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Abstract. The matrices that can be exactly represented by a circuit over the Toffoli-Hadamard
gate set are the orthogonal matrices of the form M/

√
2k, where M is an integer matrix and k is a

nonnegative integer. The exact synthesis problem for this gate set is the problem of constructing
a circuit for a given such matrix. Existing methods produce circuits consisting of O(2n log(n)k)
gates, where n is the dimension of the matrix. In this paper, we provide two improved synthesis
methods. First, we show that a technique introduced by Kliuchnikov in 2013 for Clifford+T
circuits can be straightforwardly adapted to Toffoli-Hadamard circuits, reducing the complexity
of the synthesized circuit from O(2n log(n)k) to O(n2 log(n)k). Then, we present an alternative
synthesis method of similarly improved cost, but whose application is restricted to circuits on no
more than three qubits. Our results also apply to orthogonal matrices over the dyadic fractions,
which correspond to circuits using the 2-qubit gate H ⊗H, rather than the usual single-qubit
Hadamard gate H.
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1 Introduction

Recent experimental progress has made it possible to carry out large computational tasks on quantum
computers faster than on state-of-the-art classical supercomputers [3,26]. However, qubits are in-
credibly sensitive to decoherence, which leads to the degradation of quantum information. Moreover,
physical gates implemented on real quantum devices have poor gate fidelity, so that every additional
gate in a circuit introduces a small error to the computation. To harness the full power of quantum
computing, it is therefore crucial to design resource-efficient compilation techniques.

Over the past decade, researchers have taken advantage of a correspondence between quantum
circuits and matrices of elements from algebraic number rings [2,7,10,14,15]. This number-theoretic
perspective can reveal important properties of gate sets and has resulted in several improved synthesis
protocols. An important instance of this correspondence occurs in the study of the Toffoli-Hadamard
gate set {X,CX,CCX,H} [2,9]. Circuits over this gate set correspond exactly to orthogonal matrices
of the form M/

√
2k, where M is an integer matrix and k is a nonnegative integer. A closely related

instance of this correspondence arises with the gate set {X,CX,CCX,H⊗H}, where the 2-qubit gate
H⊗H replaces the usual single-qubit Hadamard gate H. Circuits over this second gate set correspond
exactly to orthogonal matrices over the ring of dyadic fractions Z[1/2] [2]. The Toffoli-Hadamard gate
set is arguably the simplest universal gate set for quantum computation [1,22]; the corresponding
circuits have been studied in the context of diagrammatic calculi [23], path-sums [24], and quantum
logic [5], and play a critical role in quantum error correction [4,6,20], fault-tolerant quantum computing
[11,19,25], and the quantum Fourier transform [17].

In this paper, we leverage the number-theoretic structure of the aforementioned circuits to design
improved synthesis algorithms. Our approach is to focus on the matrix groups associated with the
gate sets {X,CX,CCX,H} and {X,CX,CCX,H ⊗H}. For each group, we use a convenient set of
generators and study the factorization of group elements into products of these generators. Because
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each generator can be expressed as a short circuit, a good solution to this factorization problem yields
a good synthesis algorithm.

Exact synthesis algorithms for Toffoli-Hadamard circuits were introduced in [9] and independently
in [2]. We refer to the algorithm of [2], which we take as our baseline, as the local synthesis algo-
rithm because it factors the input matrix column by column. This algorithm produces circuits of
O(2n log(n)k) gates, where n is the dimension of the input matrix.

We propose two improved synthesis methods. The first, which we call the Householder synthesis
algorithm, is an adaptation to the Toffoli-Hadamard gate set of the technique introduced by Kliuch-
nikov in [13] for the Clifford+T gate set. This algorithm proceeds by embedding the input matrix
in a larger one, and then expressing this larger matrix as a product of Householder reflections. The
Householder synthesis algorithm produces circuits of O(n2 log(n)k) gates. We then introduce a global
synthesis algorithm, inspired by the work of Russell in [21] and of Niemann, Wille, and Drechsler in
[18]. In contrast to the local synthesis algorithm, which proceeds one column at a time, the global
algorithm considers the input matrix in its entirety. In its current form, this last algorithm is restricted
to matrices of dimensions 2, 4, and 8. As a result of this restriction, the dimension of the input matrix
can be dropped in the asymptotic analysis, and the circuits produced by the global algorithm consist
of O(k) gates.

The rest of this paper is organized as follows. In Section 2, we introduce the exact synthesis
problem, as well as the matrices, groups, and rings that will be used throughout the paper. In Section 3,
we review the local synthesis algorithm of [2]. The Householder synthesis algorithm and the global
synthesis algorithm are discussed in Sections 4 and 5, respectively. We conclude in Section 6.

2 The Exact Synthesis Problem

In this section, we introduce the exact synthesis problem. We start by defining the matrices, groups,
and rings that will be used in the rest of the paper.

Definition 1. The ring of dyadic fractions is defined as Z[1/2] =
{
u/2k; u ∈ Z, k ∈ N

}
.

Definition 2. On(Z[1/2]) is the group of n-dimensional orthogonal dyadic matrices. It consists of
the n×n orthogonal matrices of the form M/2k, where M is an integer matrix and k is a nonnegative
integer. For brevity, we denote this group by On.

Definition 3. Ln is the group of n-dimensional orthogonal scaled dyadic matrices. It consists of the
n× n orthogonal matrices of the form M/

√
2k, where M is an integer matrix and k is a nonnegative

integer.

On is infinite if and only if n ≥ 5. Moreover, On is a subgroup of Ln. When n is odd, we in fact
have On = Ln [2, Lemma 5.9]. When n is even, On is a subgroup of Ln of index 2. As a result, it is
also the case that Ln is infinite if and only if n ≥ 5.

Definition 4. Let t ∈ Z[1/2]. A natural number k is a denominator exponent of t if 2kt ∈ Z. The
least such k is called the least denominator exponent of t, and is denoted by lde(t).

Definition 5. Let t = u/
√
2
k
, where u ∈ Z and k ∈ N. A natural number k is a scaled denominator

exponent of t if
√
2kt ∈ Z. The least such k is called the least scaled denominator exponent of t, and

is denoted by lde√2(t).

We extend Definitions 4 and 5 to matrices with appropriate entries as follows. A natural number
k is a (scaled) denominator exponent of a matrix M if it is a (scaled) denominator exponent of all of
the entries of M . Similarly, the least such k is called the least (scaled) denominator exponent of M .
We denote the least denominator exponent of M and the least scaled denominator of M by lde(M)
and lde√2(M), respectively.

We now leverage some well-known quantum gates to define generators for On and Ln.
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Definition 6. The matrices (−1), X, CX, CCX, H, and K are defined as follows:

(−1) = [−1], X =

[
0 1
1 0

]
, H =

1√
2

[
1 1
1 −1

]
,

CX = diag(I2, X), CCX = diag(I6, X), and K = H ⊗H.

The matrix (−1) is a scalar. The matrices X, CX, and CCX are known as the NOT, CNOT, and
Toffoli gates, respectively, while the matrix H is the Hadamard gate. In Definition 6, CX and CCX
are defined as block matrices, while K is defined as the twofold tensor product of H with itself. Below
we explicitly write out matrices for CX, CCX, and K:

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CCX =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


, K =

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Definition 7. Let M be an m×m matrix, m ≤ n, and 0 ≤ a0 < . . . < am−1 < n. The m-level matrix
of type M is the n× n matrix M[a0,...,am−1] defined by

M[a0,...,am−1]i,j
=

{
Mi′,j′ if i = ai′ and j = aj′

Ii,j otherwise.

The dimension n of the matrix M[a0,...,am−1] is left implicit most of the time, as it can often be
inferred from the context. As an example, the 2-level matrix H[0,2] of dimension 4 is

H[0,2] =
1√
2


1 0 1 0

0
√
2 0 0

1 0 −1 0

0 0 0
√
2

 .
Definition 8. The set Gn of n-dimensional generators of On is the subset of On defined as

Gn = {(−1)[a], X[a,b],K[a,b,c,d] ; 0 ≤ a < b < c < d < n}.

Definition 9. The set Fn of n-dimensional generators of Ln is the subset of Ln defined as Fn = Gn
when n is odd and as

Fn =
{
(−1)[a], X[a,b],K[a,b,c,d], In/2 ⊗H ; 0 ≤ a < b < c < d < n

}
when n is even.

In Definition 9, the condition on the parity of n ensures that In/2 ⊗ H is only included when it
is meaningful to do so. In what follows, for brevity, we ignore the subscript in In/2 ⊗H and simply
write I ⊗H. It is known that Gn and Fn are indeed generating sets for On and Ln, respectively [2].

Circuits over a set G of quantum gates are constructed from the elements of G through composition
and tensor product. Circuits can use ancillary qubits, but these must be initialized and terminated
in the computational basis state |0〉. For example, in the diagram below the circuit C uses a single
ancilla.

C

D

|0〉 |0〉
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Ancillas provide additional computational space and, as we will see below, can be useful in reducing
the gate count of circuits.

If C is a circuit over some gate set, we write JCK for the matrix represented by C and we say that
C represents JCK. If G is a gate set, we write U(G) for the collection of matrices representable by a
circuit over G. That is, U(G) = {JCK ; C is a circuit over G}.

Definition 10. The exact synthesis problem for a gate set G is the following: given U ∈ U(G), find
a circuit C over G such that JCK = U . A constructive solution to the exact synthesis problem for G is
known as an exact synthesis algorithm for G.

The Toffoli-Hadamard gate set consists of the gates CCX and H. Because the Toffoli gate is
universal for classical reversible computation with ancillary bits in the 0 or 1 state [8], one can express
both X and CX over this gate set. As a result, and by a slight abuse of terminology, we refer to the
gate set {X,CX,CCX,H} as the Toffoli-Hadamard gate set.

It was shown in [9] and later, independently, in [2], that the operators exactly representable by an
m-qubit Toffoli-Hadamard circuit are precisely the elements of L2m . The proof of this fact takes the
form of an exact synthesis algorithm. The algorithm of [2], following prior work of [10], proceeds in two
steps. First, one shows that, when n is a power of 2, every operator in Fn can be exactly represented
by a circuit over {X,CX,CCX,H}. Then, one shows that every element of Ln can be factored as
a product of matrices from Fn. Together, these two steps solve the exact synthesis problem for the
Toffoli-Hadamard gate set. By considering the gate set {X,CX,CCX,K}, rather than the gate set
{X,CX,CCX,H}, one obtains circuits that correspond precisely to the elements of On [2]. The exact
synthesis problem for this gate set is solved similarly, with the exact synthesis algorithm using Gn
rather than Fn.

Each element of Fn (resp. Gn) can be represented by a circuit containing O(log(n)) gates (so
a constant number of gates when n is fixed). It is therefore the complexity of the factorization of
elements of Ln (resp. On) into elements of Fn (resp. Gn) that determines the complexity of the overall
synthesis algorithm. For this reason, in the rest of the paper, we focus on finding improved solutions
to this factorization problem.

3 The Local Synthesis Algorithm

In this section, we revisit the solution to the exact synthesis problem for {X,CX,CCX,H} (and
{X,CX,CCX,K}) proposed in [2]. The algorithm, which we call the local synthesis algorithm, is an
analogue of the Giles-Selinger algorithm introduced in [10] for the synthesis of Clifford+T circuits.
In a nutshell, the local synthesis algorithm proceeds one column at a time, reducing each column of
the input matrix to a basis vector. This process is repeated until the input matrix is itself reduced to
the identity. The algorithm is local in the sense that the matrix factorization is carried out column
by column and that, at each step, the algorithm only uses information about the column currently
being reduced. We now briefly recall the main points of [2, Section 5.1] in order to better understand
the functionality of the local synthesis algorithm. We encourage the reader to consult [2] for further
details.

Lemma 1. Let v0, v1, v2, v3 be odd integers. Then there exists τ0, τ1, τ2, τ3 ∈ Z2 such that

K[0,1,2,3](−1)τ0[0](−1)
τ1
[1](−1)

τ2
[2](−1)

τ3
[3]


v0
v1
v2
v3

 =


v′0
v′1
v′2
v′3

 ,
where v′0, v′1, v′2, v′3 are even integers.

Lemma 2. Let |u〉 ∈ Z[1/2]n be a unit vector with lde(|u〉) = k. Let |v〉 = 2k |u〉. If k > 0, the number
of odd entries in |v〉 is a multiple of 4.
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Proof. Since 〈u|u〉 = 1, 〈v|v〉 = 4k. Thus
∑
v2j = 4k. Since the only squares modulo 4 are 0 and 1,

and v2j ≡ 1 (mod 4) if and only if vj is odd, the number of vj in |v〉 such that v2j ≡ 1 (mod 4) is a
multiple of 4.

Lemmas 1 and 2 imply the Column Lemma, the crux of the local synthesis algorithm.

Lemma 3 (Column Lemma). Let |u〉 ∈ Z[1/2]n be a unit vector and |j〉 be a standard basis vector.
There exists a sequence of generators G0, . . . , Gq ∈ Gn such that (Gq · · ·G1) |u〉 = |j〉.

Proof. Let k = lde(|u〉) and proceed by induction on k. When k = 0, |u〉 = ± |j′〉 for some 0 ≤ j′ < n.
Indeed, since |u〉 is a unit vector, we have

∑
u2i = 1. Since ui ∈ Z, there must be exactly one i such

that ui = ±1 while all the other entries of |u〉 are 0. If |j′〉 = |j〉 there is nothing to do. Otherwise,
map |u〉 to |j〉 by applying an optional one-level (−1) generator followed by an optional two-level X
generator. When k > 0, by Lemma 2, the number of odd entries in |v〉 = 2k |u〉 is a multiple of 4. We
can then group these odd entries into quadruples and apply Lemma 1 to each quadruple to reduce
the least denominator exponent of the vector. By induction, we can continuously reduce k until it
becomes 0, which is the base case.

Proposition 1. Let U be an n×n matrix. Then U ∈ On if, and only if, U can be written as a product
of elements of Gn.

Proof. The right-to-left direction follows from the fact that Gn ⊆ On. For the converse, use Lemma 3
to reduce the leftmost unfixed column Uj to |j〉, 0 ≤ j < n. After that, repeat the column reduction
on the next leftmost unfixed column until U is reduced to the identity.

The local synthesis algorithm establishes the left-to-right implication of Proposition 1. It expresses
an element of On as a product of generators from Gn and thereby solves the exact synthesis problem
for {X,CX,CCX,K}. A small extension of the algorithm shows that Fn generates Ln, solving the
exact synthesis problem for {X,CX,CCX,H}.

Corollary 1. Let U be an n× n matrix. Then U ∈ Ln if, and only if, U can be written as a product
of elements of Fn.

Proof. As before, the right-to-left direction follows from the fact that Fn ⊆ Ln. Conversely, let U ∈ Ln
and write U as U = M/

√
2q, where M is an integer matrix and q = lde√2(U). If q is even, then

U ∈ On. By Proposition 1, U can be written as a product of elements of Gn ⊂ Fn. If q is odd, then
by [2, Lemma 5.9] n must be even. It follows that (I ⊗H)U ∈ On. We can conclude by applying
Proposition 1 to (I ⊗H)U .

In the rest of this section, we analyze the gate complexity of the local synthesis algorithm. In the
worst case, it takes exponentially many generators in Gn to decompose a unitary in On. Since Ln is
simply a scaled version of On, the same gate complexity holds for the local synthesis of Ln over Fn.

Lemma 4. Let |u〉 ∈ Z[1/2]n with lde(|u〉) = k. Let |j〉 be a standard basis vector. The number of
generators in Gn required by Lemma 3 to reduce |u〉 to |j〉 is O(nk).

Proof. Let |v〉 = 2k |u〉, then |v〉 ∈ Zn. We proceed by case distinction. When k = 0, there is precisely
one non-zero entry in |v〉, which is either 1 or −1. We need at most a two-level X gate and a one-level
(−1) gate to send |v〉 to |j〉. Hence the gate complexity over Gn is O(1). When k > 0, there are odd
entries in |v〉 and the number of such entries must be doubly-even (i.e., a multiple of 4). To reduce k
by 1 as in Lemma 3, we need to make all of the odd entries even. By Lemma 1, for each quadruple
of odd entries, we need at most four one-level (−1) gates and precisely one four-level K gate. In the
worst case, there are bn/4c quadruples of odd entries in |v〉. To reduce k to 0, we thus need at most
(4 + 1)bn/4ck ∈ O(nk) elements of Gn. Therefore, the total number of generators in Gn required by
Lemma 3 to reduce |u〉 to |j〉 is max (O(nk), O(1)) = O(nk).

Proposition 2. Let U ∈ On with lde(U) = k. Then, using the local synthesis algorithm, U can be
represented by a product of O(2nk) elements of Gn .
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Proof. The local synthesis algorithm starts from the leftmost column of U that is not yet reduced. In
the worst case, this column is U0 and lde(U0) = k. By Lemma 4, we need O(nk) generators in Gn to
reduce U0 to |0〉. While reducing U0, the local synthesis algorithm may increase the least denominator
exponent of the other columns of U . Each row operation potentially increases the least denominator
exponent by 1. Therefore, the least denominator exponent of any other column in U may increase to
2k during the reduction of U0. Now let fUi

be the cost of reducing Ui to |i〉. As the algorithm proceeds
from the left to the right of U , fUi

increases as shown below.

fU0 ∈ O (nk) , fU1 ∈ O ((n− 1)2k) , fU2 ∈ O
(
(n− 2)22k

)
, . . . , fUn−1 ∈ O

(
2n−1k

)
.

In total, the number of generators from Gn that are required to synthesize U is

Sn =

n−1∑
i=0

fUi
=

n−1∑
i=0

(n− i)2ik. (1)

Multiplying both sides of Equation (1) by 2 yields

2Sn =
(
2n+ (n− 1)22 + (n− 2)23 + (n− 3)24 + . . .+ 2n

)
k. (2)

Subtracting Equation (1) from Equation (2) yields

Sn =
(
−n+ 2 + 22 + . . .+ 2n−1 + 2n

)
k =

(
−n+ 2n+1 − 2

)
k ∈ O(2nk).

Hence, the complexity of the local synthesis algorithm of On over Gn is O(2nk).

Corollary 2. Let U ∈ Ln with lde√2(U) = k. Then, using the local synthesis algorithm, U can be
represented by a product of O(2nk) elements of Fn.

Proof. When k is even, U ∈ On and, by Proposition 2, U can be represented by O(2nk) generators in
Gn ⊂ Fn. When k is odd then, by [2, Lemma 5.9], n must be even so that (I ⊗H)U ∈ On. Applying
Proposition 2 to (I ⊗H)U yields a sequence of O(2nk) generators over Gn for (I ⊗H)U . Hence, the
complexity of synthesizing U over Fn is O(2nk).

In the context of quantum computation, the dimension of the matrix to be synthesized is exponen-
tial in the number of qubits. That is, n = 2m, where m is the number of qubits. Moreover, the cost of
synthesizing an m-qubit circuit for any element of F2m is linear in m. Therefore, the gate complexity
of an m-qubit Toffoli-Hadamard circuit synthesized using the local synthesis algorithms is O(22

m

mk).

4 The Householder Synthesis Algorithm

In this section, we explore how using additional dimensions can be helpful in quantum circuit synthesis.
These results are a direct adaptation to the Toffoli-Hadamard gate set of the methods introduced in
[13] for the Clifford+T gate set. Compared to the local synthesis algorithm, the algorithm presented
in this section, which we call the Householder synthesis algorithm, reduces the gate complexity of the
produced circuits from O(2n log(n)k) to O(n2 log nk), where n is the dimension of the input matrix.

Definition 11. Let |ψ〉 be an n-dimensional unit vector. The reflection operator R|ψ〉 around |ψ〉 is
defined as

R|ψ〉 = I − 2 |ψ〉 〈ψ| .

Note that if R is a reflection operator about some unit vector, then R is unitary. Indeed, R = R†

and R2 = I. As a result, if |ψ〉 is a unit vector of the form |v〉 /
√
2k for some integer vector |v〉, then

R|ψ〉 ∈ Ln.
We start by showing that if U ∈ Ln, then there is an operator U ′ constructed from U that can be

conveniently factored as a product of reflections. In what follows, we will use two single-qubit states:

|+〉 = |0〉+ |1〉√
2

and |−〉 = |0〉 − |1〉√
2

.
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Proposition 3. Let U ∈ Ln and define

U ′ = |+〉 〈−| ⊗ U + |−〉 〈+| ⊗ U†.

Then U ′ ∈ L2n and U ′ can be factored into n reflections in L2n. That is, U ′ = R|φ0〉 · · ·R|φn−1〉, where
R|φ0〉, . . . , R|φn−1〉 ∈ L2n.

Proof. Let U and U ′ be as stated. It can be verified by direct computation that U ′ is unitary. Moreover,
since U ∈ Ln and |+〉 〈−| and |−〉 〈+| are integral matrices scaled by 1/2, it follows that U ′ ∈ L2n. It
remains to show that U ′ is a product of reflection operators. Define

|ω±j 〉 =
|−〉 |j〉 ± |+〉 |uj〉√

2
,

where |uj〉 is the j-th column vector in U and |j〉 denotes the j-th computational basis vector. Since
〈ω+
j |ω

+
j 〉 = 〈ω

−
j |ω

−
j 〉 = 1, both |ω+

j 〉 and |ω
−
j 〉 are unit vectors. Moreover, it is easy to show that any

two distinct |ω±j 〉 are orthogonal, so that
{
|ω±j 〉 | j = 0, . . . , n− 1

}
forms an orthonormal basis. Now

let P+
j = |ω+

j 〉 〈ω
+
j | and P

−
j = |ω−j 〉 〈ω

−
j |. It follows from the completeness equation that

I =

n−1∑
j=0

(
|ω+
j 〉 〈ω

+
j |+ |ω

−
j 〉 〈ω

−
j |
)
=

n−1∑
j=0

(
P+
j + P−j

)
. (3)

Furthermore, |ω+
j 〉 and |ω

−
j 〉 are the +1 and −1 eigenstates of U ′, respectively. Now note that U ′ is

Hermitian and thus normal. Hence, by the spectral theorem, we have

U ′ =

n−1∑
j=0

(
|ω+
j 〉 〈ω

+
j | − |ω

−
j 〉 〈ω

−
j |
)
=

n−1∑
j=0

(
P+
j − P

−
j

)
. (4)

From Equations (3) and (4), I − U ′ = 2
∑n−1
j=0 P

−
j , which implies that

U ′ = I − 2

n−1∑
j=0

P−j = I − 2

n−1∑
j=0

|ω−j 〉 〈ω
−
j | =

n−1∏
j=0

(
I − 2 |ω−j 〉 〈ω

−
j |
)
=

n−1∏
j=0

R|ω−j 〉
. (5)

Since |ω−j 〉 is a unit vector of the form |vj〉 /
√
2k where |vj〉 is an integer vector, R|ω−j 〉 ∈ L2n. This

completes the proof.

By noting that |+〉 〈−| and |−〉 〈+| are matrices with dyadic entries, one can reason as in the proof
of Proposition 3 to show that an analogous result holds for U ∈ On, rather than U ∈ Ln.

Proposition 4. Let U ∈ On and define

U ′ = |+〉 〈−| ⊗ U + |−〉 〈+| ⊗ U†.

Then U ′ ∈ O2n and U ′ can be factored into n reflections in O2n. That is, U ′ = R|φ0〉 · · ·R|φn−1〉, where
R|φ0〉, . . . , R|φn−1〉 ∈ O2n.

Proposition 5. Let |ψ〉 = |v〉 /
√
2
k
be an n-dimensional unit vector, where |v〉 is an integer vector.

Assume that lde√2(|ψ〉) = k. Then the reflection operator R|ψ〉 can be exactly represented by O(nk)
generators over Fn.

Proof. Let |ψ〉 be as stated. When k is even, then, by Lemma 3, there exists a word G over Gn such
that

G |ψ〉 = |0〉 . (6)
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Since the elements of Gn are self-inverse, the word G† obtained by reversing G is a word over Gn such
that G† |0〉 = |ψ〉. Moreover, we have G†R|0〉G = R|ψ〉, since

G†R|0〉G = G† (I − 2 |0〉 〈0|)G = I − 2
(
G† |0〉

) (
G† |0〉

)†
= RG†|0〉 = R|ψ〉. (7)

Hence the number of elements of Gn that are needed to represent R|ψ〉 is equal to the number of
generators needed to represent G, G†, and R|0〉. Note that

R|0〉 = I − 2 |0〉 〈0| = (−1)[0] ∈ Gn.

Moreover, the number of generators needed to represent G† is equal to the number of generators
needed to represent G. By Lemma 4, O(nk) generators are needed for this. Hence, R|ψ〉 can be exactly
represented by O(nk) generators over Gn ⊂ Fn. When k is odd, we can reason as in Corollary 1 to
show that R|ψ〉 can be represented as a product of O(nk) generators from Fn.

Proposition 6. Let U ∈ Ln and U ′ ∈ L2n be as in Proposition 3 and assume that lde√2(U) = k.
Then U ′ can be represented by O(n2k) generators from Fn.

Proof. By Proposition 3, U ′ can be expressed as a product n reflections. By Proposition 5, each one
of these reflections can be exactly represented by O(nk) generators from Fn. Therefore, to express U ′,
we need n ·O(nk) = O(n2k) generators from Fn.

Corollary 3. Let U ∈ On and U ′ ∈ O2n be as in Proposition 4 and assume that lde(U) = k. Then
U ′ can be represented by O(n2k) generators from Gn.

To conclude this section, we use Proposition 3 to define the Householder synthesis algorithm, which
produces circuits of size O(4mmk). Suppose that n = 2m, where m is the number of qubits on which a
given operator U ∈ L2m acts. Suppose moreover that lde√2(U) = k. The operator U ′ of Proposition 6
can be represented as a product of O(n2k) = O(4mk) elements of F2m+1 . Since any element of F2m+1

can be represented by a Toffoli-Hadamard circuit of gate count O(m), we get a circuit D of size
O(4mmk) for U ′. Now consider the circuit C = (H ⊗ I)D(HX ⊗ I). For any state |φ〉, we have

C |0〉 |φ〉 = (H ⊗ I)D(HX ⊗ I) |0〉 |φ〉 = (H ⊗ I)D |−〉 |φ〉 = (H ⊗ I) |+〉U |φ〉 = |0〉U |φ〉 .

Hence, C is a Toffoli-Hadamard circuit for U (which uses an additional ancillary qubit).
The Householder exact synthesis algorithm can be straightforwardly defined in the case of circuits

over the gate set {X,CX,CCX,K}, with the small caveat that two additional ancillary qubits are
required, since one cannot prepare a single qubit in the state |−〉 over {X,CX,CCX,K}.

5 The Global Synthesis Algorithm

The local synthesis algorithm factorizes a matrix by reducing one column at a time. As we saw in
Section 3, this approach can lead to large circuits, since reducing the least (scaled) denominator
exponent of one column may increase that of the subsequent columns. We now take a global view of
the matrix, focusing on matrices of dimension 2, 4, and 8 (i.e., matrices on 1, 2, and 3 qubits). Through
a careful study of the structure of these matrices, we define a synthesis algorithm that reduces the
least (scaled) denominator exponent of the entire matrix at every iteration. We refer to this alternative
synthesis algorithm as the global synthesis algorithm.

5.1 Binary Patterns

We associate a binary matrix (i.e., a matrix over Z2) to every element of Ln. These binary matrices,
which we call binary patterns, will be useful in designing a global synthesis algorithm.

Definition 12. Let U ∈ Ln and write U as U = M/
√
2k with lde√2(U) = k. The binary pattern of

U is the binary matrix U defined by U i,j =Mi,j (mod 2).
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A =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1


, B =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0


, C =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 1 0 0 0 0 1 1


, D =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0


,

E =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, F =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0


, G =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, H =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1


,

I =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1


, J =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, K =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, L =



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1
1 0 0 1 0 1 1 0


,

M =



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


, N =



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0


.

Figure 1. Binary patterns for the elements of L8.

The matrix U is the binary matrix obtained by taking the residue modulo 2 of every entry of the
integral part of U (when U is written using its least scaled denominator exponent). The next two
lemmas establish important properties of binary patterns.

Lemma 5. Let U ∈ Ln with lde√2(U) = k. If k > 1, then the number of 1’s in any column of U is
doubly-even.

Proof. Consider an arbitrary column |u〉 = |v〉 /
√
2k of U . Let |u〉 be the corresponding column in U .

Since 〈u|u〉 = 1, we have
∑
v2i = 2k. Thus, when k > 1, we have

∑
v2i ≡ 0 (mod 4). Since v2i ≡ 1

(mod 4) if and only if vi ≡ 1 (mod 2), and since the only squares modulo 4 are 0 and 1, the number
of odd vi must be a multiple of 4. Hence, the number of 1’s in any column of U is doubly-even.

Lemma 6. Let U ∈ Ln with lde√2(U) = k. If k > 0, then any two distinct columns of U have evenly
many 1’s in common.

Proof. Consider two distinct columns |u〉 and |w〉 of U . Let |u〉 and |w〉 be the corresponding columns
in U . Since U is orthogonal, we have

〈u|w〉 =
n−1∑
i=0

uiwi = 0. (8)

Taking equation (8) modulo 2 implies that |{i ; ui = wi = 1}| ≡ 0 (mod 2), as desired.

Lemmas 5 and 6 also hold for the rows of U . The proofs are similar, so they are omitted here.
These lemmas show that the binary matrices that are the binary pattern of an element of Ln form
a strict subset of Zn×n2 . The proposition below gives a characterization of this subset for n = 8. The
proof of the proposition is a long case distinction which can be found in Appendix A.
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Proposition 7. Let U ∈ L8 with lde√2(U) ≥ 2. Then up to row permutation, column permutation,
and taking the transpose, U is one of the 14 binary patterns in Figure 1.

Definition 13. Let n be even and let B ∈ Zn×n2 . We say that B is row-paired if the rows of B can
be partitioned into identical pairs. Similarly, we say that B is column-paired if the columns of B can
be partitioned into identical pairs.

Note that, for U ∈ Ln, if U is row-paired, then Uᵀ is column-paired. Indeed, if U is row-paired,
then U

ᵀ
is column-paired so that Uᵀ = U

ᵀ
is column-paired.

Row-paired binary patterns will play an important role in the global synthesis algorithm. Intu-
itively, if U is row-paired, then one can permute the rows of U to place identical rows next to one
another, at which point a single Hadamard gate can be used to globally reduce the least scaled de-
nominator exponent of U . This intuition is detailed in Lemma 7, where Sn denotes the symmetric
group on n letters.

Lemma 7. Let n be even and let U ∈ Ln. If U is row-paired, then there exists P ∈ Sn such that

lde√2((I ⊗H)PU) < lde√2(U).

Proof. Let U =M/
√
2
k
and let r0, . . . , rn−1 be the rows of M . Because U is row-paired, there exists

some P ∈ Sn such that

PU =
1
√
2
k

 r0
...

rn−1

 ,
with r0 ≡ r1, r2 ≡ r3, . . . , and rn−2 ≡ rn−1 modulo 2. Since I ⊗ H is the block diagonal matrix
I ⊗H = diag(H,H, . . . ,H), left-multiplying PU by I ⊗H yields

(I ⊗H)PU =

 r0
...

rn−1

 =
1

√
2
k+1


r0 + r1
r0 − r1

...
rn−2 + rn−1
rn−2 − rn−1

 =
2

√
2
k+1

 r′0
...

r′n−1

 =
1

√
2
k−1

 r′0
...

r′n−1

 ,

for some integer row vectors r′0, . . . , r′n−1. Thus, lde√2((I ⊗H)PU) < lde√2(U) as desired.

Lemma 8. Let n be even and let U ∈ Ln . If U is column-paired, then there exists P ∈ Sn such that

lde√2(UP (I ⊗H)) < lde√2(U).

Proof. Since U is column-paired, Uᵀ is row-paired. By Lemma 7, there exists Q ∈ Sn such that
lde√2((I ⊗ H)QUᵀ) < lde√2(U

ᵀ). Hence, letting P = Qᵀ, and using the fact that the least scaled
denominator exponent of an element of Ln is the same as that of its transpose, we get

lde√2(UP (I ⊗H)) = lde√2((UP (I ⊗H))ᵀ) = lde√2((I ⊗H)QUᵀ) < lde√2(U
ᵀ) = lde√2(U).

Lemma 9. Let U ∈ L8 with lde√2(U) = k. If U is neither row-paired nor column-paired, then, up to
row permutation, column permutation, and taking the transpose, (I ⊗H)U (I ⊗H) is row-paired and
lde√2((I ⊗H)U (I ⊗H)) ≤ lde√2(U).

Proof. Let U be as stated. By Proposition 7, up to row permutation, column permutation, and taking
the transpose, U is one of the binary patterns in Figure 1. Since U is neither row-paired nor column-
paired, U is L, M , or N . Write U as the 4× 4 block matrix

U =


P0,0 P0,1 P0,2 P0,3

P1,0 P1,1 P1,2 P1,3

P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3

 ,
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where Pi,j is a 2 × 2 binary matrix. By inspection of Figure 1, since U is one of L, M , or N , we see
that each Pi,j is one of the binary matrices below:[
1 1
1 1

]
,

[
0 0
0 0

]
,

[
1 1
0 0

]
,

[
0 0
1 1

]
,

[
1 0
1 0

]
,

[
0 1
0 1

]
,

[
1 0
0 1

]
, and

[
0 1
1 0

]
.

In particular, each Pi,j has evenly many nonzero entries. Now write U as the 4× 4 block matrix

U =
1√
2k


Q0,0 Q0,1 Q0,2 Q0,3

Q1,0 Q1,1 Q1,2 Q1,3

Q2,0 Q2,1 Q2,2 Q2,3

Q3,0 Q3,1 Q3,2 Q3,3

 ,
where Qi,j is a 2× 2 integer matrix such that Qi,j = Pi,j modulo 2. As I ⊗H = diag(H,H,H,H), we
have

(I ⊗H)U(I ⊗H) =
1√
2k


Q′0,0 Q′0,1 Q′0,2 Q′0,3
Q′1,0 Q′1,1 Q′1,2 Q′1,3
Q′2,0 Q′2,1 Q′2,2 Q′2,3
Q′3,0 Q′3,1 Q′3,2 Q′3,3

 ,
where Q′i,j = HQi,jH. Since Qi,j is an integer matrix with evenly many odd entries and, since for any
integers w, x, y, and z, we have

H

[
w x
y z

]
H =

1

2

[
w + x+ y + z w − x+ y − z
w + x− y − z w − x− y + z

]
,

it follows that Q′i,j = HQi,jH is itself an integer matrix. Thus, lde√2((I ⊗H)U (I ⊗H)) ≤ lde√2(U).
A long but straightforward calculation shows that (I ⊗H)U(I ⊗H) is in fact row-paired.

5.2 The 1- and 2-Qubit Cases

We now discuss the exact synthesis problem for L2 and L4. The problem is simple in these cases
because the groups are finite. Despite their simplicity, these instances of the problem shed some light
on our method for defining a global synthesis algorithm for L8.

Proposition 8. If U ∈ L2, then lde√2(U) ≤ 1.

Proof. Let k = lde√2(U) and suppose that k ≥ 2. Let |u〉 be the first column of U with lde(|u〉) = k

and let |v〉 = 2k |u〉. As 〈u|u〉 = 1, we have v20 + v21 = 2k ≡ 0 (mod 4), since k ≥ 2. Therefore,
v0 ≡ v1 ≡ 0 (mod 2). This is a contradiction since at least one of v0 and v1 must be odd for k to be
minimal.

Lemma 10. Let a ∈ Z. Then a2 ≡ 1 (mod 8) if and only if a ≡ 1 (mod 2).

Proof. If a ≡ 0 (mod 2), then a2 is even, so a2 6≡ 1 (mod 8). If a ≡ 1 (mod 2), then a = 2q + 1 for
some q ∈ Z, so that a2 = 4q2+4q+1. If q = 2p for some p ∈ Z, then a2 = 1+8(2p2+p) ≡ 1 (mod 8).
Otherwise, q = 2p+ 1 for some p ∈ Z and a2 = 1 + 8(2p2 + 3p+ 1) ≡ 1 (mod 8).

Proposition 9. If U ∈ L4 then lde√2(U) ≤ 2.

Proof. Let k = lde√2(U) and suppose that k ≥ 3. Let |u〉 be the first column of U with lde√2(|u〉) = k

and let |v〉 =
√
2
k |u〉. By reasoning as in Lemma 2, we see that the number of odd entries in |v〉 must

be doubly-even. Hence, v0 ≡ v1 ≡ v2 ≡ v3 ≡ 1 (mod 2). By Lemma 10, v20 ≡ v21 ≡ v22 ≡ v23 ≡ 1
(mod 8). As 〈u|u〉 = 1, we have v20 + v21 + v22 + v23 = 4k ≡ 0 (mod 8). This is a contradiction since we
in fact have v20 + v21 + v22 + v23 ≡ 4 (mod 8).
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It follows from Proposition 9 that L4 is finite. Indeed, by Proposition 9, the least scaled denominator
exponent of an element of L4 can be no more than 2. As a consequence, the number of possible
columns for a matrix in L4 is upper bounded by the number of integer solutions to the equation
v20 + v21 + v22 + v23 = 2k, which is finite since k ≤ 2. Proposition 8 similarly implies that L2 is finite.

In principle, one can therefore define an exact synthesis algorithm for L4 by explicitly constructing
a circuit for every element of the group using, e.g., the local algorithm of Section 3. We now briefly
outline a different approach to solving this problem.

Lemma 11. Let U ∈ L4. If lde√2(U) ≥ 1, then, up to row permutation and column permutation U
is one of the binary patterns below.

B0 =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 , B1 =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 , B2 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .
Proof. By Proposition 9, we only need to consider the cases lde√2(U) = 1 and lde√2(U) = 2. When
lde√2(U) = 2, by Lemma 5, U = B2. When lde√2(U) = 1, then the rows and columns of

√
2U are

integer vectors of norm no more than 2 and must therefore contain 0 or 2 odd entries. It then follows
from Lemma 6 that the only two possible binary patterns for U are B0 and B1, up to row permutation
and column permutation.

Proposition 10. Let U ∈ L4. Then U can be represented by O(1) generators in F4.

Proof. Let lde√2(U) = k. By Proposition 9, k ≤ 2. When k = 0, U is a signed permutation matrix
and can therefore be written as a product of no more than 3 two-level X gates and 4 one-level (−1)
gates. When k > 0, then, by Lemma 11, U is one of B0, B1, or B2. Since all of these binary patterns
are row-paired, we can apply Lemma 7 to reduce the least scaled denominator exponent of U .

The exact synthesis algorithm given in the proof of Proposition 10 is the global synthesis algorithm
for L4. The algorithm relies on Lemma 11, which characterizes the possible binary patterns for elements
of L4.

5.3 The 3-Qubit Case

We now turn to the case of L8 (and O8). This case is more complex than the one discussed in the
previous section, because L8 is an infinite group. Luckily, the characterization given in Proposition 7
allows us to proceed as in Proposition 10.

Proposition 11. Let U ∈ L8 with lde√2(U) = k. Then U can be represented by O(k) generators in
F8 using the global synthesis algorithm.

Proof. By induction on k. There are only finitely many elements in L8 with k ≤ 1, so each one of
them can be represented by a product of O(1) elements of F8. When k ≥ 2, by Proposition 7, U must
be one of the 14 binary patterns in Figure 1. When U is row-paired, by Lemma 7, there exists some
P ∈ S8 such that

lde√2((I ⊗H)PU) ≤ k − 1.

If U is not row-paired, then, by inspection of Figure 1, U is neither row-paired nor column-paired and
so, by Lemma 9, U ′ = (I ⊗H)U (I ⊗H) is row-paired and lde√2(U

′) ≤ lde√2(U). Thus, by Lemma 7,
there exists P ∈ S8 such that

lde√2 ((I ⊗H)PU ′) ≤ k − 1.

Continuing in this way, and writing each element of S8 as a constant number of elements of F8, we
obtain a sequence of O(k) elements of F8 whose product represents U .
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We end this section by showing that the global synthesis algorithm for L8 given in Proposition 11
can be used to define a global synthesis algorithm O8 of similar asymptotic cost. The idea is to consider
an element U of O8 as an element of L8 (which is possible since O8 ⊆ L8) and to apply the algorithm
of Proposition 11 to U . This yields a decomposition of U that contains evenly many I ⊗H gates, but
these can be removed through rewriting as in [16].

Lemma 12. For any word W over {(−1)[a], X[a,b] ; 0 ≤ a < b < n}, there exists a word W ′ over
Gn such that (I ⊗H)W =W ′ (I ⊗H). Moreover, if W has length `, then W ′ has length c` for some
positive integer c that depends on n.

Proof. Consider the relations below, where a is assumed to be even in Equations (10) and (12) and a
is assumed to be odd in Equations (11) and (13).

(I ⊗H)(I ⊗H) = ε (9)
(I ⊗H)(−1)[a] = (−1)[a]X[a,a+1](−1)[a](I ⊗H) (10)
(I ⊗H)(−1)[a] = X[a−1,a](I ⊗H) (11)
(I ⊗H)X[a,a+1] = (−1)[a+1](I ⊗H) (12)
(I ⊗H)X[a,a+1] = K[a−1,a,a+1,a+2]X[a,a+1](I ⊗H) (13)

The relations show that commuting I ⊗ H with (−1)[a] or X[a,a+1] adds only a constant number of
gates. To commute I ⊗H with X[a,b], one can first express X[a,b] in terms of X[a,a+1], and then apply
the relations above. The result then follows by induction on the length of W .

Proposition 12. Let U ∈ O8 with lde(U) = k. Then U can be represented by O(k) generators in G8
using the global synthesis algorithm.

Proof. By Proposition 11, one can find a word W of length O(k) over F8 that represents U and
contains evenly many occurrences of I ⊗ H. By construction, each pair of I ⊗ H gates is separated
by a word over {(−1)[a], X[a,b] ; 0 ≤ a < b < n} and can thus be eliminated by an application of
Lemma 12. This yields a new word W ′ over G8 of length O(k).

6 Conclusion

In this paper, we studied the synthesis of Toffoli-Hadamard circuits. We focused on circuits over the
gate sets {X,CX,CCX,H} and {X,CX,CCX,K}. Because circuits over these gate sets correspond
to matrices in the groups Ln and On, respectively, each circuit synthesis problem reduces to a fac-
torization problem in the corresponding matrix group. The existing local synthesis algorithm was
introduced in [2]. We proposed two alternative algorithms.

Our first algorithm, the Householder synthesis algorithm, is an adaptation of prior work by Kli-
uchnikov [13] and applies to matrices of arbitrary size. The Householder algorithm first factors the
given matrix as a product of reflection operators, and then synthesizes each reflection in this factor-
ization. The Householder algorithm uses an additional qubit, but reduces the overall complexity of
the synthesized circuit from O(2n log(n)k) to O(n2 log(n)k).

Our second algorithm, the global synthesis algorithm, is inspired by prior work of Russell, Niemann
and others [21,18]. The global algorithm relies on a small dictionary of binary patterns which ensures
that every step of the algorithm strictly decreases the least denominator exponent of the matrix to
be synthesized. Because this second algorithm only applies to matrices of dimension 2, 4, and 8, it is
difficult to compare its complexity with that of the other methods. However, the global nature of the
algorithm makes it plausible that it would outperform the method of [2] in practice, and we leave this
as an avenue for future research.

Looking forward, many questions remain. Firstly, it would be interesting to compare the algorithms
in practice. Further afield, we would like to find a standalone global synthesis for O8, rather than
relying on the corresponding result for L8 and the commutation of generators. This may require a
careful study of residue patterns modulo 4, rather than modulo 2, as we did here. Finally, we hope to
extend the global synthesis method to larger, or even arbitrary, dimensions.
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A Proof of Proposition 7

Proposition 7. Let U ∈ L8 with lde√2(U) ≥ 2. Then up to row permutation, column permutation,
and taking the transpose, U is one of the 14 binary patterns in Figure 1.

Proof. Let ui denote the i-th column of U , and u†i denote the the i-th row of U , 0 ≤ i < 8. Let ‖v‖
denote the hamming weight of v, where v is a string of binary bits. Proceed by case distinction.
Case 1. There are identical rows or columns in U . Up to transposition, suppose U has two rows that
are identical. By Proposition 13, U ∈ B0 up to permutation.
Case 2. There are no identical rows or columns in U . By Proposition 14, U ∈ B1 up to permutation.

A.1 Binary Patterns that are either Row-paired or Column-paired

Definition 14. We define the set B0 of binary matrices as B0 = {A,B,C,D,E, F,G,H, I, J,K},
where

A =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1


, B =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0


, C =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 1 0 0 0 0 1 1


,

D =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0


, E =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, F =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0


,

G =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, H =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1


, I =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1


,

J =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, K =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

Proposition 13. Let U ∈ Z8×8
2 . Suppose U satisfies Lemmas 5 and 6. If U has two rows that are

identical, then U ∈ B0 up to permutation and transposition.

Proof. Let ui denote the i-th column of U , and u†i denote the the i-th row of U , 0 ≤ i < 8. Let
‖v‖ denote the hamming weight of v, where v is a string of binary bits. Up to permutation, suppose
‖u†0‖ = ‖u

†
1‖. By Lemma 5, ‖u†0‖ = 8 or ‖u†0‖ = 4. Proceed by case distinction, we summarized the

derivation of binary patterns in Figure 2 and Figure 3.
Case 1. ‖u†0‖ = ‖u

†
1‖ = 8.

Subcase 1.1. ‖u0‖ = 8.
Subcase 1.1.1. ‖u1‖ = 8.
Subcase 1.1.1.1. ‖u2‖ = 8.
Subcase 1.1.1.1.1. ‖u3‖ = 8.
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Subcase 1.1.1.1.1.1. ‖u4‖ = 8, then

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


Lemma 5−−−−−−→ U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1


= A.

Subcase 1.1.1.1.1.2. ‖u4‖ = 4, then

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0


Lemma 5−−−−−−→ U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0


= B.

Subcase 1.1.1.1.2. ‖u3‖ = 4. Let (x, y) be a pair of the entries in the i-th column of rows 2 and 3

as shown below, for 4 ≤ i < 8. By Lemma 6 with u3, x = y. Hence u†2 = u†3.

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 x
1 1 1 1 y
1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0


.

Subcase 1.1.1.1.2.1. ‖u†2‖ = 8, then

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0
1 1 1 0 1 0 0 0
1 1 1 0 1 0 0 0
1 1 1 0 1 0 0 0


= B.

Subcase 1.1.1.1.2.2. ‖u†2‖ = 4, then

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0


.
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Note that rows 3 and 4 violate Lemma 6, so this case is not possible.
Subcase 1.1.1.2. ‖u2‖ = 4. Let (x, y) be a pair of the entries in the i-th column of rows 2 and 3 as
shown below, for 3 ≤ i < 8. By Lemma 6 with u2, x = y. Hence u†2 = u†3.

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 x
1 1 1 y
1 1 0
1 1 0
1 1 0
1 1 0


.

Subcase 1.1.1.2.1.

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0
1 1 0
1 1 0
1 1 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0 1 1 0 0 0
1 1 0
1 1 0
1 1 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0 1 1 0 0 0
1 1 0 1 1
1 1 0 1 1
1 1 0 1 1


.

By Lemma 5 for rows 5, 6, and 7, we have

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0 1 1 0 0 0
1 1 0 1 1 0 0 0
1 1 0 1 1 0 0 0
1 1 0 1 1 0 0 0


= B.

Subcase 1.1.1.2.2. ‖u†2‖ = 4, then up to column permutation,

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0
1 1 0
1 1 0
1 1 0


Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 x y
1 1 0 0
1 1 0 0



Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1
1 1 0 0 0 0
1 1 0 0 0 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 1 0 0 0 0 1 1


= C.

Subcase 1.1.2. ‖u1‖ = 4. Let (x, y) be a pair of the entries in the i-th column of rows 2 and 3 as
shown below, for 2 ≤ i < 8. By Lemma 6 with u1, x = y. Hence u†2 = u†3.
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U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 x
1 1 y
1 0
1 0
1 0
1 0


.

Subcase 1.1.2.1. ‖u†2‖ = 8, then

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0
1 0
1 0
1 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 1 1 0 0 0
1 0
1 0
1 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 1 1 0 0 0
1 0 1 1 1
1 0 1 1 1
1 0 1 1 1


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 1 1 0 0 0
1 0 1 1 1 0 0 0
1 0 1 1 1 0 0 0
1 0 1 1 1 0 0 0


= B.

Subcase 1.1.2.2. ‖u†2‖ = 4. By Lemma 6 with row 3, for u2 and u3, precisely one of them has
hamming weight 8, and the other has hamming weight 4. Up to column permutation, let ‖u2‖ = 8
and ‖u3‖ = 4.

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 1 1 0 0
1 0 1 0 1
1 0 1 0 0
1 0 1 0 0


Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1
1 0 1 0 0
1 0 1 0 0



Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0
1 0 1 0 0 0
1 0 1 0 0 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0
1 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1


= C.

Subcase 1.2. ‖u0‖ = 4. Let (x, y) be a pair of the entries in the i-th column of rows 2 and 3 as shown
below, for 1 ≤ i < 8. By Lemma 6 with u0, x = y. Hence u†2 = u†3.
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U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 x
1 y
0
0
0
0


.

Subcase 1.2.1. ‖u†2‖ = 8. By Lemma 5, ‖u†4‖ = 4 or ‖u†4‖ = 0. Then we have

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0
0
0
0


.

Subcase 1.2.1.1. ‖u†4‖ = 4, then

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 1 1 0 0 0
0
0
0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0


= B.

Subcase 1.2.1.2. ‖u†4‖ = 0, then

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0
0
0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


= K.

Subcase 1.2.2. ‖u†2‖ = 4, then the binary matrix is shown below. By Lemma 6, there can be two
cases: precisely two of {u1, u2, u3} have hamming weight 8, or all of {u1, u2, u3} have hamming weight
4.

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0
0
0
0


.
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Subcase 1.2.2.1. Up to column permutation, let ‖u1‖ = ‖u2‖ = 8 and ‖u3‖ = 4.

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0
0 1 1 0
0 1 1 0
0 1 1 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0 1 1 0 0
0 1 1 0 1
0 1 1 0 0
0 1 1 0 0


Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0 1 1 0 0
0 1 1 0 1 1
0 1 1 0 0
0 1 1 0 0



Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0 1 1 0 0
0 1 1 0 1 1 0 0
0 1 1 0 0 0
0 1 1 0 0 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0 1 1 0 0
0 1 1 0 1 1 0 0
0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1


= C.

Subcase 1.2.2.2. ‖u1‖ = ‖u2‖ = ‖u3‖ = 4.

U =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


= E.

Case 2. ‖u†0‖ = ‖u
†
1‖ = 4.

Subcase 2.1. ‖u0‖ = 8.
Subcase 2.1.1. ‖u1‖ = 8.
Subcase 2.1.1.1. ‖u2‖ = 8, then

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


.

Subcase 2.1.1.1.1. ‖u†2‖ = 8, then

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 1 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0


= B.
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Subcase 2.1.1.1.2. ‖u†2‖ = 4. By Lemma 5, there can be two cases: precisely four of {u†3, u
†
4, u
†
5, u
†
6, u
†
7}

have hamming weight 8, or all of {u†3, u
†
4, u
†
5, u
†
6, u
†
7} have hamming weight 4.

Subcase 2.1.1.1.2.1. Up to row permutation, ‖u†3‖ = ‖u
†
4‖ = ‖u

†
5‖ = ‖u

†
6‖ = 8.

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0


= B.

Subcase 2.1.1.1.2.2. ‖u†3‖ = ‖u
†
4‖ = ‖u

†
5‖ = ‖u

†
6‖ = ‖u

†
7‖ = 4.

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0


= Kᵀ.

Subcase 2.1.1.2. ‖u2‖ = 4. Let (x, y) be a pair of the entries in the i-th column of rows 2 and 3 as
shown below, for 3 ≤ i < 8. By Lemma 6 with u3, x = y. Hence u†2 = u†3.

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1
1 1 1
1 1 0
1 1 0
1 1 0
1 1 0


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 x
1 1 1 1 y
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0


.

Subcase 2.1.1.2.1. ‖u†2‖ = 8, then

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0 0 1 1 0 0
1 1 0 0 1
1 1 0 0 0
1 1 0 0 0


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0 0 1 1 0 0
1 1 0 0 1 1
1 1 0 0 0
1 1 0 0 0



Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0
1 1 0 0 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 1 0 0 0 0 1 1


= C.



Improved Synthesis of Toffoli-Hadamard Circuits 23

Subcase 2.1.1.2.2. ‖u†2‖ = 4, then

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0


= D.

Subcase 2.1.2. ‖u1‖ = 4. Let x, y, z, w be the entries in U as shown below. By Lemma 6 with row
1, x = y and z = w. By Lemma 6 with column 1, x = z and y = w. Hence x = y = z = w. Moreover,
since (x, z) can be any pair of the entries coming from any column i of rows 2 and 3, for 2 ≤ i < 8,
we have u†2 = u†3.

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 x y
1 1 z w
1 0
1 0
1 0
1 0


Subcase 2.1.2.1. x = y = z = w = 1, then

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1
1 1 1 1
1 0
1 0
1 0
1 0


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1
1 1 1 1
1 0 1 0
1 0
1 0
1 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1
1 1 1 1
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0


Subcase 2.1.2.1.1. ‖u†2‖ = 8, then

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 0 1 1 0 0
1 0 1 0 1
1 0 1 0 0
1 0 1 0 0


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 0 1 1 0 0
1 0 1 0 1 1
1 0 1 0 0
1 0 1 0 0



Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0
1 0 1 0 0 0
1 0 1 0 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0
1 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1


= C.
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Subcase 2.1.2.1.2. ‖u†2‖ = 4, then

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 1 1 0 0
1 0 1 0 1
1 0 1 0 1
1 0 1 0 1


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1
1 0 1 0 1 1
1 0 1 0 1 1


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0


= D.

Subcase 2.1.2.2. x = y = z = w = 0, then we have what follows.

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0
1 1 0 0
1 0
1 0
1 0
1 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 0 1
1 0 1
1 0 0
1 0 0


Lemma 6−−−−−−→

Let (x, y) be a pair of the entries in the i-th column of rows 4 and 5 as shown below, for 4 ≤ i < 8.
By Lemma 6 with u2, x = y. Hence u†4 = u†5.

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 0 1 0 x
1 0 1 0 y
1 0 0 1
1 0 0 1


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0
1 0 0 1
1 0 0 1


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0


= F.

Subcase 2.2. ‖u0‖ = 4. Let (x, y) be a pair of the entries in the i-th column of rows 2 and 3 as
shown below, for 1 ≤ i < 8. By Lemma 6 with u0, x = y. Hence u†2 = u†3. By Lemma 6 with u†0, there
must be oddly many 1’s in {x, z, w}. Up to column permutation, consider the following two cases:
x = z = w = 1 or x = 1, z = w = 0.

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 x z w
1 y
0
0
0
0


.
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Subcase 2.2.1. x = z = w = 1, we have
Subcase 2.2.1.1. ‖u†2‖ = 8, then

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0
0
0
0


.

By Lemma 6 with u†0, there must be evenly many columns among {u0, u1, u2, u3} that have hamming
weight 8. Since ‖u0‖ = 4, up to column permutation, there can be two cases.
Subcase 2.2.1.1.1. ‖u1‖ = ‖u2‖ = 8 and ‖u3‖ = 4.

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 0
0 1 1 0
0 1 1 0
0 1 1 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 0
0 1 1 0 1
0 1 1 0 0
0 1 1 0 0


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 0
0 1 1 0 1 1
0 1 1 0 0
0 1 1 0 0



Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 0
0 1 1 0 1 1 0 0
0 1 1 0 0 0
0 1 1 0 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 0
0 1 1 0 1 1 0 0
0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1


= C.

Subcase 2.2.1.1.2. ‖u1‖ = ‖u2‖ = ‖u3‖ = 4.

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


= E.

Subcase 2.2.1.2. ‖u†2‖ = 4, then

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0
0
0
0


.
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By Lemma 6 with u†0, there must be evenly many columns among {u0, u1, u2, u3} that have hamming
weight 8. Since ‖u0‖ = 4, up to column permutation, there can be two cases.
Subcase 2.2.1.2.1. ‖u1‖ = ‖u2‖ = 8 and ‖u3‖ = 4.

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0
0 1 1 0
0 1 1 0
0 1 1 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0 1 1 0 0
0 1 1 0
0 1 1 0
0 1 1 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0 1 1 0 0
0 1 1 0 1 1 0 0
0 1 1 0 1 1 0 0
0 1 1 0 1 1 0 0


= D.

Subcase 2.2.1.2.2. ‖u1‖ = ‖u2‖ = ‖u3‖ = 4. Depending on the hamming weight of u†4, consider
what follows.
Subcase 2.2.1.2.2.1. ‖u†4‖ = 4, then

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1


= I.

Subcase 2.2.1.2.2.2. ‖u†4‖ = 0, then

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


= J.

Subcase 2.2.2. x = 1, z = w = 0, we have

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0
1 1 0 0
0
0
0
0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0
0
0
0


.

Subcase 2.2.2.1. ‖u1‖ = 8, then we have what follows.

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 1
0 1
0 1
0 1


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 1 1
0 1 1
0 1 0
0 1 0


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 1 1 0 x
0 1 1 0 y
0 1 0 1
0 1 0 1


.
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Let (x, y) be a pair of the entries in the i-th column of rows 4 and 5 as shown above, for 4 ≤ i < 8.
By Lemma 6 with u2, x = y. Hence u†4 = u†5.

Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 1 1 0 1 0 1 0
0 1 1 0 1 0 1 0
0 1 0 1
0 1 0 1


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 1 1 0 1 0 1 0
0 1 1 0 1 0 1 0
0 1 0 1 0 1 1 0
0 1 0 1 0 1 1 0


= F.

Subcase 2.2.2.2. ‖u1‖ = 4, then

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0
0 0
0 0
0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 x
0 0 1 y
0 0 0
0 0 0


.

Let (x, y) be a pair of the entries in the i-th column of rows 4 and 5 as shown above, for 3 ≤ i < 8.
By Lemma 6 with u2, x = y. Hence u†4 = u†5. Moreover, by Lemma 6 with u†0, we have

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1
0 0 1 1
0 0 0
0 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 x z
0 0 1 1 y w
0 0 0 0
0 0 0 0


.

By Lemma 6 with u†2, x = z and y = w. Since x = y and z = w, x = y = z = w.
Subcase 2.2.2.2.1. x = y = z = w = 1

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 1 1
0 0 1 1 1 1
0 0 0 0
0 0 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


= G.

Subcase 2.2.2.2.2. x = y = z = w = 0.

U =



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0
0 0 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1


= H.
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A.2 Binary Patterns that are neither Row-paired nor Column-paired

Definition 15. We define the set B1 of binary matrices as B1 = {L,M,N}, where

L =



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1
1 0 0 1 0 1 1 0


, M =



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


, N =



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0


.

Proposition 14. Let U ∈ Z8×8
2 . Suppose U satisfies Lemmas 5 and 6. If there are no identical rows

nor columns in U , then U ∈ B1 up to permutation and transposition.

Proof. Let ui denote the i-th column of U , and u†i denote the the i-th row of U , 0 ≤ i < 8. Let ‖v‖
denote the hamming weight of v, where v is a string of binary bits. Since there are no identical rows
nor columns in U , we proceed by case distinction on the maximum hamming weight of a row vector
in U .
Case 1. There is a row with hamming weight 8. Up to row permutation, ‖u†0‖ = 8.
Subcase 1.1. There is a row with hamming weight 0. Up to row permutation, ‖u†1‖ = 0.

U =



1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0


Case 1−−−−→



1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1
1
0
0
0



Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1
0
0
0


Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1
0
0
0


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1
0 0
0 0
0 0


.

Note that u0 = u1, but it contradicts our assumption that there are no identical columns in U . Thus
this case is not possible.
Subcase 1.2. There is no row with hamming weight 0. Up to row and column permutation, consider

U =



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0


.
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Subcase 1.2.1. There is a column with hamming weight 8, consider

U =



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1
1
1
1
1
1


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1
1 0
1 0
1 0
1 0


Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 0
1 0
1 0
1 0



Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 0 1
1 0 1
1 0 0
1 0 0


Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1



Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0
1 0 1 0 0
1 0 0 1 1
1 0 0 1 0


Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1


Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0
1 0 1 0 0 1 0 1
1 0 0 1 1 0
1 0 0 1 0 1



Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0
1 0 0 1 0 1 1


Lemma 5−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1
1 0 0 1 0 1 1 0


= L.

Subcase 1.2.2. There is no column whose hamming weight is 8. Up to row and column permutation,
consider

U =



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1
1
0
0
0
0


Lemma 5−−−−−−→
Lemma 6



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1
0
0
0
0


Lemma 6−−−−−−→



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1
0 0
0 0
0 0
0 0


.

Note that u0 = u1, but it contradicts our assumption that there are no identical columns in U . Thus
this case is not possible.
Case 2. There is no row with hamming weight 8. Up to row and column permutation, ‖u†0‖ = 4.
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Subcase 2.1. There is a column with hamming weight 8, consider

U =



1 1 1 1 0 0 0 0
1
1
1
1
1
1
1


Lemma 5−−−−−−→
Lemma 6



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1
1 1
1 0
1 0
1 0
1 0


Lemma 5−−−−−−→
Lemma 6



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 1 1
1 0
1 0
1 0
1 0


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
1 1 1 1 0 0 0 0
1 0
1 0
1 0
1 0


.

Note that u†0 = u†3, but it contradicts our assumption that there are no identical rows in U . Thus this
case is not possible.
Subcase 2.2. There is no column with hamming weight 8, consider

U =



1 1 1 1 0 0 0 0
1
1
1
0
0
0
0


Lemma 5−−−−−−→
Lemma 6



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0
1 0
0 1
0 1
0 0
0 0


Lemma 5−−−−−−→
Lemma 6



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0



Lemma 5−−−−−−→
Lemma 6



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 x
0 1 0 1
0 0 1 1
0 0 0 0


.

Subcase 2.2.1. x = 1

U =



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1
0 1 0 1
0 0 1 1
0 0 0 0


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 0 1 0
0 0 1 1 0
0 0 0 0 1


Lemma 6−−−−−−→
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1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0
0 0 0 0 1 1


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


=M.

Subcase 2.2.2. x = 0

U =



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 0
0 1 0 1
0 0 1 1
0 0 0 0


Lemma 6−−−−−−→



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 0 1 1 0
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0


Lemma 5−−−−−−→
Lemma 6



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 0
0 0 1 1 1 1
0 0 0 0 0 0


Lemma 5−−−−−−→



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0


= N.

Hence, when there are no identical rows nor columns in U , U ∈ B1 up to permutation.
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• ‖u†
0‖ = ‖u

†
1‖ = 8

‖u0‖ = 8

‖u1‖ = 8

‖u2‖ = 8

‖u3‖ = 8

‖u4‖ = 8⇒ A

‖u4‖ = 4⇒ B

‖u3‖ = 4

‖u†
2‖ = 8⇒ B

‖u†
2‖ = 4⇒ ∅

‖u2‖ = 4

‖u†
2‖ = 8⇒ B

‖u†
2‖ = 4⇒ C

‖u1‖ = 4

‖u†
2‖ = 8⇒ B

‖u†
2‖ = 4

‖u†
2‖ = 8⇒ C

‖u†
2‖ = 4⇒ C

‖u0‖ = 4

‖u†
2‖ = 8

‖u†
4‖ = 4⇒ B

‖u†
4‖ = 0⇒ K

‖u†
2‖ = 4

‖u1‖ = ‖u2‖ = 8 , ‖u3‖ = 4⇒ C

‖u1‖ = ‖u2‖ = ‖u3‖ = 4⇒ E

Figure 2. Case distinction for ‖u†
0‖ = ‖u

†
1‖ = 8.
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• ‖u†
0‖ = ‖u

†
1‖ = 4

‖u0‖ = 8

‖u1‖ = 8

‖u2‖ = 8

‖u†
2‖ = 8⇒ B

‖u†
2‖ = 4

‖u†
3‖ = 8⇒ B

‖u†
3‖ = 4⇒ Kᵀ

‖u2‖ = 4

‖u†
2‖ = 8⇒ C

‖u†
2‖ = 4⇒ D

‖u1‖ = 4

x = y = z = w = 1

‖u†
2‖ = 8⇒ C

‖u†
2‖ = 4⇒ D

x = y = z = w = 0⇒ F‖u0‖ = 4

x = z = w = 1

‖u†
2‖ = 8

‖u1‖ = ‖u2‖ = 8, ‖u3‖ = 4⇒ C

‖u1‖ = ‖u2‖ = ‖u3‖ = 4⇒ E

‖u†
2‖ = 4

‖u1‖ = ‖u2‖ = 8, ‖u3‖ = 4⇒ D

‖u1‖ = ‖u2‖ = ‖u3‖ = 4

‖u†
4‖ = 4⇒ I

‖u†
4‖ = 0⇒ J

x = 1, z = w = 0

‖u1‖ = 8⇒ F

‖u1‖ = 4

x = y = z = w = 1⇒ G

x = y = z = w = 0⇒ H

Figure 3. Case distinction for ‖u†
0‖ = ‖u

†
1‖ = 4.
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