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Abstract. We introduce dependently typed Proto-Quipper, or Proto-
Quipper-D for short, an experimental quantum circuit programming lan-
guage with linear dependent types. We give several examples to illustrate
how linear dependent types can help in the construction of correct quan-
tum circuits. Specifically, we show how dependent types enable program-
ming families of circuits, and how dependent types solve the problem of
type-safe uncomputation of garbage qubits. We also discuss other lan-
guage features along the way.
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1 Introduction

Quantum computers can in principle outperform conventional computers at cer-
tain crucial tasks that underlie modern computing infrastructures. Experimental
quantum computing is in its early stages and existing devices are not yet suitable
for practical computing. However, several groups of researchers, in both academia
and industry, are now building quantum computers (see, e.g., [2,12,17]). Quan-
tum computing also raises many challenging questions for the programming lan-
guage community [18]: How should we design programming languages for quan-
tum computation? How should we compile and optimize quantum programs?
How should we test and verify quantum programs? How should we understand
the semantics of quantum programming languages?

In this paper, we focus on quantum circuit programming using the linear
dependently typed functional language Proto-Quipper-D.

The no-cloning property of quantum mechanics states that one cannot in
general copy the state of a qubit. Many existing quantum programming lan-
guages, such as Quipper[10,11], QISKit [22], Q# [27], Cirq [5], or ProjectQ [26],
do not enforce this property. As a result, programmers have to ensure that refer-
ences to qubits within a program are not duplicated or discarded. Linear types
have been used for resource aware programming [8,28] and it is now well-known
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that they can be used to enforce no-cloning [25]. A variety of programming lan-
guages use linear types for quantum circuit programming, e.g., Proto-Quipper-S
[24], Proto-Quipper-M [23], and QWire [20]. All well-typed programs in these
languages satisfy the no-cloning property.

Dependent types [15] have been one of the main focuses in programming
language and type system research in the past decades. Dependent types make
it possible to express program invariants and constraints using types [1,3,6].
In the context of quantum circuit programming, dependent types are useful
for expressing parameterized families of circuits. For example, one can define
a function that inputs a size and outputs a circuit of the corresponding size.
Because the type of the output circuit is indexed by the size argument, errors
due to an attempt to compose mismatched circuits are detected at compile time.
Another important application of dependent types is the type-safe management
of garbage qubits, which we discuss in Section 4.

We introduce an experimental quantum circuit programming language called
dependently typed Proto-Quipper, or Proto-Quipper-D for short. Following Quip-
per, Proto-Quipper-D is a functional language with quantum data types and
aims to provide high-level abstractions for constructing quantum circuits. Like
its predecessors Proto-Quipper-S and Proto-Quipper-M, the Proto-Quipper-D
language relies on linear types to enforce no-cloning. Proto-Quipper-D addi-
tionally features the use of linear dependent types to facilitate the type-safe
construction of circuit families [7]. This paper provides a practical introduction
to programming in Proto-Quipper-D.

The paper is structured around several programming examples that showcase
the use of linear dependent types in Proto-Quipper-D.

– We give an introduction to dependent types by showing how to use them to
prove basic properties of addition in Section 2.

– We show how to program with families of quantum circuits in Section 3.
– We give a new application of existential dependent types and show how it

simplifies the construction of certain reversible quantum circuits in Section 4.

An implementation of Proto-Quipper-D is available at: https://gitlab.com/
frank-peng-fu/dpq-remake.

2 An introduction to dependent types

Proto-Quipper-D supports programming by recursion and pattern matching. For
example, the following is a program that defines the addition of Peano numbers.

data Nat = Z | S Nat

add : !(Nat -> Nat -> Nat)

add n m =

case n of

Z -> m

S n’ -> S (add n’ m)

https://gitlab.com/frank-peng-fu/dpq-remake
https://gitlab.com/frank-peng-fu/dpq-remake
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In the above program, we use the keyword data to define an algebraic data
type in the style of Haskell 98 [21]. The type checker will analyze the data type
declaration and determine that Nat is a parameter type (or non-linear type).
In Proto-Quipper-D, parameter types are types that can be freely duplicated
and discarded. The addition function has type !(Nat -> Nat -> Nat). The
exclamation mark (pronounced “bang”) in front of a function type makes that
type a parameter type. This means that addition is a reusable function, i.e., it can
be used multiple times. The type of a non-reusable function would be of the form
a -> b and in particular would not be prefixed by a !. In contrast to a reusable
function, a non-reusable function must be used exactly once. This guarantees
that any quantum data embedded in the function does not get inadvertently
duplicated or discarded. Proto-Quipper-D requires all top-level declarations to
have parameter types, making them reusable.

With dependent types, we can even encode properties of programs in types.
In Proto-Quipper-D, dependent function types are of the form (x : A) -> B,
where the type B may optionally mention the variable x. We can think of this
dependent function type as the universal quantification ∀x : A .B of predicate
logic. Dependent types therefore allow us to represent properties of programs
as types. For example, the following programs correspond to proofs of basic
properties of addition.

addS : ! (p : Nat -> Type) -> (n m : Nat) ->

p (add n (S m)) -> p (add (S n) m)

addS p n m h =

case n of

Z -> h

S n’ -> addS (λ y -> p (S y)) n’ m h

addZ : ! (p : Nat -> Type) -> (n : Nat) -> p (add n Z) -> p n

addZ p n h = case n of

Z -> h

S n’ -> addZ (λ y -> p (S y)) n’ h

The type of addS expresses the theorem that for all natural numbers n and m,
we have n+ Sm = Sn+m. However, rather than using an equality symbol, we
use the so-called Leibniz equality. Leibniz defined two things to be equal if they
have exactly the same properties. Therefore, the type of addS states that for any
property p : Nat -> Type of natural numbers, and for all natural numbers n,
m, if add n (S m) has the property p, then add (S n) m has the property p.
Similarly, the type of addZ expresses the fact that n+ Z = n.

Note how the types of dependent type theory play a dual role: on the one
hand, they can be read as types specifying the inputs and outputs of functional
programs; on the other hand, they can be read as logical statements. This is the
so-called propositions-as-types paradigm [9]. For example, the last arrow “->” in
the type of addS can be interpreted both as a function type and as the logical
implication symbol. This works because a proof of an implication is actually
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a function that transforms evidence for the hypothesis into evidence for the
conclusion.

Indeed, not only does the type of the function addS corresponds to a theorem,
but the actual code of addS corresponds to its proof. For example, in the branch
when n is Z, the variable h has type p (add Z (S m)), which equals p (S m)

by the definition of add. This branch is expecting an expression of type p (add

(S Z) m), which equals p (S m) by definition of add, so the type-checking of h
succeeds.

In practice, we can sometimes use the above equality proofs to convert one
type to another. We will give examples of this in Section 3.2. However, we em-
phasize that Proto-Quipper-D is designed for quantum circuit programming, not
general theorem proving like languages such as Coq and Agda. The only kind of
primitive propositions we can have are equalities, and the support of dependent
data types is limited to simple types, as discussed in Section 3.1.

3 Programming quantum circuits

We use the keyword object to introduce simple linear objects such as bits and
qubits, representing primitive wires in circuits. We use the keyword gate to
introduce a primitive gate. As far as Proto-Quipper-D is concerned, gates are
uninterpreted; they simply represent basic boxes that can be combined into
circuits. Each primitive gate has a type specifying its inputs and outputs.

object Qubit

object Bit

gate H : Qubit -> Qubit

gate CNot : Qubit -> Qubit -> Qubit * Qubit

gate Meas : Qubit -> Bit

gate Discard : Bit -> Unit

gate Init0 : Unit -> Qubit

gate C_X : Qubit -> Bit -> Qubit * Bit

gate C_Z : Qubit -> Bit -> Qubit * Bit

The above code declares primitive types Qubit and Bit and a number of gates.
For example, the gate H is a reusable linear function of type !(Qubit -> Qubit),
which, by convention, represents the Hadamard gate. Note that the type checker
automatically adds the ! to gate declarations, so it is not necessary to do so
manually. The type expression Qubit * Qubit denotes the tensor product of
two qubits, and thus, the controlled-not gate CNot has two inputs and two out-
puts (where, by convention, the first input is the target and the second is the
control). By linearity, the arguments of the CNot can only be used once. Thus,
an expression such as CNot x x will be rejected by the type checker because
the argument x is used twice. The gate Meas corresponds to a measurement,
turning a qubit into a classical bit. The type Unit represents the unit of the
tensor product, i.e., a bundle of zero wires. Thus, the gate Discard can be used
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to discard a classical bit, and the gate Init0 can be used to initialize a qubit
(by convention, in state |0〉). We also introduce two classically-controlled gates
C X and C Z.

The following program produces a circuit that generates a Bell state:

0

0

H

bell00 : !(Unit -> Qubit * Qubit)

bell00 u =

let x = Init0 ()

y = Init0 ()

x’ = H x

(y, x’) = CNot y x’

in (y, x’)

The initialization gate Init0 inputs a unit, denoted by (), and outputs a qubit.
If we want to display the circuit generated by the function bell00, we can use
Proto-Quipper’s box function:

bell00Box : Circ(Unit, Qubit * Qubit)

bell00Box = box Unit bell00

The box function inputs a circuit-generating function such as bell00 and pro-
duces a completed circuit of type Circ(Unit, Qubit * Qubit). In the Proto-
Quipper-D interactive shell, we can then type :d bell00Box to display the cir-
cuit.

The following program implements quantum teleportation.

0

0

H

H

Meas

Meas

C_X C_Z

bellMeas : !(Qubit -> Qubit -> Bit * Bit)

bellMeas x y =

let (x’, y’) = CNot x y

y’’ = H y’

in (Meas x’, Meas y’’)

tele : !(Qubit -> Qubit)

tele phi =

let (bob, alice) = bell00 ()

(a’, phi’) = bellMeas alice phi
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(bob’, a’’) = C_X bob a’

(r, phi’’) = C_Z bob’ phi’

u = Discard phi’’

u = Discard a’’

in r

3.1 Simple types

Following Quipper, Proto-Quipper-D makes a distinction between parameters
and states. Parameters are values that are known at circuit generation time,
while states are only known at circuit execution time. For example, the type Nat

represents a parameter, while the type Qubit represents a state.
In Proto-Quipper-D, we use the concept of simple types to describe states. As

discussed earlier, simple types can be introduced using the keyword object. In
practice, it is more common to create simple types by composing existing ones.
For example, Qubit * Qubit is also a simple type. For this reason, we call the
tensor product a simple type constructor. In Proto-Quipper-D, the programmer
can also define families of new simple types using the simple keyword. For
example, the following defines a type family Vec, and Vec Qubit n is a simple
type.

simple Vec a : Nat -> Type where

Vec a Z = VNil

Vec a (S n) = VCons a (Vec a n)

The expression Nat -> Type is a kind expression. It means that Vec a n is a
type whenever n is a natural number. The two clauses after the simple keyword
are the definition of the type Vec a n. The first clause says that an element of
the type Vec a Z can be constructed by the constructor VNil. The second clause
says that an element of the type Vec a (S n) can be constructed by applying
the constructor VCons to a term of type a and a term of type Vec a n. Therefore,
Vec a n represents a vector of n elements of type a.

The type Vec a n is an example of dependent data type, where the data type
Vec a n depends on some term n of type Nat. In the interpreter, we can query
the types of VNil and VCons (by typing :t VNil). They have the following types.

VNil : forall (a : Type) -> Vec a Z

VCons : forall (a : Type) -> forall (n : Nat) ->

a -> Vec a n -> Vec a (S n)

In Proto-Quipper-D, all data constructors are reusable, so there is no need for
them to have an explicit bang-type. The leading forall keyword means that
programmers do not need to supply that argument when calling the function.
We call such quantification irrelevant quantification. For example, when using
VCons, we only need to give it two arguments, one of type a and one of type Vec

a n.
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The simple data type declaration is currently the only way to introduce de-
pendent data types in Proto-Quipper-D. Semantically, simple types corresponds
to states. Syntactically, a simple type can uniquely determine the size and the
constructors of its data. The type checker will check whether a simple data type
declaration is well-defined. Note that not all dependent data types are simple
types. For example, the following declaration will not pass the type checker.

simple ColorVec a : Nat -> Type where

ColorVec a Z = CNil

ColorVec a (S n) = VConsBlue a (ColorVec a n)

ColorVec a (S n) = VConsRed a (ColorVec a n)

The ColorVec data type is ambiguous when the parameter is S n, as the con-
structor in this case can be either VConsBlue or VConsRed.

In general, checking whether a simple type is well-defined is equivalent to
deciding whether a general recursive function is well-defined and terminating,
which is undecidable. Currently, Proto-Quipper-D checks whether a simple data
type declaration is well-defined using the same criterion as checking primitive
recursion [14].

3.2 Using Leibniz equality

Suppose we want to define a function that reverses the order of the components
in a vector. One way to do this is to use an accumulator: we traverse the vector
while prepending each element to the accumulator. This can be expressed by the
reverse aux function defined below.

reverse_aux : ! (a : Type) -> (n m : Nat) ->

Vec a n -> Vec a m -> Vec a (add n m)

reverse_aux a n m v1 v2 =

case n of

Z -> let VNil = v1 in v2

S n’ ->

let VCons q qs = v1 in

let ih = reverse_aux a n’ (S m) qs (VCons q v2) in

addS (Vec a) n’ m ih

Note that the type of reverse aux indicates that the length of the output vector
is the sum of the lengths of the input vectors. In the definition for reverse aux,
we use v1 and v2 exactly once in each branch, which respects linearity. In the sec-
ond branch of reverse aux, the type checker expects an expression of type Vec

a (add (S n’) m), but the expression ih, obtained from the recursive call, has
type Vec a (add n’ (S m)). We therefore use the theorem addS from Section 2
to convert the type to Vec a (add (S n’) m). We can then use reverse aux

to define the reverse vec function, which requires a similar type conversion.

reverse_vec : ! (a : Type) -> (n : Nat) -> Vec a n -> Vec a n

reverse_vec a n v = addZ (Vec a) n (reverse_aux a n Z v VNil)
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3.3 Families of quantum circuits

We can use simple data types such as vectors to define functions that correspond
to families of circuits. As an example, we consider the well-known quantum
Fourier transform [19]. The quantum Fourier transform is the map defined by

|a1, . . . , an〉 7→
(|0〉+ e2πi0.a1a2...an |1〉) . . . (|0〉+ e2πi0.an−1an |1〉)(|0〉+ e2πi0.an |1〉)

2n/2
.

where 0.a1...an is the binary fraction a1/2 + a2/4 + ...+ an/2
n. Circuits for the

quantum Fourier transform can be constructed using the Hadamard gate H and
the controlled rotation gates R(k) defined by

R(k) =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e2πi/2
k

 .

The family of gates R(k) can be declared in Proto-Quipper-D as follows:

gate R Nat : Qubit -> Qubit -> Qubit * Qubit

Applying the Hadamard gate to the first qubit produces the following state

H1|a1, . . . , an〉 =
1√
2

(|0〉+ e2πi0.a1 |1〉)⊗ |a2, . . . , an〉,

where the subscript on the gate indicates the qubit on which the gate acts. We
then apply a sequence of controlled rotations using the the first qubit as the
target. This yields

R(n)1,n . . . R(2)1,2H1|a1, . . . , an〉 =
1

21/2
(|0〉+ e2πi0.a1a2...an |1〉)⊗ |a2, . . . , an〉,

where the subscripts i and j in R(k)i,j indicate the target and control qubit, re-
spectively. When n = 5, the above sequence of gates corresponds to the following
circuit.

H R(2) R(3) R(4) R(5)

To construct such a circuit in Proto-Quipper-D, we first define the rotate func-
tion, which will produce a cascade of rotations with a single target. The rotations
in the above circuit are then generated by oneRotation 4.

rotate : ! forall (y : Nat) -> Nat ->

Qubit -> Vec Qubit y -> Qubit * Vec Qubit y

rotate k q v =
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case v of

VNil -> (q, VNil)

VCons x xs ->

let (q’, x’) = R k q x

(q’’, xs’) = rotate (S k) q’ xs

in (q’’, VCons x’ xs’)

oneRotation : ! (n : Nat) ->

Circ(Qubit * Vec Qubit n, Qubit * Vec Qubit n)

oneRotation n =

box (Qubit * Vec Qubit n)

(λ x -> let (q, v) = x in rotate 2 (H q) v)

The rotate function uses the input vector v for controls and recursively applies
the rotation gate R to the target qubit q, updating the rotation angle at each
step. To program the full quantum Fourier transform, we apply the Hadamard
and controlled rotations recursively to the rest of input qubits.

qft : ! forall (n : Nat) -> Vec Qubit n -> Vec Qubit n

qft v =

case v of

VNil -> VNil

VCons q qs ->

let q’ = H q

(q’’, qs’) = rotate 2 q’ qs

qs’’ = qft qs’

in VCons q’’ qs’’

qftBox : ! (n : Nat) -> Circ(Vec Qubit n, Vec Qubit n)

qftBox n = box (Vec Qubit n) qft

For example, qftBox 5 generates the following circuit.

H R(2) R(3) R(4) R(5)

H R(2) R(3) R(4)

H R(2) R(3)

H R(2)

H

The input qubits of the circuit above use a big-endian ordering. We can convert
to little-endian ordering by reversing the input vector.

qftBoxLittle : ! (n : Nat) -> Circ(Vec Qubit n, Vec Qubit n)

qftBoxLittle n = box (Vec Qubit n) (λ v -> qft (reverse_vec Qubit n v))

Then qftBoxLittle 5 generates the following circuit.
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H R(2) R(3) R(4) R(5)

H R(2) R(3) R(4)

H R(2) R(3)

H R(2)

H

3.4 Type classes for simple types and parameter types

Proto-Quipper-D is equipped with a type class mechanism that allows the user
to define type classes and instances [29]. In addition, Proto-Quipper-D has two
built-in type classes called Simple and Parameter, which are useful for pro-
gramming with simple types and parameter types, respectively. The user cannot
directly define instances for these two classes. Instead, instances for Simple and
Parameter are automatically generated from data type declarations.

When a simple data type is defined, the type checker automatically makes
the type an instance of the Simple class and, if appropriate, of the Parameter

class. Similarly, when algebraic data types such as List and Nat are defined, the
type checker makes instances of the Parameter class when possible. For example,
consider the following programs.

data List a = Nil | Cons a (List a)

kill : ! forall a -> (Parameter a) => a -> Unit

kill x = ()

test1 : !(List Nat -> Unit)

test1 x = kill x

test2 : !(List Qubit -> Unit)

test2 x = kill x

The argument of the function kill must be a parameter. The expression test1

is well-typed, because List Nat is a member of the Parameter class. But test2
fails to type-check because List Qubit is not a member of the Parameter class.

Simple types are useful for describing the types of certain operations that
require a circuit, rather than a family of circuits. Examples are boxing, unboxing,
and reversing a circuit:

box : (a : Type) -> forall (b : Type) ->

(Simple a, Simple b) => !(a -> b) -> Circ(a, b)

unbox : forall (a b : Type) ->

(Simple a, Simple b) => Circ(a, b) -> !(a -> b)

reverse : forall (a b : Type) ->

(Simple a, Simple b) => Circ(a, b) -> Circ(b, a)
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The type of box implies that only functions of simple type can be turned into
boxed circuits. The following program will not type-check because List Qubit

is not a simple type.

boxId : Circ(List Qubit, List Qubit)

boxId = box (List Qubit) (λ x -> x)

With the built-in function reverse, we can now compute the inverse of qftBox.

boxQftRev : ! (n : Nat) -> Circ(Vec Qubit n, Vec Qubit n)

boxQftRev n = reverse (qftBox n)

By definition, the family of circuits represented by boxQftRev is obtained by
taking the inverse of every member of the family of circuits represented qftBox.
For example, boxQftRev 5 generates the following circuit.

H

R*(2) H

R*(3) R*(2) H

R*(4) R*(3) R*(2) H

R*(5) R*(4) R*(3) R*(2) H

4 Type-safe management of garbage qubits

In quantum computing, it is often necessary to provide classical oracles to a
quantum algorithm. These oracles are reversible implementations of classical
boolean functions. Consider the example of the single bit full adder. If the inputs
are a, b and carryIn, then the boolean expression xor (xor a b) carryIn

calculates the sum of a, b and carryIn while the boolean expression (a && b)

|| (a && carryIn) || (b && carryIn) calculates the output carry.
We can implement the single bit adder as a reversible quantum circuit. Sup-

pose that the boolean operations xor, ||, and && are given as reversible circuits
of type !(Qubit -> Qubit -> Qubit * Qubit). Here, the first qubit in the
output of each function is the result of the operation, whereas the second qubit
is a “garbage” qubit that cannot be discarded since this would violate linearity.
As a result, the following naive implementation of the adder generates 7 garbage
qubits and has a 9-tuple of qubits as its return type.

adder : ! (Qubit -> Qubit -> Qubit ->

Qubit * Qubit * Qubit * Qubit * Qubit *

Qubit * Qubit * Qubit * Qubit)

adder a b carryIn =

let (a1, a2, a3) = copy3 a

(b1, b2, b3) = copy3 b

(carryIn1, carryIn2, carryIn3) = copy3 carryIn

(g1, r) = xor a1 b1
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(g2, s) = xor carryIn1 r

(g3, c1) = a2 && b2

(g4, c2) = a3 && carryIn2

(g5, c3) = b3 && carryIn3

(g6, c4) = c1 || c2

(g7, carryOut) = c4 || c3

in (s, carryOut, g1, g2, g3, g4, g5, g6, g7)

Due to linearity, the copying of a classical qubit must be explicit. In the code
above, copy3 is a function that produces three copies of a qubit that is in a
classical state, i.e., copy3 corresponds to the following circuit.

0

0

The above implementation of the adder is hard to read and awkward to
compose with other circuits, because its type keeps track of all the garbage
qubits produced throughout the computation. In Proto-Quipper-D, we solve this
problem using monads [13], existential dependent types, and existential circuit
boxing.

Instead of using the type !(Qubit -> Qubit -> Qubit * Qubit), we give
xor, ||, and && the type !(Qubit -> Qubit -> WithGarbage Qubit), where
WithGarbage is a monad that will take care of the garbage qubits. The idiomatic
implementation of the full adder in Proto-Quipper-D is the following.

adder : !(Qubit -> Qubit -> Qubit -> WithGarbage (Qubit * Qubit))

adder a b carryIn = do

let (a1, a2, a3) = copy3 a

(b1, b2, b3) = copy3 b

(carryIn1, carryIn2, carryIn3) = copy3 carryIn

s <- [| xor (xor a1 b1) (pure carryIn1)|]

carryOut <- [| [| (a2 && b2) || (a3 && carryIn2) |] || (b3 && carryIn3) |]

return (s, carryOut)

Proto-Quipper-D implements idiom brackets [16] of the form [| f a b c |].
This expression will be translated to join (ap (ap (ap (pure f) a) b) c),
where ap, pure and join have the following types.

ap : ! forall (a b : Type) -> forall (m : Type -> Type) ->

(Monad m) => m (a -> b) -> m a -> m b

pure : ! forall (m : Type -> Type) ->

(Monad m) => forall (a : Type) -> a -> m a

join : ! forall (a : Type) -> forall (m : Type -> Type) ->

(Monad m) => m (m a) -> m a
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We now briefly discuss the definition of the WithGarbage monad.

data WithGarbage a = WG ((n : Nat) * Vec Qubit n) a

instance Monad WithGarbage where

return x = WG (Z, VNil) x

bind wg f = let WG ng r = wg

(n, g) = ng

WG mg’ r’ = f r

(m, g’) = mg’

in WG (add n m, append g g’) r’

The type (x : A) * B is an existential dependent type, corresponding to the
existential quantification ∃x : A .B of predicate logic. Just as for dependent
function types, the type B may optionally mention the variable x. The elements
of the type (n : Nat) * Vec Qubit n are pairs (n, v), where n : Nat and v

: Vec Qubit n. Thus, WithGarbage a contains a vector of qubits of a unknown
length and a value of type a. In the definition of the WithGarbage monad,
the return function does not generate any garbage qubits. The bind function
combines the garbage qubits from the two computations wg and f. Note that it
uses the append function to concatenate two vectors.

The standard way to dispose of a qubit (and turn it into garbage) is via the
following dispose method.

class Disposable a where

dispose : a -> WithGarbage Unit

instance Disposable Qubit where

dispose q = WG (1, VCons q VNil) ()

So for example, we can implement xor as follows. Note that the implemented
circuit is not optimal, but it serves to illustrate the point.

xor : !(Qubit -> Qubit -> WithGarbage Qubit)

xor x y =

do let z = Init0 ()

(z’, x’) = CNot z x

(z’’, y’) = CNot z’ y

dispose x’

dispose y’

return z’’

Using the WithGarbage monad, we can essentially program as if the extra
garbage qubits do not exist. Next, we need a type-safe way to uncompute the
garbage qubits. We achieve this with the function with computed below, which
takes a garbage-producing function and turns it into a function that produces no
garbage. The implementation of with computed relies on the following built-in
function:
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existsBox : (a : Type) -> forall (b : Type) ->

(Simple a, Parameter b) => (p : b -> Type) ->

!(a -> (n : b) * p n) ->

(n : b) * ((Simple (p n)) => Circ(a, p n))

Intuitively, the existsBox construct is used to box an existential function. It
takes a circuit generating function of type !(a -> (n : b) * p n) as input
and turns it into an existential circuit of the type (n : b) * Circ(a, p n).
Using existsBox, we can define with computed:

with_computed : ! forall d -> (a b c : Type) ->

(Simple a, Simple b) =>

!(a -> WithGarbage b) ->

!(c * b -> d * b) -> (c * a -> d * a)

with_computed a b c f g input =

let (y, x) = input

(_, circ) = existsBox a (λx -> Vec Qubit x * b) (λz -> unGarbage (f z))

h’ = unbox circ

(v, r) = h’ x

circ_rev = unbox (reverse circ)

(d, r’) = g (y, r)

res = circ_rev (v, r’)

in (d, res)

The with computed function inputs a function f : a -> WithGarbage b and
a second function g : c * b -> d * b, and produces a garbage-free circuit c

* a -> d * a corresponding to the following diagram. Of course each wire may
correspond to multiple qubits, as specified in its type.

c d

b ba a

garbagef f−1

g

Note that this construction is type-safe, because it guarantees that there will be
no uncollected garbage, regardless of how much garbage the function f actually
produces. However, Proto-Quipper-D does not guarantee the semantic correct-
ness of the resulting circuit; it could happen that a qubit that is supposed to
be returned in state |0〉 is returned in some other state. Since semantic correct-
ness is in general undecidable, Proto-Quipper-D makes no attempt to prove it.
Consequently, a failure of semantic correctness is considered to be a program-
ming error, rather than a type error. However, the syntactic correctness of the
generated circuits is guaranteed by the type system.

Using the with computed function and a few helper functions, we can obtain
the following reversible version of adder.
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5 Case studies

Beyond the simple examples that were considered in this tutorial, we have con-
ducted two nontrivial programming case studies using Proto-Quipper-D. The
first one is an implementation of the binary welded tree algorithm [4], which fea-
tures the use of the dependent vector data type. The second is a boolean oracle
for determining the winner of a completed game of Hex, which features the use
the of WithGarbage and State monads. Both implementations are distributed
with Proto-Quipper-D, in test/BWT.dpq and test/Hex3.dpq, respectively. The
largest oracle contains 457,383 gates. For this oracle, type checking is nearly
instantaneous (it takes less than 1 second), and circuit generation takes about
2.5 minutes on a 3.5 GHz CPU (4 cores), 16 GB memory desktop machine.

6 Conclusion

In this tutorial, we introduced the quantum programming language Proto-Quip-
per-D through a series of examples. Proto-Quipper-D is an experimental lan-
guage and is currently under active development. Due to space constraints, we
did not discuss all of the features of Proto-Quipper-D. Our goal was to high-
light the use of linear and dependent types in quantum circuit programming. All
the programs in the tutorial are available in test/Tutorial.dpq of the Proto-
Quipper-D distribution.
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26. Steiger, D.S., Häner, T., Troyer, M.: Projectq: An open source software framework
for quantum computing (2016), arXiv:1612.08091

27. Svore, K., Geller, A., Troyer, M., Azariah, J., Granade, C., Heim, B., Kliuchnikov,
V., Mykhailova, M., Paz, A., Roetteler, M.: Q#: Enabling scalable quantum com-
puting and development with a high-level DSL. In: Proceedings of the Real World
Domain Specific Languages Workshop, RWDSL 2018. Association for Computing
Machinery (2018)

28. Wadler, P.: Linear types can change the world! In: Broy, M., Jones, C. (eds.) TC 2
Working Conference on Programming Concepts and Methods. pp. 546–566 (1990)

29. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. pp. 60–76. ACM (1989)

http://arxiv.org/abs/1612.08091

	1 Introduction
	2 An introduction to dependent types
	3 Programming quantum circuits
	3.1 Simple types
	3.2 Using Leibniz equality
	3.3 Families of quantum circuits
	3.4 Type classes for simple types and parameter types

	4 Type-safe management of garbage qubits
	5 Case studies
	6 Conclusion

