then s and t map into
(Σ1)∗ as opposed to Σ1. Given two monoidal signatures Σ and Π, a structure-preserving
transformation γ : Σ → Π is a pair of functions γ0 : Σ0 → (Π0)∗ and γ1 : Σ1 → Π1 such that
s ◦ γ1 = γ∗

0 ◦ s and t ◦ γ1 = γ∗
0 ◦ t. That is, γ respects sources and targets.

Every (small) premonoidal category C has an underlying monoidal signature U(C) defined
as follows. The set of types in C is C0, so U(C)0 = C0. Then set of all operations in C is the
disjoint union U(C)1 =

⊔
(X,Y )∈C0×C0

C(X,Y ). Then for each f ∈ C1, define s(f) = X and
t(f) = Y where (X,Y ) is the unique element in C0 × C0 such that f ∈ C(X,Y ). Moreover, if
F : C → D is a premonoidal functor, then U(F ) : U(C) → U(D) is the structure-preserving
map induced by the components of F .

Given a monoidal signature Σ, the free premonoidal category generated by Σ is a pre-
monoidal category C with a structure preserving inclusion ι : Σ ↪→ U(C) such that for each
premonoidal category D and each structure-preserving map γ : Σ → U(D), there exists a
unique premonoidal functor F : C → D satisfying U(F ) ◦ ι = γ. In practice, this means that
any structure preserving map out of Σ defines a unique premonoidal functor out of C such
that F agrees with γ when evaluated on the generating types and operations. It can be
shown that C is unique up to isomorphism, so we write ΣPre(∗) for the premonoidal category
generated by Σ. Then, without loss of generality, (ΣPre(∗))0 = (Σ0)∗ and F0 = γ∗

0 . The
evaluation of F on operations then follows inductively from the structure of a premonoidal
category, starting from the operations in Σ1. The construction is tedious, and all details can
be found in [13].

▶ Example A.8 (Circuits and Free Premonoidal Categories). In Ex. A.7, it was shown that
Circ(G,H) is a premonoidal category. Moreover, Circ(G,H) is the quotient of a free premon-
oidal category (this quotient is described in the next subsection). The monoidal signature Σ
used to generate this category is defined as follows.

Σ0 = {•}, since N ∼= {•}∗.
Σ1 = Σ(G,H), since the gates in Σ(G,H) are generating operations.
s, t : Σ1 → (Σ0)∗ correspond to in(−) and out(−) respectively.

In the premonoidal case, parallel induction is restricted so that if C ∈ Circ(G,H) and n ∈ N,
then both C//1n and 1n//C are in Circ(G,H). Intuitively, premonoidal categories represent
circuits as sequences of gates applied to subsets of adjacent wires, as opposed to directed
acyclic graphs. ◀

▶ Example A.9 (Semantic Interpretations). Let Σ denote the monoidal signature defined
in Ex. A.8. The semantic interpretation map [[−]] can be defined as the free (pre)monoidal
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functor induced by some γ : Σ → U(Param(Rk,FHilb)). The first component of γ is
γ0(•) = 2, since the state of a qubit is a 2-dimensional vector space. The second component
of γ is defined to be the following interpretation of T (ΣG)

If G ∈ G, then v(G) = f where f(θ) = G.
If M ∈ H, then v(M) = M .
If p ∈ F , then v(p) = p.
v(C) = (f 7→ (θ 7→ I ⊕ f(θ))).
v(Rot) = ((M,p) 7→ (θ 7→ cos(f(θ))I + i sin(f(θ))M)).

Then γ defines a unique premonoidal functor denoted by [[−]]. ◀

▶ Example A.10 (Polynomial Semantics). Let Σ denote the monoidal signature defined
in Ex. A.8. The polynomial semantics [[−]]Poly can be defined as the free premonoidal functor
induced by some γ : Σ → U(PolyMat). The first component of γ is γ0(•) = 2, since the
polynomial semantics are meant to abstract the concrete semantics. The second component
of γ is defined to be the following interpretation of T (ΣG).

If G ∈ G, then v(G) = G.
If M ∈ H, then v(M) = M .
If p ∈ F , then v(p) = p.
v(C) = (M 7→ I ⊕M).
v(Rot) = ((M,p) 7→ CPoly(f)I + iSPoly(f)M).

Then γ defines a unique premonoidal functor denoted by [[−]]Poly. ◀

▶ Example A.11 (Coefficient Abstraction). Let Σ denote the monoidal signature defined
in Ex. A.8. The coefficient abstraction A(−) can be defined as the free premonoidal functor
induced by some γ : Σ → U(B(Qk)∗). The first component of γ is γ0(•) = ⋆, since ⋆ is the
only type in B(Qk)∗. The second component of γ is defined to be the following interpretation
of T (ΣG).

If M ∈ H, then v(M) = ().
If G ∈ G, then v(G) = ().
If f ∈ F and f(θ) = a1θ1 + a2θ2 + · · · + ak + θk + q, then v(f) = (a1, a2, . . . , ak).
v(Rot) = ((x, a) 7→ a) and v(C) = (a 7→ x).

Then γ defines a unique premonoidal functor denoted by A(−). ◀

▶ Example A.12 (Syntactic Transformations). Let Σ denote the monoidal signature defined
in Ex. A.8. Fix some v ∈ Qk. The syntactic transformation Fv can be defined as the free
premonoidal functor induced by some γ : Σ → U(ΣPre(∗)). The first component of γ is
γ(•) = •, since the number of wires is preserved by this family of syntactic transformations.
The second component of γ is defined to be the following interpretation of T (ΣG).

If G ∈ G, then γ1(G) = G.
If M ∈ H, then γ1(M) = H.
If f ∈ F such that f(θ) = a1θ1 + a2θ2 + · · · + vkθk + q, then γ1(f) = g where g(θ) =
(a1v1)θ1 + (a2v2) + θ2 + · · · + (akvk)θk.
v(Rot) = ((M,p) 7→ Rot(M,p)) and v(C) = (G 7→ C(G)).

Then γ defines a unique premonoidal functor denoted by Fv(−). ◀

A.5 Monoidal Categories and Side-Effect Free Composition

In many premonoidal categories, it is the case that for each pair of operations, X f−→ Y and
X ′ g−→ Y ′, the equation (Y//g) ◦ (f//X ′) = (f//Y ′) ◦ (X//g) holds. From a computational
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f

g
=

f

g

Figure 5 A circuit diagram for the equation (Y//g) ◦ (f//X ′) = (f//Y ′) ◦ (X//g).

point of view, this equation says that the operations f and g are side-effect free [42]. When
a premonoidal C satisfies this property, we say that C is a monoidal category.

▶ Example A.13 (Monoids as Monoidal Categories). Recall from Ex. A.5 that BM is
a premonoidal category in a trivial way. If BM is in fact a monoidal category, then
(⋆//f) ◦ (g//⋆) = (g//⋆) ◦ (⋆//f) for each pair of operations ⋆ f−→ ⋆ and ⋆ g−→ ⋆. Since ⋆//(−)
and (−)//⋆ are trivial, then BM is monoidal if and only if fg = gf for all f ∈ M and g ∈ M .
In other words, BM is a monoidal category if and only if M is a commutative monoid. In
particular, if X is a set, then B(X∗) is not a monoidal category. ◀

▶ Example A.14 (FHilb is a Monoidal Category). Recall from Ex. A.6 that FHilb is a
premonoidal category with respect to the Kronecker tensor product (⊗). An important
property of the Kronecker tensor product is bilinearity, which states that (NM) ⊗ (LK) =
(M ⊗ K)(N ⊗ L) for any matrices x M−→ y

N−→ z and x′ K−→ y′ L−→ z′. This means that
(Y ⊗ g) ◦ (f ⊗ X ′) = (f ⊗ Y ′) ◦ (X ⊗ g) for any pair of matrices matrices X f−→ Y and
X ′ g−→ Y ′. ◀

▶ Example A.15 (Circuits Form a Monoidal Category). Recall from Ex. A.7 that circuits
form monoidal categories with respect to parallel composition of wires. Graphically, the
equation (Y//g) ◦ (f//X ′) = (f//Y ′) ◦ (X//g) states that the two circuits in Figure 5 should
represent the same operation. Obviously, this is the case, so circuits are in fact monoidal
categories. ◀

A monoidal functor is a premonoidal functor between monoidal categories. This should
make sense, since monoidal categories are premonoidal categories with extra properties, as
opposed to extra data. Given a monoidal signature Σ, it is also possible to construct a
free monoidal category Σ∗. Intuitively, Σ∗ is defined to be the premonoidal category ΣPre(∗)

modulo the family of relations (Y//g) ◦ (f//X ′) = (f//Y ′) ◦ (X//g). This is constructed
explicitly in [13].

▶ Example A.16 (Coefficient Abstraction is not Monoidal). Recall from Ex. A.13 that if BM
is a monoidal category, then M is commutative. Since free monoids on more than one element
are non-commutative, then A(−) cannot be a monoidal functor. To illustrate way, consider
the case where k = 1 and define two circuits, C1 = RX(θ1)//1• and C2 = 1•//RX(−θ1). It
follows by definition of A(−) that A(C1) = (1) and A(C2) = (−1). Then,

A(C1) · A(C2) = (1, −1) ̸= (−1, 1) = A(C2) · A(C1).

However, C1 ◦ C2 = C2 ◦ C1, when defined as a free monoidal category. ◀

It remains to be showing that the premonoidal abstraction A(−) can be used to reason
soundly about the monoidal semantics [[−]]. This is possible since [[−]] is definitionally a
premonoidal functor. Let j : ΣPre(*) → Σ∗ denote the quotient map obtained through
the construction of Σ∗. The inclusion map from Σ into U(Σ∗) is precisely U(j) ◦ ι. If
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γ : Σ → U(Param(Rk,FHilb)) is the defining map for [[−]], then [[−]] is the unique
map such that U([[−]]) ◦ (U(j) ◦ ι) = γ. There also exists a unique premonoidal functor
F : ΣPre(*) → Param(Rk,FHilb) such that F is the solution to U(−) ◦ ι = γ. However,
[[−]] ◦ j is a solution to U(−) ◦ ι = γ. Then F = [[−]] ◦ j, so the monoidal functor defined by
γ is precisely the quotient of the premonoidal functor defined by γ. Then it suffices to prove
Thm. 5.10 and Thm. 5.12 in the premonoidal setting.

B Proving the Correctness of the Polynomial Abstraction Bounds

In Appx. B.1, the soundness of the polynomial abstract is established. In Appx. B.2, some
lemmas are introduced which show how certain functions naturally satisfy (B1) through
to (B3). In Appx. B.3, these lemmas are combined with Prop. 3.2 to show that all gates
in ΣZ(G,H) satisfy Bnd(−) when viewed as circuits with only one gate. In Appx. B.4, this
result is then extended to show that all circuits in CircZ(G,H) satisfy BndPoly(−).

B.1 Establishing the Polynomial Abstraction
This section shows that the polynomial abstraction is sound with respect to [[−]].

▶ Theorem 5.2. [[−]]Poly is a polynomial abstraction.

Proof. Let ρj = e−iθj/2 for each j ∈ [k]. First, it is shown that [[−]]Poly holds for singleton
circuits. This follows by Prop. 3.2.

Base Case (1). LetG ∈ G. Then by definition, [[G]](θ1, . . . , θk) = G = [[G]]Poly(ρ1, . . . , ρk).
Base Case (2). Let M ∈ H and f ∈ F have integral coefficients. Then by construction,
the following equations hold.

CPoly(f)(ρ1, . . . , ρk) = cos(−f(θ)/2) SPoly(f)(ρ1, . . . , ρk) = sin(−f(θ)/2)

Then by definition, the following equation holds.

[[RH(f)]]Poly(ρ1, . . . , ρk) = CPoly(f)(ρ1, . . . , ρk)I + i SPoly(f)(ρ1, . . . , ρk)M
= cos(−f(θ)/2)I + i cos(−f(θ)/2)M
= [[RH(f)]](θ1, . . . , θk)

Control Induction. Let G ∈ ΣZ(G,H). Assume that G is unitary gate and satisfies
[[G]](θ1, . . . , θk) = [[G]]Poly(ρ1, . . . , ρk). Since G is unitary, then there exists some n ∈ N
such that in(G) = n = out(G). Then by definition, the following equation holds.

[[C(G)]]Poly(ρ1, . . . , ρk) = I2n ⊕ [[G]]Poly(ρ1, . . . , ρk) = I2n ⊕ [[G]](θ1, . . . , θk) = [[C(G)]](θ1, . . . , θk)

Then by Prop. 3.2, [[G]](θ1, . . . , θk) = [[C]]Poly
(
e−iθ1/2, . . . , eiθk/2) for all G ∈ ΣZ(G,H). This

can be extended to all of Circ(G,H) by Prop. 3.3.
Base Case (1). By definition, [[ϵ]]Poly(ρ1, . . . , ρk) = I2 = [[ϵ]](θ1, . . . , θk).
Base Case (2). From above, [[G]](θ1, . . . , θk) = [[C]]Poly(ρ1, . . . , ρk) for all G ∈ ΣZ(G,H).
Parallel Induction. Let C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H). Assume that both
[[C1]]Poly(ρ1, . . . , ρk) = [[C1]](θ1, . . . , θk) and [[C2]]Poly(ρ1, . . . , ρk) = [[C2]](θ1, . . . , θk). Then
by definition, the following equation holds.

[[C1//C2]]Poly(ρ1, . . . , ρk) = [[C1]]Poly(ρ1, . . . , ρk) ⊗ [[C2]]Poly(ρ1, . . . , ρk)
= [[C1]](θ1, . . . , θk) ⊗ [[C2]](θ1, . . . , θk)
= [[C1//C2]](θ1, . . . , θk)
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Sequential Induction. Let C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H). Assume that both
[[C1]]Poly(ρ1, . . . , ρk) = [[C1]](θ1, . . . , θk) and [[C2]]Poly(ρ1, . . . , ρk) = [[C2]](θ1, . . . , θk) with
out(C1) = in(C2). Then by definition, the following equation holds.

[[C2 ◦ C1]]Poly(ρ1, . . . , ρk) = [[C2]]Poly(ρ1, . . . , ρk)[[C1]]Poly(ρ1, . . . , ρk)
= [[C2]](θ1, . . . , θk)[[C1]](θ1, . . . , θk)
= [[C2 ◦ C1]](θ1, . . . , θk)

Then by Prop. 3.2, [[C]](θ1, . . . , θk) = [[C]]Poly
(
e−iθ1/2, . . . , eiθk/2) for all C ∈ CircZ(G,H).

Then [[−]]Poly is a polynomial abstraction. ◀

B.2 Preliminary Lemmas
The section provides preliminary lemmas to prove Thm. 5.6. The first lemma (Lemma B.1)
shows that constant polynomials trivially satisfy (B1) through to (B3). The second lemma
(Lemma B.2) shows that the polynomials corresponding to sin(−) and cos(−) respect stricter
versions of (B1) through to (B3), denoted (P1) through to (P3).

▶ Lemma B.1. Let C ∈ CircZ(G,H) with n = in(C) and m = out(C) and [[−]]∗ a polynomial
abstraction. For each pair of indices s ∈ [2n] and t ∈ [2m], if ([[C]]∗)s,t is a constant
polynomial, then C satisfies (B1) through to (B3) with respect to [[−]]∗ and (s, t).

Proof. Let s ∈ [2n] and t ∈ [2m] where n = in(C) and m = out(G). It remains to be shown
that C satisfies (B1) through to (B3) with respect to [[−]]∗ and (s, t). Let f = ([[C]]∗)s,t.

Let j ∈ [k]. Clearly
∑

α∈A(C) |αj | ≥ 0. Since f is a constant polynomial, then either f = 0
and deg±

zj
(f) = −∞, or f ̸= 0 and deg±

zj
(f) = 0. In either case, deg±

zj
(f) ≤

∑
α∈A(C) |αj |.

Since j was arbitrary, then C satisfies both (B1) and (B2) with respect to [[−]]∗ and (s, t).
Since f is a constant polynomial, then either f = 0 and deg+(f) = −∞, or f ̸= 0 and
deg+(f) = 0. In either case, deg+(f) ≤ 0. Let α ∈ A(G) and j ∈ [k]. If αj ≥ 0, then
α+

j ≥ 0 and −α−
j = 0. If αj < 0, then α+

j = 0 and −α−
j > 0. In either case, α+

j ≥ 0
and −α−

j ≥ 0. Since j was arbitrary, then
∑k

j=1 α
+
k ≥ 0 and

∑k
j=1 −α−

j ≥ 0. Then
max{

∑k
j=1 α

+
k ,
∑k

j=1 −α−
j } ≥ 0. Since α was arbitrary, then the following inequality

holds by the monotonicity of sums.

∑
α∈A(G)

max

{
k∑

j=1

α+
j ,

k∑
j=1

−α−
j

}
≥

∑
α∈A(G)

0 = 0 ≥ deg+(f)

Then C satisfies (B3) with respect to [[−]]∗ and (s, t).
In conclusion, C satisfies (B1) through to (B3) with respect to [[−]]∗ and (s, t). ◀

▶ Lemma B.2. If p(z1, . . . , zk) = a1z1 + · · · + akzk + rπ with a ∈ Zk \ {0} and r ∈ Q,
(P1). deg+

zj
(SPoly(p)) = deg+

zj
(CPoly(p)) = |aj | for each j ∈ [k],

(P2). deg−
zj

(SPoly(p)) = deg−
zj

(CPoly(p)) = |aj | for each j ∈ [k],
(P3). deg+(SPoly(p)) = deg+(CPoly(p)) = κ(a).

Proof. Let f = CPoly(p) and g = SPoly(p). Since a ̸= 0, then f ̸= 0 and g ̸= 0. It must be
shown that f and g satisfy (P1) through to (P3).

Let j ∈ [k]. There are three cases to consider.
1. Assume that aj = 0. Then zj appears in neither f nor g. Since f ≠ 0 and g ̸= 0, then

deg+
zj

(f) = 0 and deg+
zj

(g) = 0. Then deg+
zj

(f) = deg+
zj

(g) = 0 = |aj |.
2. Assume that aj > 0. Then deg+

zj
(f) = aj and deg+

zj
(g) = aj . Since aj > 0, then

aj = |aj |. Then deg+
zj

(f) = deg+
zj

(g) = aj = |aj |.
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3. Assume that aj < 0. Then deg+
zj

(f) = −aj and deg+
zj

(g) = −aj . Since aj < 0, then
−aj = |aj |. Then deg+

zj
(f) = deg+

zj
(g) = −aj = |αj |.

In each case, deg+
zj

(f) = deg+
zj

(g) = |aj |. Since j was arbitrary, then f and g satisfy (P1).
Since α ̸= −α, the the following equation holds.

deg+(f) = deg+(g) = max

{
deg+

(
k∏

j=1

(xk)αj

)
, deg+

(
k∏

j=1

(xk)−αj

)}

Then by the additivity of deg+(−),

deg+

(
k∏

j=1

(zk)αj

)
=

k∑
j=1

α+
j and deg+

(
k∏

j=1

(zk)−αj

)
=

k∑
j=1

−α−
j .

It follows that deg+(f) = deg+(g) = κ(a). Then f and g satisfy (P3).
Therefore, f and g satisfy (P1) through to (P3). ◀

B.3 Establishing Degree Bounds for the Gate Set
This section uses Prop. 3.2 to prove that all gates in ΣZ(G,H) satisfy BndPoly(−) when viewed
as singleton circuits. For the sake of readability, each case in Prop. 3.2 is presented as a
lemma. These lemmas are combined in Thm. B.6 to prove that BndPoly(−) is always satisfied.

▶ Lemma B.3. Let [[−]]∗ be a polynomial abstraction. If C ∈ CircZ(G,H) and there exists a
complex matrix M such that [[G]]∗ = M , then Bnd∗(C).

Proof. Let s ∈ [2n] and t ∈ [2m] where n = in(G) and m = out(G). Then ([[C]]∗)s,t = Ms,t is
a constant polynomial. Then by Lemma B.1, C satisfies (B1) through to (B3) with respect
to [[−]]∗ an (s, t). Since s and t were arbitrary, then Bnd∗(G) holds. ◀

▶ Lemma B.4. If M ∈ H and p ∈ F has integral coefficients, then Bnd(RM (p)).

Proof. Let G = RM (p), f = CPoly(p), and g = SPoly(p). Since p has integral coefficients,
then there exists some a ∈ Zk and r ∈ Q such that p(θ) = a1θ1 + · · · + akθk + r. There
are two cases to consider. First, assume that a = 0. Then CPoly(p) and SPoly(p) are
constant by definition. Then [[G]]Poly(z) = f(z)I+ ig(z)M is constant. Then BndPoly(G) holds
by Lemma B.3. Assume instead that a ̸= 0. Since a ̸= 0, then by Lemma B.2, f and g satisfy
(P1) through to (P3). Let s ∈ [2n] and t ∈ [2m] where n = in(G) and m = out(G). Write
h(z) = ([[G]]Poly)s,t (z). By definition, h(z) = c1f(z) + c2g(z) where c1 = Is,t and c2 = iMs,t.
It must be shown that h satisfies (B1) through to (B3).

Let j ∈ [k]. Then deg±
zj

(h) = deg±
zj

(c1f + c2g) ≤ max{deg±
zj

(f),deg±
zj

(g)}. Since f and
g satisfy (P1) and (P2), then the following inequality holds.

deg±
zj

(h) ≤ max
{

deg±
zj

(f), deg±
zj

(g)
}

= max {|aj |, |aj |} = |aj | =
∑

α∈(a)

αj =
∑

α∈A(G)

αj

Since j was arbitrary, then deg±
zj

(h) ≤
∑

α∈A(G) |αj | for each j ∈ [k]. Then G satisfies
(B1) and (B2) with respect to [[−]]Poly and (s, t).
Since h(z) = c1f(z) + c2g(z), then deg+(h) ≤ max{deg+(f),deg+(g)}. Since f and g
satisfy (P3), then the following inequality holds.

deg+(h) ≤ max
{

deg+(f), deg+(g)
}

= max {κ(a), κ(a)} = κ(a) =
∑

α∈(a)

κ(α) =
∑

α∈A(G)

κ(α)

Then G satisfies (B3) with respect to [[−]]Poly and (s, t).
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Since s and t were arbitrary, then BndPoly(G) holds. ◀

▶ Lemma B.5. If G ∈ ΣZ(G,H) is unitary and BndPoly(G) holds, then BndPoly(C(G)) holds.

Proof. Since G is unitary, then there exists an n ∈ N such that n = in(G) and n = out(G).
Let s ∈ [2n+1] and t ∈ [2n+1]. There are three cases to consider.

Assume that s, t ≤ 2n. Then by definition, ([[C(G)]]Poly)s,t = (I2n ⊕ [[G]]Poly)s,t = (I2n)s,t

is a constant polynomial. Then by Lemma B.1, C(G) satisfies (B1) through to (B3) with
respect to [[−]]∗ and (s, t).
Assume that either (s ≤ 2n) ∧ (t > 2n) or (s > 2n) ∧ (t ≤ 2n). Then by definition,
([[C(G)]]Poly)s,t = (I2n ⊕ [[G]]Poly)s,t = 0 is a constant polynomial. Then by Lemma B.1,
C(G) satisfies (B1) through to (B3) with respect to [[−]]∗ and (s, t).
Assume that s, t > 2n. Define s′ = s − 2n and t′ = t − 2n. Then by definition,
([[C(G)]]Poly)s,t = (I2n ⊕ [[G]]Poly)s,t = ([[G]]Poly)s′,t′ . Since BndPoly(G) holds by assumption,
then in particular, ([[G]]Poly)s′,t′ satisfies equations (B1) through to (B3) with respect to
A(G). Since ([[C(G)]]Poly)s,t = ([[G]]Poly)s′,t′ and A(C(G)) = A(G), then ([[C(G)]]Poly)s,t

satisfies the same equations with respect to A(C(G)). Then C(G) satisfies (B1) through
to (B3) with respect to [[−]]Poly and (s, t).

In each case, G(C) satisfies (B1) through to (B3) with respect to [[−]]Poly and (s, t). Since s
and t were arbitrary, then Bnd(C(G)) holds. ◀

▶ Theorem B.6. If G ∈ ΣZ(G,H), then BndPoly(G).

Proof. The proof follows by Prop. 3.2.
Base Case (1). Let G ∈ G. Then by definition, [[G]]Poly = G where G is a complex
matrix. Then by Lemma B.3, BndPoly(G).
Base Case (2). Let M ∈ H and f ∈ F have integral coefficients. Then BndPoly(RH(f))
by Lemma B.4.
Control Induction. Let G ∈ ΣZ(G,H). Assume that G is unitary gate and that
BndPoly(G) holds. Then BndPoly(C(G)) holds by Lemma B.5.

Then by Prop. 3.2, Bnd(−) holds for all elements of Σ(G,H). ◀

B.4 Establishing Degree Bounds for the Circuits
This section proves that every circuit in CircZ(G,H) satisfies BndPoly(−). First, it is shown
(Lemma B.7) that given any two circuits C1 and C2 which satisfy BndPoly(−), an arbitrary
sum over products of the components in [[C1]]Poly and [[C2]]Poly will satisfy (B1) through to
(B3) with respect to any composite of C1 and C2. This lemma subsumes both sequential and
parallel composition. Using this lemma, it is shown that C2 ◦ C1 (Lemma B.8) and C1//C2
(Lemma B.9) also satisfy BndPoly(−). Finally, these results are combined with Prop. 3.3 and
Thm. B.6 in Thm. 5.6, to show that every circuit in CircZ(G,H) satisfies BndPoly(−).

▶ Lemma B.7. Let C1, C2 ∈ CircZ(G,H) with n = in(C1), m = out(C1), n′ = in(C2), and
m′ = out(C2). If Bnd∗(C1) and Bnd∗(C2), then for each J ⊆ [n] × [m] × [n′] × [m′] the
Laurent polynomial fJ =

∑
(s,t,s′,t′)∈J ([[C1]]∗)s,t ([[C2]]∗)s′,t′ satisfies,

(C1). deg+
zj

(f) ≤
∑

α∈A(C2)·A(C1) |αj | for each j ∈ [k],
(C2). deg−

zj
(f) ≤

∑
α∈A(C2)·A(C1) |αj | for each j ∈ [k],

(C3). deg+(f) ≤
∑

α∈A(C2)·A(C1) κ(α).

Proof. Let X = A(C2) ◦A(C1). The proof follows by induction on the size of J .
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Base Case. Assume that J = ∅. Then fJ is the zero polynomial. This case is follows
by the same argument as Lemma B.1.
Inductive Hypothesis. For some r ∈ N, if J ⊆ [n] × [m] × [n′] × [m′] and |J | = r, then
fJ satisfies (C1) through to (C3) with respect to C1, C2, and J .
Inductive Step. Let J ⊆ [n] × [m] × [n′] × [m′] and assume that |J | = r + 1. Fix some
(s, t, s′, t′) ∈ J and let J ′ = J \ {(s, t, s′, t′)}. Then |J ′| = |J | − 1 = r. Then by the
inductive hypothesis, J ′ satisfies (C1) through to (C3) with respect to [[−]]∗, C1, and
C2. Let g = ([[C1]]∗)s,t and h = ([[C2]]∗) s′, t′. Then by definition, fJ = fJ′ + gh. Since
Bnd∗(C1) holds, then C1 satisfies (B1) through to (B3) with respect to [[−]]∗ and (s, t).
Since Bnd∗(C2) holds, then C2 satisfies (B1) through to (B3) with respect to [[−]]∗ and
(s′, t′). It remains to be shown that J satisfies (C1) through to (C3).

Let j ∈ [k]. Since C1 satisfies (B1) and (B2) with respect to [[−]]∗ and (s, t), then
deg±

zj
(g) ≤

∑
α∈A(G) |αj |. Since C2 satisfies (B1) and (B2) with respect to [[−]]∗ and

(s′, t′), then deg±
zj

(h) ≤
∑

α∈A(H) |αj |. Then the following inequality holds.

deg±
zj

(gh) ≤ deg±
zj

(g) + deg±
zj

(h) ≤
∑

α∈A(C1)

|αj | +
∑

α∈A(C2)

|αj | =
∑
α∈X

|αj |

Next, since J ′ satisfies (C1) and (C2) with respect to [[−]]∗, C1, and C2, then
deg(fJ′)±

zj
≤
∑

α∈X |αj |. Then the following inequality holds.

deg±
zj

(fJ ) ≤ max
{

deg±
zj

(fJ′ ), deg±
zj

(gh)
}

≤
∑
α∈X

|αj |

Since j was arbitrary, then J satisfies (C1) and (C2) with respect to [[−]]∗, C1, and C2.
Since C1 satisfies (B3) with respect to [[−]]∗ and (s, t), then deg+(g) ≤

∑
α∈A(G) κ(α).

Since C2 satisfies (B3) with respect to [[−]]∗ and (s, t), then deg+(h) ≤
∑

α∈A(H) κ(α).
Then the following inequality holds.

deg+(gh) ≤ deg+(g) + deg+(h) =
∑

α∈A(C1)

κ(α) +
∑

α∈A(C2)

κ(α) =
∑
α∈X

κ(α)

Since J ′ satisfies (C3) with respect to [[−]]∗, C1, and C2, then deg+(f) ≤
∑

α∈X κ(α).
Then the following inequality holds.

deg+(fJ ) ≤ max
{

deg+(fJ′ ), deg+(gh)
}

≤
∑
α∈X

κ(α)

Then J satisfies (C3) with respect to [[−]]∗, C1, and C2.
Then the inductive step holds.

Then by the principle of induction, for each choice of J ⊆ [n] × [m] × [n′] × [m′], the Laurent
polynomial fJ satisfies (C1) through to (C4) with respect to C1, C2, and J . ◀

▶ Lemma B.8. If C1, C2 ∈ CircZ(G,H) such that in(C2) = out(C1) with BndPoly(C1) and
BndPoly(C2), then BndPoly(C2 ◦ C1).

Proof. Let s ∈ [2n] and t ∈ [2m] where n = in(C1) and m = out(C2). Moreover, let
ℓ = in(C1) = out(C2). Define J = {(t, j, j, s) : j ∈ [ℓ]}. Since BndPoly(C1) and BndPoly(C2)
hold, then by Lemma B.7, J satisfies (C1) through to (C3) with respect to [[−]]Poly, C1, and
C2. By definition of fJ , the following equation holds.

fJ =
∑

(a,b,c,d)∈J

([[C2]]Poly)a,b ([[C1]]Poly)c,d =
∑
j∈[ℓ]

([[C2]]Poly)t,j ([[C1]]Poly)j,s = ([[C2 ◦ C1]]Poly)s,t

It remains to be shown that C2 ◦ C2 satisfies (B1) to (B3) with respect to [[−]]Poly and (s, t).
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Since A(C2 ◦ C1) = A(C2) ·A(C1) and fJ = ([[C2 ◦ C1]]Poly)s,t, then J satisfies (C1) with
respect to [[−]]Poly, C1, and C2, if and only if C2 ◦C1 satisfies (B1) with respect to [[−]]Poly
and (s, t). Therefore, (B1) is satisfied.
By the same argument, C2 ◦ C1 satisfies (B2) with respect to [[−]]Poly and (s, t).
By the same argument, C2 ◦ C1 satisfies (B2) with respect to [[−]]Poly and (s, t).

Since s and t were arbitrary, then Bnd(C2 ◦ C1) holds. ◀

▶ Lemma B.9. If C1 ∈ CircZ(G) satisfies BndPoly(C1) and C2 ∈ CircZ(G) satisfies BndPoly(C2),
then BndPoly(C1//C2).

Proof. Let s ∈ [2n+n′ ] and t ∈ [2m+m′ ] where n = in(C1), n′ = in(C2), m = in(C1), and
m′ = out(C2). Then by the definition of ⊗, there exists indices q, q′, r, r′ ∈ N such that
([[C1]]Poly ⊗ [[C2]]Poly)s,t = ([[C1]]Poly)q,r ([[C2]]Poly)q′,r′ . Since BndPoly(C1) and BndPoly(C2) hold,
then by Lemma B.7, J satisfies (C1) through to (C3) with respect to [[−]]Poly, C2, and C1.
By definition of fJ , the following equation holds.

fJ =
∑

(a,c,b,d)∈J

([[C2]]Poly)a,b ([[C1]]Poly)c,d = ([[C2]]Poly)q,r ([[C1]]Poly)q′,r′ = [[C1//C2]]Poly

It remains to be shown that C1//C2 satisfies (B1) to (B3) with respect to [[−]]Poly and (s, t).
Since A(C1//C2) = A(C1) ·A(C2) and fJ = ([[C1//C2]]Poly)s,t, then J satisfies (C1) with
respect to [[−]]Poly, C2, and C1, if and only if C1//C2 satisfies (B1) with respect to [[−]]Poly
and (s, t). Therefore, (B1) is satisfied.
By the same argument, C1//C2 satisfies (B2) with respect to [[−]]Poly and (s, t).
By the same argument, C1//C2 satisfies (B3) with respect to [[−]]Poly and (s, t).

Since s and t were arbitrary, then Bnd(C2//C1) holds. ◀

▶ Theorem 5.6. If C ∈ CircZ(G,H), then BndPoly(C).

Proof. The proof follows by Prop. 3.3.
Base Case (1). Since [[ϵ]] = I2, then BndPoly(ϵ) by Lemma B.3.
Base Case (2). If G ∈ ΣZ(G,H), then BndPoly(G) by Thm. B.6.
Parallel Induction. Let C1, C2 ∈ CircZ(G,H). Assume that both BndPoly(C1) and
BndPoly(C2) hold. Then BndPoly(C1//C2) holds by Lemma B.9.
Sequential Induction. Let C1, C2 ∈ CircZ(G,H). Assume that both BndPoly(C1) and
BndPoly(C2) hold with in(C2) = out(C1). Then BndPoly(C2 ◦ C1) holds by Lemma B.8.

Then by Prop. 3.3, BndPoly(−) holds for all elements of CircZ(G,H). ◀

C Proving the Quantifier Elimination Scheme

▶ Corollary 5.7. If C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H) with in(C1) = in(C2) = n and
out(C1) = out(C2) = m, then for each pair of indices s ∈ [2n] and t ∈ [2m], there exists a
polynomial f ∈ C[x1, . . . , xk] such that,

(D1). degxj
(f) ≤ 2λj for each j ∈ [k],

(D2). deg(f) ≤ max{
∑

a∈A(C) κ(a) : C ∈ {C1, C2}} +
∑k

j=1 λj,
(D3). ([[C1]] − [[C2]])s,t (θ) = 0 if and only if f(e−iθ1/2, . . . , e−iθk/2) = 0,

where λj = max{
∑

a∈A(C) |aj | : C ∈ {C1, C2}} for each j ∈ [k].

Proof. Let s ∈ [2n] and t ∈ [2m]. Since G ∈ CircZ(G,H), then Bnd(G) holds by Thm. 5.6.
Then there exists an f ∈ C[x1, x

−1
1 , . . . , xk, x

−1
k ] such that f satisfies (B1) through to (B4)

with respect to G and (s, t). Since H ∈ CircZ(G,H), then Bnd(H) holds by Thm. 5.6. Then
there exists g ∈ C[x1, x

−1
1 , . . . , xk, x

−1
k ] such that g satisfies (B1) through to (B4) with respect
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to H and (s, t). First, the polynomial h is constructed by clearing all denominators of f − g

with the term
∏k

j=1(xj)βj . Let j ∈ [k]. Since f satisfies (B2) with respect to G and (s, t),
then deg−

xj
(f) ≤

∑
α∈C(G) |αj |. Likewise, since g satisfies (B2) with respect to H and (s, t),

then deg−
xj

(g) ≤
∑

α∈C(H) |αj |. It follows that,

deg−
xj

((
k∏

j=1

(xj)λj

)
(f − g)

)
= max{deg−

xj
(f), deg−

xj
(g)} − λj ≤ λj − λj = 0

Since j was arbitrary, then h ∈ C[x1, . . . , xk] where,

h(x1, . . . , xk) =

(
k∏

j=1

(xj)λj

)
(f(x1, . . . , xk) − g(x1, . . . , xk)).

This completes the construction of h. It remains to be shown that h satisfies (D1) through
to (D3) with respect to G, H, and (s, t).
1. Let j ∈ [k]. Since degxj

(h) = deg+
xj

(h),

degxj
(h) ≤ degxj

(
k∏

k=1

(xj)λj

)
+ max{deg+

xj
(f), deg+

xj
(g)} ≤ λj + λj .

Since j was arbitrary, then degxj
(h) ≤ 2λj for each j ∈ [k]. Then h satisfies (D1) with

respect to G, H, and (s, t).
2. Since deg(h) = deg+(h),

deg(h) ≤ deg+

(
k∏

j=1

(xj)λj

)
+ max{deg+(f), deg+(g)}.

Let d = max{deg+(f),deg+(g)}/ Since f satisfies (B3) with respect to G and (s, t),
then deg+(f) ≤

∑
α∈C(G) κ(α). Since g satisfies (B3) with respect to H and (s, t), then

deg+(g) ≤
∑

α∈C(H) κ(α). Then by the monotonicity of max, d ≤ max{
∑

α∈A(C) κ(α) :
C ∈ {G,H}}. It follows that,

deg(h) ≤ deg+

(
k∏

j=1

(xj)λj

)
+ d ≤

k∑
j=1

λj + max

 ∑
α∈A(C)

κ(α) : C ∈ {G, H}

 .

Then h satisfies (D2) with respect to G, H, and (s, t).
3. Write zj = exp(−iθj/2) for each j ∈ [k]. Since f satisfies (B4) with respect to G and

(s, t), then [[G]]s,t(θ) = f(z1, . . . , zk). Since g satisfies (B4) with respect to H and (s, t),
then [[H]]s,t(θ) = g(z1, . . . , zk). Then,

h(z1, . . . , zk) =

(
k∏

j=1

(zj)λj

)
([[G]]s,t(θ) − [[H]]s,t(θ))

Since exp(i−) does not have any zeros on R, then,
∏k

j=1(zj)λj ̸= 0. This means that
([[G]] − [[H]])s,t(θ) = 0 if and only if h(z1, . . . , zk) = 0. Then h satisfies (D3) with respect
to G, H, and (s, t).

Since s and t were arbitrary, then the proof is complete. ◀ ◀

▶ Theorem 5.10. Let C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H) with in(C1) = in(C2) and
out(C1) = out(C2). If S1, S2, . . . , Sk ⊆ [0, 4π) such that |Sj | > 2λj for each j ∈ [k], then
[[C1]](θ) = [[C2]](θ) for all θ ∈ Rk if and only if [[C1]](v) = [[C2]](v) for all v ∈ S1 ×S2 ×· · ·×Sk.
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Proof. If [[G]] = [[H]], then [[G]](v) = [[H]](v) for all v ∈ X1 ×· · ·×Xk by definition of function
equality. Assume instead that [[G]] ̸= [[H]]. Then [[G]] − [[H]] ̸= 0. Then there exists a pair of
indices s ∈ [2n] and t ∈ [2m] such that ([[G]] − [[H]])s,t ̸= 0. Then by Cor. 5.7, there exists a
polynomial f ∈ C[x1, . . . , xk] which satisfy (D1) through to (D3) with respect to G, H, and
(s, t). Since f satisfies (D3) with respect to G, H, and (s, t), then f ̸= 0. For each j ∈ [k],
define a set,

X∗
j = {exp(−ix/2) | x ∈ Xj}.

Since x 7→ exp(−ix/2) is bijective on [0, 4π), |X∗
j | = |Xj | > 2λj for each j ∈ [k]. Since f

satisfies (D1) with respect to G, H, and (s, t), then degxj
(f) < |X∗

j | for each j ∈ [k]. Then
by Thm. 2.1, there exists a v∗ ∈ X∗

1 × · · · ×X∗
k such that f(v∗) ̸= 0. Then there exists some

v ∈ X1 × · · · ×Xk such that v∗
j = exp(−ivj/2) for each j ∈ [k]. Since f satisfies (D3) with

respect to G, H, and (s, t), then ([[G]] − [[H]])s,t(v) ̸= 0. Then ([[G]] − [[H]])(v) ̸= 0. Then
[[G]](v) ̸= [[H]](v). Then the assumption [[G]] ̸= [[H]] implies that there exists a v ∈ X1 · · ·Xk

such that [[G]](v) ̸= [[H]](v). In conclusion, [[G]] = [[H]] if and only if [[G]](v) = [[H]](v) for all
v ∈ X1 × · · · ×Xk. ◀

▶ Theorem 5.12. Let C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H) with in(C1) = in(C2),
out(C1) = out(C2), and [[C1]] ̸= [[C2]]. For each finite subset S ⊆ [0, 4π), if s1, . . . , sk

are sampled at random both independently and uniformly from S, then

Pr ([[C1]](s1, . . . , sk) = [[C2]](s1, . . . , sk)) ≤ d/|S|

where d = max{
∑

α∈A(C) κ(α) : C ∈ {C1, C2}} +
∑k

j=1 λj.

Proof. Since [[C1]] ̸= [[C2]], then [[C1]] − [[C2]] ̸= 0. Then there exists a pair of indices
j ∈ [2n] and ℓ ∈ [2m] such that ([[C1]] − [[C2]])j,ℓ ̸= 0. Then by Cor. 5.7, there exists a
polynomial f ∈ C[x1, . . . , xk] such that (D1) through to (D3) hold with respect to C1,
C2, and (j, ℓ). Since f satisfies (D2) with respect to C1, C2, and (j, ℓ), then deg(f) ≤ d.
Since x 7→ exp(−ix/2) is a bijection on [0, 2π) and bijections preserve discrete uniform
distributions, then exp(−is1/2), . . . , exp(−isk/2) are independent random variables selected
uniformly from,

S∗ = {exp(−is/2) | s ∈ S},

with |S∗| = |S|. Let E1 denote the event f(exp(−is1/2), . . . , exp(−isk/2)) = 0 and E2
denote the event [[C1]](s1, . . . , sk) = [[C2]](s1, . . . , sk). If E2 occurs, then in particular
([[C1]](s1, . . . , sk))j,ℓ = ([[C2]](s1, . . . , sk))j,ℓ. Since f satisfies (D3) with respect to C1, C2, and
(j, ℓ), then f(exp(−is1/2), . . . , exp(−isk/2)) = 0. Then E2 ⊆ E1. Then by the monotonicity
of probability, Pr(E2) ≤ Pr(E1). Then, it suffices to show that Pr(E1) ≤ d/|S|. Since f satis-
fies (D3) with respect to C1, C2, and (j, ℓ), and since [[C1]]j,ℓ ̸= [[C2]]j,ℓ, then f ̸= 0. Then by
Thm. 2.2, Pr(E1)) ≤ d/|X|. Therefore, Pr([[C1]](s1, . . . , sk) = [[C2]](s1, . . . , sk)) ≤ d/|S|. ◀

C.1 Decidability for Integral Cyclotomic Circuits
This section proves that parameterized equivalence checking is decidable for integral circuits
with G and H consisting of cyclotomic circuits. This follows from the fact that evaluating
such a circuit at a rational multiple of π yields a cyclotomic matrix.

▶ Theorem C.1. If G and H consists of matrices over the universal cyclotomic field and
C1 ∈ Circ(G,H), then [[C1]](θ) is a matrix over the universal cyclotomic field for each
θ ∈ (Qπ)k.
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Proof. Let Pred(−) denote the predicate on CircZ(G,H) such that Pred(C) if and only if
[[C]](θ) is a matrix over the universal cyclotomic field for each θ ∈ (Qπ)k. First, the claim is
proven for singleton circuits using Prop. 3.2.

Base Case (1). Let G ∈ G. Let θ ∈ (Qπ)k. Then [[G]](θ) = G with G a matrix over the
universal cyclotomic field by assumption. Since θ was arbitrary, then Pred(G).
Base Case (2). Let M ∈ H and p ∈ F . Let θ ∈ (Qπ)k. Since p(θ) = α1θ1 + · · ·αkθk +qπ
for some α ∈ Zk and q ∈ Q, then p(θ) ∈ Qπ. Since p(θ) is a rational multiple of π, then
sin(θ) and cos(θ) are cyclotomic numbers. Recall that M and I are matrices over the
universal cyclotomic field. Since matrices rings are closed under additional and scalar
multiplication, then [[RM (p)]] = cos(p(θ))I + i sin(p(θ))M is a matrix over the universal
cyclotomic field. Since θ was arbitrary, then Pred(RM (p)).
Control Induction. Let G ∈ Σ(G,H). Assume that G is a unitary gate on n wires and
that Pred(G) holds. Let θ ∈ (Qπ)k. Since Pred(G) holds, then [[G]](θ) is a matrix over
the universal cyclotomic field. Since I2n is a matrix over the universal cyclotomic field,
and the direct sum of two matrices over the same field yield a matrix over the same field,
then [[C(G)]] = I2n ⊕ [[G]] is a matrix over the universal cyclotomic field. Since θ was
arbitrary, then Pred(C(p)).

Then by Prop. 3.2, Pred(G) for all G ∈ Σ(G,H). Next, Prop. 3.3 is used to prove the claim
for all circuits.

Base Case (1). Let θ ∈ (Qπ)k. Since the identity matrix is amatrix over the universal
cyclotomic field, then [[ϵ]](θ) = I2 is a matrix over the universal cyclotomic field. Since θ
was arbitrary, then G(ϵ).
Base Case (2). If C ∈ Σ(G,H), then Pred(C) holds by the first sub-proof.
Parallel Induction. Let G ∈ Σ(G,H) and H ∈ Σ(G,H). Assume that Pred(C1) and
Pred(C2) holds. Let θ ∈ (Qπ)k. Since Pred(C1) holds, then [[C1]](θ) is a matrix over
the universal cyclotomic field. Since Pred(C2) holds, then [[C2]](θ) is a matrix over the
universal cyclotomic field. Since the tensor produce of two matrices over the same field
yield a matrix over the same field, then [[C1//C2]](θ) = [[C1]](θ) ⊗ [[C2]](θ) is a matrix over
the universal cyclotomic field. Since θ was arbitrary, then Pred(C1//C2) holds.
Sequential Induction. Let C1 ∈ Σ(G,H) and C2 ∈ Σ(G,H) with C1 and C2 composable.
Assume that Pred(C1) and Pred(C2) holds. Let θ ∈ (Qπ)k. Since Pred(C1) holds, then
[[C1]](θ) is injective. Since Pred(C2) holds, then [[C2]](θ) is injective. Since the tensor
produce of two matrices over the same field yield a matrix over the same field, then
[[C1 ◦C2]](θ) = [[C1]](θ)[[C2]](θ) is a matrix over the universal cyclotomic field. Since θ was
arbitrary, then Pred(C1 ◦ C2) holds.

Then by Prop. 3.3, Pred(C) for all C ∈ Σ(G,H). ◀

▶ Corollary 5.11. If G and H consist of matrices over the universal cyclotomic field, then
the parameterized equivalence checking problem is decidable for CircZ(G,H).

Proof. By Thm. 5.10, parameterized equivalence can be decided by comparing matrices
obtained from each parameter in S1 ×S2 × · · · ×Sk. If S1 ×S2 × · · · ×Sk consists of rational
multiples of π, then by Thm. C.1, each matrix will be over the universal cyclotomic field.
Since the universal cyclotomic field is computable and has decidable equality, then this gives
a decision procedure for the parameterized equivalence checking problem. ◀

D Circuit Reparameterization

The section establishes all theorems in Sec. 6.1. Lemma D.1 is introduced to relate the
premonoidal structure of the parameter sequence to the syntactic transformation.
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▶ Lemma 6.1. Let C1, C2 ∈ Circ(G,H). If f : Rk → Rk is a bijective function, then
[[C1]] = [[C2]] if and only if [[C1]] ◦ f = [[C2]] ◦ f .

Proof. This proof has two directions.
(⇒). Assume that [[C1]] = [[C2]]. Then [[C1]] ◦ f = [[C2]] ◦ f .
(⇐). Assume that [[C1]] ◦ f = [[C2]] ◦ f . Let x ∈ Rk. Evaluating [[C1]] ◦ f and [[C2]] ◦ f
at f−1(x), it follows that [[C1]](x) = ([[C1]] ◦ f)(f−1(x)) = ([[C2]] ◦ f)(f−1(x)) = [[C2]](x).
Since x was arbitrary, then [[C1]] = [[C2]].

In conclusion, [[C1]] = [[C2]] if and only if [[C1]] ◦ f = [[C2]] ◦ f . ◀

▶ Theorem 6.2. For each v ∈ (Q\{0})k, f : Rk → Rk defined by f(θ) = (v1θ1, v2θ2, . . . , vkθk)
is bijective and Fv is syntactic reparameterization with respect to f .

Proof. Let g(θ) = (θ1/v1, θ2/v2, . . . , θk/vk). This is well-defined, since vj ̸= 0 for each j ∈ [k].
Clearly f(g(θ)) = θ = g(f(θ)). Then f is a bijection. It remains to be shown that Fv is a
syntactic reparameterization with respect to f . This follows by induction on the structure of
Circ(G,H). First, the claim is proven for singleton circuits using Prop. 3.2.

Base Case (1). Let G ∈ G. Then Fv(G) = G and [[G]](θ) = G by definition. Let x ∈ Rk.
Then [[Fv(G)]](x) = [[G]](x) = G = [[G]](f(x)) = ([[G]] ◦ f)(x). Since x was arbitrary, then
[[Fv(G)]] = [[G]] ◦ f .
Base Case (2). Let M ∈ H and p ∈ F . Then there exists coefficients a ∈ Qk

and r ∈ R such that p(θ) = a1θ1 + · · · + akθk + r. Then Fv(RM (p)) = RM (q) where
q(θ) = (v1a1)θ1 + · · · + (vkak)θk + r. Then the following equation holds.

p(f(θ)) = a1(v1θ1) + · · · + ak(vkθk) + r = v1(a1θ1) + · · · + vk(akθk) + r = q(θ)

Then [[Fv(RM (p))]] = [[RM (q)]] = cos(−p(f(θ)/2)I + i sin(−p(f(θ))/2)M = [[G]] ◦ f .
Control Induction. Let G ∈ Σ(G,H). Assume that G is unitary and [[Fv(G)]] = [[G]] ◦ f .
Then [[Fv(C(G))]] = [[C(Fv(G))]] = I⊕[[Fv(G)]] = I⊕([[G]]◦f) = (I⊕[[G]])◦f = [[C(G)]]◦f .

Then by Prop. 3.2, [[Fv(G)]] = [[G]] ◦ f , for all G ∈ Σ(G,H). Next, Prop. 3.3 is used to prove
the claim for all circuits.

Base Case (1). By definition of ϵ, Fv(ϵ) = ϵ and [[ϵ]](θ) = I2. Let x ∈ Rk. Then
[[ϵ]](x) = I = [[ϵ]](f(x)) = ([[ϵ]] ◦ f)(x). Since x was arbitrary, then [[Fv(G)]] = [[G]] ◦ f .
Base Case (2). If C ∈ Σ(G,H), then [[Fv(C)]] = [[C]] ◦ f by the first sub-proof.
Parallel Induction. Let C1 ∈ Circ(G,H) and C2 ∈ Circ(G,H). Assume that [[Fv(C1)]] =
[[C1]] ◦ f and [[Fv(C2)]] = [[C2]] ◦ f . Then for each θ ∈ Rk, the following equation holds

[[Fv(C1)]](θ) ⊗ [[Fv(C2)]](θ) = [[C1]](f(θ)) ⊗ [[C2]](f(θ)) = ([[C1]] ⊗ [[C2]])(f(θ))

Since θ was arbitrary, then [[Fv(C1)]] ⊗ [[Fv(C2)]] = ([[C1]] ⊗ [[C2]]) ◦ f is true for all θ ∈ Rk.
Then the following equation holds.

[[Fv(C1//C2)]] = [[Fv(C1)//Fv(C2)]] = [[Fv(C1)]]⊗ [[Fv(C2)]] = ([[C1]]⊗ [[C2]])◦f = [[C1//C2]]◦f

Sequential Induction. Let C1 ∈ Circ(G,H) and C2 ∈ Circ(G,H) with out(C1) = in(C2).
Assume that [[Fv(C1)]] = [[C1]] ◦ f and [[Fv(C2)]] = [[C2]] ◦ f . Then for each θ ∈ Rk, the
following equation holds.

[[Fv(C2)]](θ)[[Fv(C1)]](θ) = [[C2]](f(θ))[[C1]](f(θ)) = ([[C2]][[C1]])(f(θ))

Since θ was arbitrary, then [[Fv(C2)]][[Fv(C1)]] = ([[C12]][[C1]]) ◦ f is true for all θ ∈ Rk.
Then the following equation holds.

[[Fv(C2 ◦ C1)]] = [[Fv(C2) ◦ Fv(C1)]] = [[Fv(C2)]][[Fv(C1)]] = ([[C2]][[C1]]) ◦ f = [[C2 ◦ C1]] ◦ f
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Then by Prop. 3.3, [[Fv(C)]] = [[C]] ◦ f for all C ∈ Circ(G,H). Therefore, Fv is a syntactic
reparameterization with respect to f . ◀

▶ Lemma D.1. Let C ∈ Circ(C,H) and v ∈ (Q×)k. Then |A(C)| = |A(Fv(C)|. Moreover, if
n = |A(C)|, j ∈ [n] and ℓ ∈ [k], then (A(Fv(C))j)ℓ = vℓ(A(C)j)ℓ.

Proof. Let Pred(−) denote the predicate on Circ(G,H) such that Pred(C) if and only if the
following properties hold.

(R1). |A(C)| = |A(Fv(C)|.
(R2). If n = |A(C)|, j ∈ [n] and ℓ ∈ [k], then (A(Fv(C))j)ℓ = vℓ(A(C)j)ℓ.

The proof follows by induction on the structure of Circ(G,H). First, the claim is proven for
singleton circuits using Prop. 3.2.

Base Case (1). Let G ∈ G. Since Fv(G) = G, then |A(Fv(G))| = |A(G)|. Then G

satisfies (R1). Since |A(G)| = 0, then (R2) is vacuously true for G. Then Pred(G) holds.
Base Case (2). Let M ∈ H and p ∈ F . Then there exists coefficients a ∈ Qk and
r ∈ Q such that p(θ) = a1θ1 + a2θ2 + · · · + akθk + r. Then Fv(RM (p)) = RM (q) where
q(θ) = (v1a1)θ1 + (v2a2)θ2 + · · · + (vkak)θk + r. Then |A(RM (p))| = 1 = |A(RM (q))| and
RM (p) satisfies (R1). Next, let n = |A(G)|, j ∈ [n], and ℓ ∈ [k]. Since n = 1, then j = 1
and the following equation holds.

(A(Fv(RM (p)))j)ℓ = (A(RM (p))1)ℓ = vℓaℓ = vℓ(A(RM (p))1)ℓ = vℓ(A(RM (p))j)ℓ

Since n = 1, j and ℓ were arbitrary, then RM (p) satisfies (R2). Then Pred(RM (p)) holds.
Control Induction. Let G ∈ Σ(G,H). Assume that G is a unitary gate and that
Pred(G) holds. Since G satisfies (R1), then the following equation holds.

|A(Fv(C(G)))| = |A(C(Fv(G)))| = |A(Fv(G))| = |A(G)| = |A(C(G))|

Then C(G) satisfies (R1). Next, let n = |A(G)|, j ∈ [n], and ℓ ∈ [k]. Since C(G) satisfies
R(2), then the following equation holds.

(A(Fv(C(G)))j)ℓ = (A(Fv(G))j)ℓ = vℓ(A(G)j)ℓ = vℓ(A(C(G))j)ℓ.

Since j and k were arbitrary, then C(G) satisfies (R2) as well. Then Pred(C(G)) holds.
Then by Prop. 3.2, Pred(G), for all G ∈ Σ(G,H). Next, Prop. 3.3 is used to prove the claim
for all circuits.

Base Case (1). Since Fv(ϵ) = ϵ, then |A(Fv(ϵ))| = |A(C)|. Then ϵ satisfies (R1). Since
|A(ϵ)| = 0, then (R2) is vacuously true for ϵ. Then Pred(ϵ) holds.
Base Case (2). If C ∈ Σ(G,H), then Pred(C) holds by the first sub-proof.
Parallel Induction. Let C1 ∈ Circ(G,H) and C2 ∈ Circ(G,H). Assume that Pred(C1)
and Pred(C2) hold. Then by (R1), |A(C1)| = |A(Fv(C1))| and |A(C2)| = |A(Fv(C2))|.
Starting from |A(C1//C2)|,

|A(C1//C2)| = |A(C1) · A(C2)| = |A(C1)| + |A(C2)| = |A(Fv(C1))| + |A(Fv(C2))|.

Likewise, starting from |A(Fv(C1//C2))| = |A(Fv(C1)//Fv(C2))|,

|A(Fv(C1)//Fv(C2))| = |A(Fv(C1)) · A(Fv(C2))| = |A(Fv(C1))| + |A(Fv(C2))|.

Then by transitivity, |A(Fv(C1//C2))| = |A(C1//C2)| and C1//C2 satisfies (R1). Next,
let |A(C1//C2)| = n, j ∈ [n], and ℓ ∈ [k]. There are two cases to consider.

1. Assume j ≤ |A(C1)|. Then by indexing, A(C1//C2)j = (A(C1) ·A(C2))j = A(C1)j and
A(Fv(C1//C2))j = (A(Fv(C1)) · A(Fv(C2)))j = A(Fv(C1))j . Since C1 satisfies (R2),
then A(Fv(C1))j = vℓ(A(C1)j)ℓ. By equality, (A(Fv(C1//C2))j)ℓ = vℓ(A(C1//C2)j)ℓ.
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2. Assume that j > |A(C1)| and define i = j− |A(C1)|. Then by indexing, A(C1//C2)j =
A(C2)i and A(Fv(C1//C2))j = A(C2)i. Since |A(C1//C2)| = |A(C1)| + |A(C2)|, then
1 ≤ i ≤ |A(C2)|. Since C2 satisfies (R2), then A(Fv(C2))j = vℓ(A(C2)j)ℓ. It follows
by equality that (A(Fv(C1//C2))j)ℓ = vℓ(A(C1//C2)j)ℓ.

In either case, (A(Fv(C1//C2))j)ℓ = vℓ(A(C1//C2)j)ℓ. Since j and ℓ were arbitrary, then
C1//C2 satisfies (R2). Then Pred(C1//C2) holds.
Sequential Induction. This case follows by the same argument, with all occurrences of
the (//) connective replaced by (◦).

Then by Prop. 3.3, Pred(C) for all C ∈ Circ(G,H). ◀

▶ Theorem 6.3. If C1, C2 ∈ Circ(G,H) and v = circLcm(C1, C2), then Fv(C1) ∈ CircZ(G,H)
and Fv(C2) ∈ CircZ(G,H). Moreover, [[C1]] = [[C2]] if and only if [[Fv(C1)]] = [[Fv(C2)]].

Proof. Assume for the intent of contradiction that Fv(C1) ̸∈ CircZ(G,H). Then by the
definition of CircZ(G,H), A(Fv(C1)) ̸∈ (Zk)∗. Let n = |A(Fv(C1))|. Then there exists a
j ∈ [n] such that A(Fv(C1))j ̸∈ Zk. Let α = A(Fv(C1))j . Then there exists an ℓ ∈ [k] such
that αℓ ̸∈ Z. Then denom(αℓ) ̸= 1. Let d = denom(αℓ) and x be the numerator such that
αℓ = x/d. Let β = A(C1)j . Then x/d = vℓβℓ by Lemma D.1. Define the set,

Xℓ = {denom(αℓ) : α ∈ A(C1) · A(C2)}

Then by definition, denom(βℓ) ∈ Xℓ and vℓ = lcm(Xℓ). Let d′ = denom(βℓ) and y be the
numerator such that βℓ = y/d′. Since vℓ is the least common multiple of the elements
in Xℓ and d′ ∈ Xℓ, then d′ | vℓ. Then there exists a quotient q ∈ Z such that qd′ = vℓ.
Then x/d = vℓβℓ = vℓ(y/d′) = (qd′)(y/d′) = qy ∈ Z. In other words, d = 1. However,
d ̸= 1 by assumption. Then by contradiction Fv(C1) ∈ CircZ(G,H). By a symmetric
argument, Fv(C2) ∈ CircZ(G,H). In remains to be shown that [[C1]] = [[C2]] if and only if
[[Fv(C1)]] = [[Fv(C2)]]. By Thm. 6.3, there exists a bijection f such that [[Fv(C1)]] = [[Fv(C2)]]
if and only if [[C1]]◦f = [[C2]]◦f . By Lemma 6.1, [[C1]]◦f = [[C2]]◦f if and only if [[C1]] = [[C2]].
This completes the proof. ◀

E Global Affine Linear Phase Inference

This section considers the problem of determining parameterized equivalence up to affine
rational linear global phase, under the assumptions of Sec. 6.2. These assumptions subsume
circuits over the Clifford+T gate set, with arbitrary Pauli-rotations and state preparation.
This generalizes the gate sets considered in prior work, and moreover, is the first result of
decidability for this problem.

Assume that C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H) are two circuits which differ by an
affine rational linear global phase. This means that there exists an α ∈ Qk and a β ∈ R
such that [[C2]](θ) = ei(α1θ1+···+αkθk+β)[[C1]](θ) for each θ ∈ Rk. The goal of this section is
to find an algorithm which, given C1 and C2, can solve for α1 through to αk. In the case
where C1 and C2 are not equivalent up to affine linear global phase, the algorithm should
still terminate, but may return anything, since affine linear global phase can be validated
easily through circuit instrumentation (we will see that α1 through to αk are integral).

One approach to this problem is to note that x → eixπ is injective on any not strictly
closed interval of length 2π. This means that if eiαjπ could be isolated, then it would be
possible to compute its inverse. However, αj can be arbitrarily large, so it is unclear on which
interval this inverse should be computed. An alternative approach is to find some bj ∈ N
satisfying bj > αj , so that αj/bj ∈ (−π, π). Then (αj/bj)π ∈ (−1, 1), and consequently, it
would be possible to isolate ei(αj/bj)π.
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This approach can be decomposed into three sub-problems. First, it must be shown how
to compute an bj ∈ N such that αj/bj ∈ (−1, 1). It will follow from this analysis that αj ∈ Z.
Second, it must be shown how to isolate z = ei(αj/bj)π. This can be done via arithmetic
operations on the matrix entries of [[C1]](θ) and [[C2]](θ), where θ is some rational multiple of
π. Since parameterized circuits over the universal cyclotomic field stay within the cyclotomic
field when evaluated at rational points, then z must live within the universal cyclotomic field
as well. Moreover, this is computable. Motivated by this observation we then show how to
compute the inverse to x 7→ eixπ for x ∈ (−1, 1) ∩ Q.

E.1 Normalizing the Coefficients

The goal of this section is to find some bj ∈ N such that αj/bj ∈ (−1, 1). As in the proof
of Thm. 5.10, the idea is to inspect the polynomial abstraction [[−]]Poly from Sec. 5.1, to
restrict the set of possible values for αj . It will first be shown that αj must be an integer.
Using this information, the degree bound on [[−]]Poly from Thm. 5.6 will be used to show that
|αj | < 2λj . Intuitively, the frequency of [[−]] in the j-th component bounds αj .

To this end, [[−]] must be characterized when restricted to change in the j-th component.
Let eℓ denote the ℓ-th standard basis vector for Rk and cℓ denote the ℓ-th standard basis
vector for Ck. Fix some starting point θ̂ ∈ Rk. If the j-th parameter changes by x ∈ R, then
the new parameter will be θ̂ + xej . It turns out that regardless of the starting point, the
function x 7→ [[C]](θ̂ + xej) is periodic with period at most 4π. As a convenience of notation,
define the following two maps.

ω1 : R → Rk such that ω1(x) = θ̂ + xej .
ω2 : C → Rk such that ω2(z) =

∑
ℓ∈[k]\{j}

(
exp(−iθ̂ℓ/2)cℓ

)
+ zcj

Then [[C]](θ̂ + xej) = [[C]](ω1(x)). Moreover, [[C]](ω1(x)) = [[C]]Poly(ω2(exp(−ix/2))) by
Thm. 5.2. It is easy to see that [[C]]Poly ◦ω2 is a matrix of single variable Laurent polynomials,
since ω2 fixes all other components. Using [[C]]Poly ◦ ω2, it is straight-forward to prove that
[[C]] ◦ ω1 is periodic.

▶ Lemma E.1. If C ∈ CircZ(G,H), then for each θ̂ ∈ Rk and j ∈ [j], the function [[C]] ◦ ω1
is periodic with period at most 4π.

Proof. Let s ∈ [2n] and t ∈ [2m] where n = in(C) and m ∈ out(C). Define F = [[C]]s,t and
f = ([[C]]Poly)s,t. Let j ∈ [k]. Then by Thm. 5.2, F (ω1(x)) = f(ω2(exp(−x/2))). Let x ∈ R
and ℓ ∈ N. Then the following equation holds.

F (x) = f(exp(−ix/2)) = f(exp(−ix/2 − 2πℓ)) = f(exp(−i(x + 4πℓ)/2)) = F (x + 4πℓ)

Since x and ℓ were arbitrary, then by definition, F ◦ ω1 is periodic with period at most 4π.
Since j was arbitrary as well, then the proof is complete. ◀

In the case where C1 and C2 do differ by an affine linear global phase, it then follows that
e−ip(θ)/2[[C1]](θ) is a periodic function, since [[C2]](θ) is a already known to be periodic. Since
[[C1]](θ) is already known to be periodic, then this claim holds if and only if exp(−iθj/2) is
periodic as well. It is well known that exp(−iθj/2) is periodic if and only if αj is rational.
Moreover, the period of 4π enforces that αj is in fact an integer.

▶ Theorem E.2. If C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H) satisfy [[C2]](θ) = e−ip(θ)/2[[C1]](θ)
where p(θ) = α1θ1 + · · · + αkθk + β for some α ∈ Rk and β ∈ R, then α ∈ Zk.
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Proof. Since [[C1]] and [[C2]] are equal up to a scalar function, then [[C1]] and [[C2]] have the
same dimension. If [[C1]] is identically zero, then [[C1]](θ) = 0 and [[C2]](θ) = eip(θ)/2[[C1]] = 0.
Then, αj = 0 and β = 0 is a valid solution. Assume instead that [[C1]](θ) is not identically
zero. Then there exists some component (s, t) such that [[C1]]s,t is not identically zero. Define
the functions F = [[C1]]s,t and G = [[C2]]s,t. Since [[C1]]s,t is not identically zero, then there
exists some θ̂ ∈ Rk such that F (θ̂) ̸= 0. Define γ = exp(−ip(θ̂)/2). By Lemma E.1, both F
and G have period at most 4π. Then the following equation holds.

γF (ω1(0)) = G(ω1(0)) = G(ω1(4π)) = γ exp(−i(4π)αj/2)F (ω1(4π)) = γ exp(−i(2π)αj)F (ω1(0))

Since γ is an exponential, then γ ̸= 0. Moreover, F (ω1(0)) = F (θ̂) ̸= 0 by assumption.
Then 1 = exp(−i(2π)αj). Then there exists some ℓ ∈ Z such that −(2π)αj = 2πℓ. Then
θj = −ℓ ∈ Z. Since j was arbitrary, then α ∈ Z. ◀

Since αj ∈ Z, then scaling [[C1]]Poly ◦ ω2 by eiβ(zj)αj yields a new Laurent polynomial
which agrees with [[C2]] ◦ω1 on the unit circle. Since the number of points on the unit circle is
infinite, then it follows from Thm. 2.1 that these two polynomials are identically equal. This
means that the degree bounds for [[C1]]Poly are also bounds on |αj |. It follows that |αj | ≤ 2λj .
Consequently, αj/bj ∈ (−1, 1) when bj = 2λj .

▶ Corollary E.3. Assume that C1 ∈ CircZ(G,H) and C1 ∈ CircZ(G,H) satisfy the equation
[[C2]](θ) = e−ip(θ)/2[[C1]](θ) where p(θ) = α1θ1 + · · · + αkθk + β for some α ∈ Rk and β ∈ R.
Then αj ∈ Z and |αj | ≤ 2λj for each j ∈ [k].
Proof. Let j ∈ [k]. By Thm. E.2, αj ∈ Z. It remains to be shown that |α| ≤ 2λj . Define
the functions F = [[C1]]0,0, f = ([[C1]]Poly)0,0, G = [[C2]]0,0, and g = ([[C1]]Poly)0,0. Then by
Thm. 5.2, F (ω1(x)) = f(ω2(exp(−ix/2))) and G(ω2(x)) = f(ω2(exp(−ix/2))) where θ̂ = 0.
Define the new Laurent polynomial h = γxαj (f ◦ ω2) where γ = e−iβ/2. Let z ∈ C such that
|z| = 1. Since z is on the complex unit circle, there exists some ρ ∈ R such that z = exp(iρ)
Since θ̂ = 0, then the following equation holds.

h(z) = γe−iαj x/2f(ω2(z)) = e−ip(ω1(x))/2f(ω2(z)) = e−ip(ω1(x))/2F (ω1(−ρ/2))

Then by assumption, the following equation holds.
h(exp(z)) = e−ip(ω1(x))/2F (ω1(−ρ/2)) = G(ω1(−ρ/2)) = g(ω2(z))

Since z was arbitrary, then h and g ◦ ω2 agree on the complex unit circle. Recall from
Cor. 5.7 that λj = max{

∑
α∈A(C) |αj | : C ∈ {C1, C2}}. Then by Thm. 5.6, deg±

zj
(f) ≤ λj

and deg±
zj

(g) ≤ λj . Since substituting variables for constants can only decrease the degree of
a polynomial, then deg±(f ◦ ω2) ≤ λj and deg±(g ◦ ω2) ≤ λj as well. Then the polynomials
xλjh(x) and xλjg(ω1(x)) have strictly positive degrees and agree on the complex unit circle.
In other words, every point on the complex unit circle is a root of xλj (h(x) − g(ω1(x))).
Since the number of points on the complex unit circle is uncountable, then it follows trivially
by Thm. 2.1 that xλj (h(x) − g(γ1(x))) is identically zero. Since xλj is not identically zero,
then h(x) = g(γ1(x)). There are for cases to consider.

Assume that αj ≥ 0 and deg+(f ◦ω2) = 0. Then λj ≥ deg+(g◦ω1) = αj −deg−(f ◦ω2) ≥
αj − λj . Then 2λj ≥ αj = |αj |.
Assume that αj ≥ 0 and deg+(f ◦ω2) > 0. Then λj ≥ deg+(g◦ω1) = αj +deg+(f ◦ω2) ≥
αj . Then λj ≥ αj = |αj |.
Assume that αj < 0 and deg−(f◦ω2) = 0. Then λj ≥ deg−(g◦ω1) = −αj −deg+(f◦ω2) ≥
−αj − λj . Then 2λj ≥ −αj = |αj |.
Assume that αj < 0 and deg−(f◦ω2) > 0. Then λj ≥ deg−(g◦ω1) = −αj +deg−(f◦ω2) ≥
−αj . Then λj ≥ −αj = |αj |.

In each case, |αj | ≤ 2λ. Since j was arbitrary, then this completes the proof. ◀
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E.2 Isolating the Linear Phase Terms
The goal of this section is to isolate the terms eiβ and each ei(αj/bj)π. This is relatively easy,
since every matrix in G is injective. It follows that [[C1]](θ) is injective for any choice of θ. In
particular, this means that [[C1]](0) will always have a non-zero component.

Let θ0 = 0 and θj = ej(π/bj) where ej is the j-th standard basis vector for Rk. Then
there exists some (s, t) such that ([[C1]](θ0))s,t ̸= 0 and there exists some (u, v) such that
[[C1]](θ1))u,v ̸= 0. It then follows by direct computation that the following equations hold.

eiβ = ([[C2]](θ0))s,t

([[C1]](θ0))s,t
ei(αj/bj)π = ([[C2]](θj))u,v

eiβ([[C1]](θj))u,v

Since both θ0 and θj are rational multiples of π, then this can be computed exactly in the
universal cyclotomic field.

▶ Theorem E.4. If G consists of injective matrices and C1 ∈ Circ(G,H), then [[C1]](θ) is
injective for each θ ∈ Rk.

Proof. Let Pred(−) denote the predicate on CircZ(G,H) such that Pred(C) if and only if [[C]](θ)
is injective for all θ ∈ Rk. First, the claim is proven for singleton circuits using Prop. 3.2.

Base Case (1). Let G ∈ G. Let θ ∈ Rk Then [[G]](θ) = G with G injective by assumption.
Since θ was arbitrary, then Pred(G).
Base Case (2). Let M ∈ H and p ∈ F . Let θ ∈ Rk. As explained in Sec. 3,
[[RM (p)]](θ) = cos(p(θ))I + i sin(p(θ))M is unitary. Since unitary matrices are invertible,
then they are injective. Then [[G]](θ) is injective. Since θ was arbitrary, then Pred(RM (p)).
Control Induction. Let G ∈ Σ(G,H). Assume that G is a unitary gate on n wires
and that Pred(G) holds. Let θ ∈ Rk. Since Pred(G) holds, then [[G]](θ) is injective.
Since I2n is injective, and the direct sum of injective matrices must be injective, then
[[C(G)]] = I2n ⊕ [[G]] is injective. Since θ was arbitrary, then Pred(C(p)).

Then by Prop. 3.2, Pred(G) for all G ∈ Σ(G,H). Next, Prop. 3.3 is used to prove the claim
for all circuits.

Base Case (1). Let θ ∈ Rk. Since the identity matrix is injective, then [[ϵ]](θ) = I2 is
injective. Since θ was arbitrary, then G(ϵ).
Base Case (2). If C ∈ Σ(G,H), then Pred(C) holds by the first sub-proof.
Parallel Induction. Let G ∈ Σ(G,H) and H ∈ Σ(G,H). Assume that Pred(C1) and
Pred(C2) holds. Let θ ∈ Rk. Since Pred(C1) holds, then [[C1]](θ) is injective. Since
Pred(C2) holds, then [[C2]](θ) is injective. Since the tensor produce of injective matrices
must be injective, then [[C1//C2]](θ) = [[C1]](θ)⊗ [[C2]](θ) is injective. Since θ was arbitrary,
then Pred(C1//C2) holds.
Sequential Induction. Let C1 ∈ Σ(G,H) and C2 ∈ Σ(G,H) with C1 and C2 composable.
Assume that Pred(C1) and Pred(C2) holds. Let θ ∈ Rk. Since Pred(C1) holds, then
[[C1]](θ) is injective. Since Pred(C2) holds, then [[C2]](θ) is injective. Since the tensor
produce of injective matrices must be injective, then [[C1 ◦ C2]](θ) = [[C1]](θ)[[C2]](θ) is
injective. Since θ was arbitrary, then Pred(C1 ◦ C2) holds.

Then by Prop. 3.3, Pred(C) for all C ∈ Σ(G,H). ◀

E.3 Computing the Coefficients
The goal of this section is to recover αj from z = ei(αj/bj)π. In general, global phase recovery
can be hard, since the global phase need not be a root of unity. Thanks to Cor. E.3, this is
much easier for integral circuits. If d = 2bj , then z = ei(αj/bj)π = ei(αj/d)2π = (ζd)αj where
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(ζd) is the primitive d-th root of unity. This means that z ∈ Q[ζd]. Moreover, since d is
even, then all roots of unity in Q[ζd] are of degree at most d. Since αj/d ∈ (−1/2, 1/2) with
αj ∈ Z and d = 4λ, then there must exist some ℓ ∈ {−2λ,−2λ + 1, . . . , 2λ − 1, 2λ} such
that αj = ℓ. To find such an ℓ, it suffices to search all of the integers from −2λ to 2λ until
(ζd)ℓ = z. If no such integer exists, then C1 and C2 do not differ by a global phase.

E.4 An Algorithmic Summary
The previous analysis is summarized by the following algorithm, denoted FindPhase(C1, C2).
1. Compute M1 = [[C1]](θ0) and M2 = [[C2]](θ0).
2. If there exists indices (s, t) such that (M1)s,t ̸= 0 and (M2)s,t ̸= 0, then define the variable

z0 = (M2)s,t/(M1)s,t, else return the (1, 0).
3. If |z0| ≠ 1, then return (1, 0).
4. For each j ∈ [k], compute λj = max{

∑
a∈A(C) |aj | : C ∈ {C1, C2}}.

5. For each j ∈ [k], compute M j
1 = [[C1]](θj) and M j

2 = [[C2]](θj), where θj = ejπ/(2λj).
6. For each j ∈ [k], if there exists indices (u, v) such that (M j

1 )u,v ≠ 0 and (M j
2 )u,v ≠ 0,

then define the variable zj = (M j
2 )u,v/(z0(M j

1 )u,v), else return the (1, 0).
7. For each j ∈ [k], if there exists an ℓ ∈ {−2λj ,−2λj + 1, . . . , 2λj − 1, 2λj} such that(

ζ(8λj)
)ℓ = zj , then define the variable αj = ℓ, else return the (1, 0).

8. Return (1/z0, f) where f(θ) = α1θ1 + · · · + αkθk.
Note that this does not solve for β explicitly. In principle, β could be any value. However,
1/z0 can be used in place of the eiβ in all further analysis of the programs.

▶ Lemma E.5. If (z, f) = FindPhase(C1, C2), then there exists a β ∈ R such that z = eiβ.

Proof. Note that there exists a β ∈ R such that z = eiβ if and only if |z| = 1. Then, it
suffices to show that |z| = 1. Note that the algorithm FindPhase(−,−) will return in one of
five possible cases (lines 2, 3, 6, 7, and 8). In the first four cases, the value of z is set to 1,
which implies that |z| = 1. In the fifth case, the value of z is set to z0. To reach the fifth
return case at line 8, the return statement at line 3 must be bypassed. To bypass the return
statement at line 3, it must be the case that |z0| = 1, which implies that |z| = 1. Therefore,
|z| = 1 in each of the five possible return cases. ◀

▶ Theorem E.6. Assume G and H consist of matrices over the universal cyclotomic field, with
all gates in G injective. If C1 ∈ CircZ(G,H) is equivalent to C2 ∈ CircZ(G,H) modulo affine
rational linear global phase and (z, f) = FindPhase(C1, C2), then [[C1]] = z

(
e−if(θ)/2[[C2]]

)
.

Proof. Since C1 is equivalent to C2 modulo affine linear global phase, then there exists an
affine rational linear function p(θ) = x1θ1 + · · · +xkθk +β such that [[C1]](θ) = eip(θ)/2[[C2]](θ)
for all θ ∈ Rk. Since all gates in G are injective, then by Thm. E.4, the matrix [[C2]](θ) is also
injective for all angles θ ∈ Rk. In particular, M2 = [[C2]](θ0) is injective and the following
equation holds.

M1 = [[C1]](θ0) = eip(θ0)/2[[C2]](θ0) = eiβ/2[[C2]](θ0) = eiβ/2M2

Since M2 is injective, then there exists indices (s, t) such that (M2)s,t ̸= 0. Since eiβ/2 ̸= 0,
then (M1)s,t = eiβ/2(M2)s,t ̸= 0. It follows that z0 = (M2)s,t/(M1)s,t = e−iβ/2. Next, let
j ∈ [k]. Since [[C2]](θ) is also injective for all angles θ ∈ Rk, then in particular, M j

2 = [[C2]](θj)
is injective. Moreover, since p(θj) = xjπ/(2λj) + β, then the following equation holds.

M j
1 = [[C1]](θj) = eip(θj )/2[[C2]](θj) =

(
eixj π/(4λj )[[C2]](θj)

)
/z0 =

(
eixj π/(4λj )M2

)
/z0
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Since M j
2 is injective, then there exists some indices (u, v) such that (M j

2 )u,v ̸= 0. Since
z0 ̸= 0 and eixjπ/(4λj) ̸= 0, then (M j

1 )u,v = z0e
ixjπ/(4λj)(M j

2 )u,v ̸= 0. It follows that
zj = (M j

2 )u,v/(z0M
j
1 )u,v = e−ixjπ/(4λj). By Cor. E.3, xj ∈ Z and |xj | ≤ 2λj . It follows that

xj ∈ {−2λj ,−2λj + 1, . . . , 2λj − 1, 2λj}. It must now be shown that there exists a unique
ℓ ∈ {−2λj ,−2λj + 1, . . . , 2λj − 1, 2λj} such that

(
ζ(8λj)

)ℓ = zj . Such an ℓ must be unique,
since ℓ 7→

(
ζ(8λj)

)ℓ is bijective on (−4λj , 4λj). It remains to be shown that ℓ exists. Consider
the case where ℓ = −xj . Then

(
ζ(8λj)

)ℓ =
(
eiπ/(4λj))−xj = zj . Consequently, αj = −xj .

Since j was arbitrary, then FindPhase(C1, C2) = (1/z0, f) where f(θ) = αkθj + · · · + αkθk.
Since ze−if(θ)/2 = e−i(α1θ1+···+αkθk−β)/2 = eip(θ)/2, then [[C1]] = z

(
e−if(θ)/2[[C2]]

)
. ◀

E.5 Proof of Theorem 6.5
▶ Theorem 6.5. Assume G and H consist of matrices over the universal cyclotomic field,
with all gates in G injective. If C1, C2 ∈ CircZ(G,H) and (z, f) = FindPhase(C1, C2), then C1
is equivalent to C2 modulo affine linear global phase if and only if [[C1]] = [[zI ◦RI(f) ◦ C2]].

Proof. By definition, [[RI(f)]](θ) = cos(−f(θ)/2)I + i sin(−f(θ)/2)I = e−if(θ)/2I. There are
two cases to consider.

Assume that C1 is equivalent to C2 modulo affine rational linear global phase. Then by
Thm. E.6, [[C1]] = z

(
e−if(θ)/2[[C2]]

)
= [[zI]][[RI(f)]][[C2]] = [[zI ◦RI(f) ◦ C2]].

Assume that C1 is not equivalent to C2 modulo affine rational linear global phase. Then
by definition, [[zI ◦ RI(f) ◦ C2]] = [[zI]][[RI(f)]][[C2]] = ze−if(θ)/2[[C2]]. By Lemma E.5,
there exists some β ∈ R such that z = eiβ . Then [[zI ◦RI(f) ◦C2]] = e−i(f(θ)−2β)/2 Since
C1 is not equivalent to C2 modulo affine rational linear global phase, then in particular,
[[C1]] ̸= e−i(f(θ)−2β)/2[[C2]] = [[zI ◦RI(f) ◦ C2]].

This completes the proof. ◀

F Proof of Theorem 6.7

The section establishes Thm. 6.7. The idea of the proof is fairly simple. First, let d =
lcm{denom(s) : s ∈ S}. Then for each element s ∈ S, there will be a unique numerator
xs ∈ Z such that xs/d = s. Then the size of S will be bounded by the number of unique
numerators within the given interval. To this end, define Numerator(s, d) to be the unique
integer xs such that xs/d = s.

▶ Lemma F.1. If k ∈ K, S ⊆ [0, k) ∩ Q, and d = lcm{denom(s) : s ∈ S}, then |S| = |X|
where X = {Numerator(s, d) : s ∈ S}.

Proof. Let f : S → Z such that f(s) = Numerator(s, d). Then X = f(S) and |X| ≤ |S|.
Then it suffices to show that f is injective. Let s ∈ S and t ∈ S. Assume that f(s) = f(s).
By definition of f , s = f(s)/d and t = f(t). Then s = t. Since s and t were arbitrary, then
f is injective. Then |X| ≥ |S|. In conclusion, |S| = |X|. ◀

▶ Theorem 6.7. If k ∈ N, S ⊆ [0, k) ∩ Q and b = |S|, then lcm{denom(s) : s ∈ S} ≥ ⌈b/k⌉.

Proof. Define d = lcm{denom(s) : s ∈ S} and X = {Numerator(s, d) : s ∈ S}. Let x ∈ X.
Assume for the intent of contradiction that x ̸∈ {0, 1, . . . , dk− 1}. Since x is an integer, then
there are two cases to consider.
1. Assume that x is negative. Then there exists an s ∈ S such that s = x/d. Since d is

positive, then s is negative. However, S ⊆ [0, 4), so s is positive. By contradiction, s is
not negative.
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2. Assume x ≥ dk. Then there exists an s ∈ S such that s = x/d. Since x ≥ dk, then s ≥ k.
However, S ⊆ [0, 4), so s < 4. By contradiction, s < dk.

Since x was arbitrary, then X ⊆ {0, 1, . . . , dk − 1}. Then |X| < dk. Then by Lemma F.1,
|S| = |X| < dk. Then b/k ≤ d. Since d is an integer, then ⌈b/k⌉ ≤ d. ◀
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