Supplement: Generators and Relations for Real Stabilizer Operators

Justin Makary, Neil J Ross, and Peter Selinger
Department of Mathematics and Statistics
Dalhousie University, Halifax, Canada

Abstract

This supplement to "Generators and Relations for Real Stabilizer Operators" establishes that the reduced relations of Definition 5.6 imply the typed relations of Definition 5.1 (as listed in the 8 figures, from Figure 3 to Figure 10 in Appendix B).

1 Proof of Proposition 5.7

We show that the typed relations, viewed as relations between un-typed circuits, follow from the reduced relations. That is, in this appendix, we forget the typing.

Once typing is forgotten, the relations in Figure 6 and Figure 7 coincide so that it is sufficient to derive those in Figure 6. Similarly, of the first 8 rules in Figure 4, the left column is identical to the right column as un-typed rules, so we only prove the left column. Lastly, the next 12 rules of Figure 6 are identical to the 12 rules following them as un-typed rules, so we only derive the first 12 of them.

We start by proving a few useful lemmas before deriving the typed relations. For each one of Figures $3-10$, we number the relations left-to-right and row-by-row in order to conveniently refer to them.

1.1 Lemmas

Lemma 1.1. The following is a consequence of $R 2$ and $R 3$.

$$
\begin{equation*}
-[H--H|H|-[H \mid- \tag{L1}
\end{equation*}
$$

Lemma 1.2. The following rules are a consequence of $R 1-R 18$

Lemma 1.3. The following rules are a consequence of $R 1-R 18$

1.2 Proofs of Lemmas

L1:

$$
\begin{aligned}
-H-H-H-H- & \stackrel{R 3}{=}-H-\cdots-H- \\
& \stackrel{R 2}{=}-H-H- \\
& \stackrel{R 3}{=}
\end{aligned}
$$

L2:

L3:

L4:

L5:

L6:

L7:

$$
\begin{aligned}
& \stackrel{R 10}{=} \\
& \stackrel{R 6}{=} \\
& \stackrel{R 7}{=}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{R 8}{=} \\
& \stackrel{R 2}{=} \rightarrow-H-H-(H-[H \mid-(H) \\
& \xrightarrow[=]{R 6} \xrightarrow{R 3}
\end{aligned}
$$

L8:

$$
\begin{aligned}
& \text { In }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{R 3}{=}-H \cdot\left[\begin{array}{rl}
H \\
H
\end{array}\right.
\end{aligned}
$$

L9:

L10:

L11:

L12:

L13:

H-

L14:

L15:

L16:

L17:

L18:

L19:

1.3 Proofs of Rewrite Rules

Figure 3:
3.1
$\longrightarrow-A_{1}-\stackrel{D e f}{=} \longrightarrow-$

$$
\stackrel{D e f}{=}-\boxed{A_{1}} \bullet
$$

3.2

$$
\begin{aligned}
-H-A_{1}- & \stackrel{D e f}{=}-H- \\
& \stackrel{D e f}{=}-A_{2}
\end{aligned}
$$

3.3

$$
\begin{aligned}
& \text { - - } \text { 가- Def }- \text { - } \\
& \stackrel{R 3}{=}-H-H-\quad-H- \\
& \text { Def - }-{ }^{H} \text {-(1) }
\end{aligned}
$$

3.4

$$
\begin{aligned}
-H-A_{2}- & \stackrel{\text { Def }}{=}-H-H- \\
& \stackrel{R 3}{=} \\
& \stackrel{\text { Def }}{=}-A_{1}-
\end{aligned}
$$

3.5

3.6

$$
\begin{aligned}
&-H-A_{3}-\frac{D e f}{=}-H- \\
& \stackrel{D e f}{=}-A_{3}-H-
\end{aligned}
$$

3.7

3.8

3.9

3.10

3.11

$$
\begin{aligned}
& \text { De } \\
& \xrightarrow{R 3}-\sqrt{H}- \\
& \stackrel{R 5}{=}- \\
& \text { Def }=A_{2}-B_{3}
\end{aligned}
$$

3.12

3.13

3.14

3.15

3.16

3.17

3.18

$$
\begin{aligned}
& \text { ? } A_{3}-B_{5}-D_{-}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{R 12}{=}-\vec{H}-\vec{H}-\vec{H}-\vec{H}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { Def }}{=}-A_{3} \square^{B_{7}}-\frac{8}{+H-}
\end{aligned}
$$

3.19

3.20

$$
\begin{aligned}
& \stackrel{R 3}{=}-\underline{H-H-}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{R 5}{=} \\
& \text { R3 }
\end{aligned}
$$

$$
\begin{aligned}
& =5.1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Def }-A_{3} B_{5}-(H)
\end{aligned}
$$

3.21

3.22

$$
\begin{aligned}
& \quad-B_{5}-\frac{D e f}{=}-H-H-H-H-H
\end{aligned}
$$

3.23

$$
\stackrel{R 3}{=}-{ }^{H}-(H)
$$

$$
=\frac{R 6}{=}-\frac{H}{H}-|H|
$$

$$
R 8
$$

$$
\stackrel{R 3}{=}-\frac{H}{H} \cdot[H \mid
$$

R4
R3
R3

$$
\begin{equation*}
\stackrel{R 4}{=}-H \mid \tag{-1}
\end{equation*}
$$

3.24

$$
\stackrel{-B}{=}
$$

3.25

$$
\begin{aligned}
& \text { - }- \text { Wix }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Def }-B_{8} \text { - }
\end{aligned}
$$

Figure 4:
4.1

4.2

$\stackrel{\text { Def }}{=}-B_{2}$
4.3

$$
\begin{aligned}
& \rightarrow \sqrt{B_{3}} \stackrel{\text { Def }}{=}-\vec{H}-\vec{H}-\vec{H}- \\
& \stackrel{5.10}{=} \xrightarrow{-H-H-H-H-H-H} \\
& \stackrel{\text { Def }}{=}-B_{3}-(-
\end{aligned}
$$

4.4

The proofs of 4.5-4.8 are the same as those of 4.1-4.4.
4.9

$$
\begin{aligned}
& \stackrel{\text { Def }}{=}-\sqrt{B_{1}}-
\end{aligned}
$$

4.10

$\stackrel{\text { Def }}{=}-\sqrt{B_{1}}$
4.11

4.12
$\xrightarrow{H} \xrightarrow{\text { Def }} \xrightarrow{-H-(H)}$
Def $=B_{3}$
4.13

4.14

4.15

$$
\begin{aligned}
& \text { - } B_{3}-\text { Def } \\
& \stackrel{R 3}{=}-\vec{H}- \\
& \stackrel{\text { Def }}{=}-B_{2}-
\end{aligned}
$$

4.16

$$
\begin{aligned}
& \stackrel{R 3}{=}-\vec{H}-H-H-2 \\
& \stackrel{R 3}{=}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{R 2}{=} \xrightarrow{H-}-\vec{H}-(H)-(H) \\
& \text { Def }-\sqrt\left[B_{3}-(\mathbb{C}]{=}\right.
\end{aligned}
$$

4.17

$$
\begin{aligned}
& \rightarrow B_{3} \stackrel{\text { Def }}{=} \xrightarrow{-}-\sqrt{H}- \\
& \stackrel{6.6}{=} \\
& \stackrel{\text { Def }}{=}-\sqrt{B_{3}-\infty}
\end{aligned}
$$

4.18

$$
\begin{aligned}
& B_{4} \stackrel{\text { Def }}{=}-H_{-}^{H}-\theta_{-}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { Def }}{=}-B_{4}-\frac{(-)}{H-}
\end{aligned}
$$

4.19

Def $-B_{4}^{-(1)-}$
4.20

The proofs of 4.21-4.32 are the same as those of 4.9-4.20.
4.33

$$
\begin{aligned}
\bullet-C_{1}- & \stackrel{\text { Def }}{=} \rightarrow- \\
& \stackrel{\text { Def }}{=}-C_{1}-\bullet
\end{aligned}
$$

4.34

$$
\begin{gathered}
-\left(\mathbb{C}-C_{1}-\stackrel{\text { Def }}{=}-H-[H-\right. \\
\stackrel{D e f}{=}-C_{1}-(1)-
\end{gathered}
$$

4.35

$$
\begin{array}{r}
-\left[C_{1}-\frac{D e f}{=}-\right. \\
\stackrel{D e f}{=}-C_{1}-
\end{array}
$$

4.36
$\rightarrow-C_{2}-$ Def $-\vec{H}-H-$

$$
\begin{aligned}
& \stackrel{R 4}{=}-H-H-(-1) \\
& \text { Def }-C_{2}-(-1)
\end{aligned}
$$

4.37

$$
\begin{aligned}
-\left(4-C_{2}-\right. & \stackrel{D e f}{=}-[H-\cdots-H-\cdots-\vec{H}- \\
& \stackrel{R 3}{=}-H-\bullet-H- \\
& \stackrel{R 2}{=}-H-H- \\
& \stackrel{R 3}{=}- \\
& \stackrel{D e f}{=}-C_{1}-
\end{aligned}
$$

4.38

$$
\begin{aligned}
& \stackrel{R 8}{=} \longrightarrow-H- \\
& \stackrel{R 7}{=} \xrightarrow{-H-[H-} \\
& \text { Def }-
\end{aligned}
$$

Figure 5:
5.1

5.2

5.3

5.4

$$
R 10
$$

R7

$$
\stackrel{R 2}{=}
$$

$$
\stackrel{R 12}{=}
$$

$$
\stackrel{6.2}{=}
$$

$$
\stackrel{R 3}{=}
$$

$$
=
$$

$$
R 12 \xrightarrow{2}
$$

Def
5.5

$\stackrel{R 3}{ } \xrightarrow{H} \cdot H-H-H \mid$

5.6

5.7

5.8

B- B_{8}

Def

Figure 6:
6.1

$$
\begin{aligned}
& \text { I- }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{R 12}{=}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{R 5}{=}
\end{aligned}
$$

6.2

6.3

6.4

6.5

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

Figure 7:
The proofs of 7.1-7.16 are the same as those of 6.1-6.16.

Figure 8:
8.1

8.2

8.3

8.4

8.5

$\stackrel{\text { Def }}{=}-D_{3} \xrightarrow{H-D-D-}$
8.7

8.8

8.9

$\stackrel{\text { Def }}{=}-D_{1} \xrightarrow{H-}$
8.10

8.11

$$
\begin{aligned}
D_{2} & \stackrel{D e f}{=}-H-(H)-H \\
& \\
& =-D_{3}-
\end{aligned}
$$

8.12

8.13

$$
\begin{aligned}
& -D_{3}-\overrightarrow{D_{3}}-\vec{H}-\sqrt{H}-\sqrt{H} \\
& \stackrel{R 3}{=} \\
& \stackrel{\text { Def }}{=}-D_{2}
\end{aligned}
$$

8.14

8.15

8.16

8.17

Def $-E_{2}$
8.18

Figure 9:
9.1

$$
\begin{aligned}
& \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{R 12}{=}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Def }
\end{aligned}
$$

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

9.13

$$
\text { Def } D_{3} B H \cdot-H \mid
$$

9.14

9.15

9.16

Figure 10:
10.1
$-A_{1}+C_{1} E_{-7} \stackrel{\text { Def }}{=}$ \qquad
10.2

