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Calculus of differences

• Aim: Categorify Newton’s difference operator ∆
- For f : R //R, ∆[ f ](x) = f (x +1)− f (x)
- A discrete version of derivative

• Inspired in part by:
- Work on polynomial functors by Kock [6], Niu/Spivak [7], and many others
- Work on analytic functors by Joyal [5] et. al.
- Multivariable analytic functors, e.g. Fiore/Gambino/Hyland/Winskel [4]
- Differential structures, see Cockett/Cruttwell [3]

• Likely related to:
- The cartesian difference categories of Alvarez-Picallo/Pacaud-Lemay [1]
- The Goodwillie calculus, see e.g. Bauer/Johnson/Osborne/Riehl/Tebbe [2]
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General idea
• For F : Set //Set, perturb the input and measure the difference in output

∆[F ](X ) = F (X +1) \ F (X )

Example
F (X ) = X 3, then F (X +1) has eight kinds of elements:

(x1, x2, x3)

(x1, x2,∗), (x1,∗, x3), (∗, x2, x3)

(x1,∗,∗), (∗, x2,∗), (∗,∗, x3)

(∗,∗,∗)

∆[F ](X ) = 3X 2 +3X +1

Example
F (X ) = 2X covariant power set, then F (X +1) has two kinds of elements:

A ⊆ X ⊆ X +1

A∪ {∗} ⊆ X +1 (A ⊆ X )

∆[F ](X ) =2X
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Tautness

• F (X +1) \ F (X ) not always functorial

Definition
(Manes 2002) A functor is taut if it preserves inverse images

B0 B// //

A0

B0

f0

��

A0 A// // A

B

f

��
Pb =⇒

F B0 F B// //

F A0

F B0

F f0

��

F A0 F A// // F A

F B

F f

��
Pb

A natural transformation t : F //G is taut if the naturality squares
corresponding to monos are pullbacks

G A0 G A// //

F A0

G A0

t A0

��

F A0 F A// // F A

G A

t A

��
Pb

• Get a sub-2-category Taut of Cat whose objects are categories with inverse
images and taut functors and taut natural transformations
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Limits

Taut functors are closed under limits.

Proposition

(1) Limits in Cat(Set,Set) of taut functors are taut.

(2) The inclusion
Taut(Set,Set) // //Cat(Set,Set)

creates non-empty connected limits.

(3) The product of taut functors is taut but the projections are not.
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Confluence

Theorem
I colimits commute with inverse images in Set if and only if

∀ I0

I2
α2 $$

I1

I0

::α1
I1

I2

∃ I0

I2
α2 $$

I1

I0

::α1
I1

I2

I

I2

::

β2

I1

I

β1

$$

I1

I2

β1α1 =β2α2 .

Definition
If I satisfies the above conditions we say it’s confluent.

Example
Filtered colimits, coproducts, quotients by group actions are all confluent.

Proposition

(1) Confluent colimits in Cat(Set,Set) of taut functors are taut.

(2) Taut(Set,Set) // //Cat(Set,Set) creates all colimits.
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Examples

• Polynomial functors P (X ) = ∑
i∈I

X Ai are taut

• Analytic functors F̃ (X ) =
∫ n

X n ×F (n) ∼=
∑
n

X n ×F (n)/Sn are taut

(F : Bij //Set a species)

• Manes: Collection monads are finitary taut monads
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The difference operator

Proposition

(1) If F : Set //Set is taut then

∆[F ](X ) = F (X +1) \ F (X )

defines a taut subfunctor of F (X +1).

(2) A taut transformation t : F //G restricts to a taut transformation
∆[t ] : ∆[F ] //∆[G].

The functor
∆ : Taut(Set,Set) //Taut(Set,Set)

is called the difference operator.

Example
∆[C ] = 0
∆[X ] = 1
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Colimits

Proposition
∆ preserves colimits: For Γ : I //Taut(Set,Set)

∆[lim−−→
I

ΓI ] ∼= lim−−→
I

∆[ΓI ]

Corollary
(1) ∆[F +G] ∼=∆[F ]+∆[G]

(2) ∆[C F ] ∼=C∆[F ]
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Limits

Proposition
∆[F ×G] ∼= (∆[F ]×G)+ (F ×∆[G])+ (∆[F ]×∆[G]).

More generally:

Proposition

∆

[∏
i∈I

Fi

]
∼=

∑
JáI

(∏
j∈J

F j

)
×

( ∏
k∉J

∆[Fk ]

)
.

Theorem
∆ preserves non-empty connected limits

∆[lim←−−
I

ΓI ] ∼= lim←−−
I

∆[ΓI ] .
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Lax chain rule

Theorem
For taut functors F and G there is a taut natural transformation

γG ,F : (∆[G]◦F )×∆[F ] //∆[G ◦F ]

which is:
(1) monic,
(2) natural in F and G,
(3) associative

(∆[H ◦G]◦F )×∆[F ] ∆[H ◦G ◦F ] ,
γH◦G ,F

//

(∆[H ]◦G ◦F )× (∆[G]◦F )×∆[F ]

(∆[H ◦G]◦F )×∆[F ]

γH ,G◦F×id

��

(∆[H ]◦G ◦F )× (∆[G]◦F )×∆[F ] (∆[H ]◦G ◦F )×∆[G ◦F ]
id×γG ,F // (∆[H ]◦G ◦F )×∆[G ◦F ]

∆[H ◦G ◦F ] ,

γH ,G◦F

��

(4) unitary

1×∆[F ] ∆[F ] ,
∼= //

(∆[ Id]◦F )×∆[F ]

1×∆[F ]

(∆[ Id]◦F )×∆[F ] ∆[ Id◦F ]
γId,F // ∆[ Id◦F ]

∆[F ] , ∆[F ]×1 ∆[F ] .
∼= //

(∆[F ]◦ Id)×∆[ Id]

∆[F ]×1

(∆[F ]◦ Id)×∆[ Id] ∆[F ◦ Id]
γF,Id // ∆[F ◦ Id]

∆[F ] .
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Tangent structure

For a taut functor F we define

Set Set
F

//

Set×Set

Set

P1

��

Set×Set Set×Set
T // Set×Set

Set

P1

��

T (X ,Y ) = (F X ,∆[F ](X )×Y )

Proposition
T : Taut(Set,Set) //Taut(Set×Set,Set×Set) is a lax normal monoidal functor
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Polynomial functors

Proposition
If P (X ) = ∑

i∈I
X Ai is a polynomial functor, then ∆[P ](X ) is again polynomial

∆[P ](X ) ∼=
∑

SáAi , i∈I
X S

Example

∆[X A] = ∑
SáA

X S

Example

∆[X n ] =
n−1∑
k=0

(
n

k

)
X k
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Multivariable functors

• Extend the difference calculus to functors

F : SetA //SetB

• B families of functors in A variables

• Partial difference with respect to A:

For Φ in SetA, perturb it by adding a single element of type A freely,
Φ⇝Φ+A(A,−)

∆A[F ](Φ) = F (Φ+A(A,−)) \ F (Φ)

• The one-variable theory carries over with some modifications

• Based on profunctors
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Profunctors (a.k.a. 2-matrices)

• A profunctor P : A • // B is a functor P : Aop ×B //Set
A morphism of profunctors is a natural transformation

• P can be thought of as a B by A matrix of sets

• Composition of P : A • // B with Q : B • // C is “matrix multiplication”

(Q ⊗P )(A,C ) =
∫ B

Q(B ,C )×P (A,B)

• Identities are hom functors

IdA = A(−,−) : Aop ×A //Set
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2-vectors (a.k.a. presheaves)

• A profunctor 1 • // A is a functor 1op ×A //Set which we identify with the
presheaf Φ ∈ SetA

• Composing Φ with a profunctor P gives an object P ⊗Φ of SetB and so we
get a functor P ⊗ ( ) : SetA //SetB which is cocontinuous (2-linear)

• Its partial difference with respect to A is

∆A[P ⊗ ( )](Φ) = P ⊗ (Φ+A(A,−)) \ P ⊗Φ
∼= (P ⊗Φ+P ⊗A(A,−)) \ P ⊗Φ
∼= P ⊗A(A,−)
∼= P (A,−)

a constant functor (independent of Φ)

SetA //SetB
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Tense functors

P ⊗ ( ) is not taut!

Definition
F is tense if it preserves complemented subobjects and their pullbacks

t : F //G is tense if the naturality squares corresponding to complemented
subobjects are pullbacks

• If F preserves binary coproducts then it’s tense, so P ⊗ ( ) is tense

• There is a sub-2-category of Cat, Tense, consisting of presheaf categories,
tense functors and tense natural transformations
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Limits and colimits

Proposition

(1) Let Γ : I //Cat(SetA,SetB) be such that Γ(I ) is tense for every I. Then
lim←−−Γ is also tense. If I is confluent so is lim−−→Γ.

(2) Tense(SetA,SetB) // //Cat(SetA,SetB) creates non-empty connected lim←−−
and all lim−−→.
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Partial difference

Proposition
Let F : SetA //SetB be tense, then

∆A[F ](Φ) = F (Φ+A(A,−)) \ F (Φ)

defines a tense subfunctor

∆A[F ] // //F (−+A(A,−))

functorial in F

∆A : Tense (SetA,SetB) //Tense (SetA,SetB) .

Definition
∆A[F ] is the partial difference of F with respect to A.

• ∆A[C ] = 0
• ∆A[P ⊗ ( )] ∼= P (A,−) (constant)
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Limits and colimits

Proposition
∆A : Tense (SetA,SetB) //Tense (SetA,SetB) preserves colimits and non-empty
connected limits

Corollary
(1) ∆A[F +G] ∼=∆A[F ]+∆A[G]
(2) ∆A[C ×F ] ∼=C ×∆A[F ]

Proposition

∆A

[∏
i∈I

Fi

]
∼=

∑
JáI

(∏
j∈J

F j

)
×

( ∏
k∉J

∆A[Fk ]

)

Corollary

∆A[F ×G] ∼= (∆A[F ]×G)+ (F ×∆A[G])+ (∆A[F ]×∆A[G])
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(Discrete) Jacobian

For F : SetA //SetB a tense functor

Proposition
For Φ in SetA, ∆A[F ](Φ) is (contravariantly) functorial in A

∆[F ](Φ) : Aop //SetB

• ∆[F ](Φ) is a profunctor A • // B, the (discrete) Jacobian of F at Φ

Proposition
∆[F ](Φ) is functorial in Φ giving a tense functor

∆[F ] : SetA //SetAop×B =Prof (A,B)

Proposition
∆[F ] is functorial in F giving the Jacobian functor

∆ : Tense (SetA,SetB) //Tense (SetA,SetAop×B)
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Alternate formulations

• Differential operator

D[F ] : SetA ×SetA //SetB

D[F ](Φ,Ψ) =∆[F ](Φ)⊗Ψ
D[F ] is cocontinuous in the second variable

• Tangent functor

SetA SetB
F

//

SetA ×SetA

SetA

P1

��

SetA ×SetA SetB ×SetBT [F ] // SetB ×SetB

SetB

P1

��

T [F ](Φ,Ψ) = (F (Φ),∆[F ](Φ)⊗Ψ)

T [F ] also cocontinuous in the second variable
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Lax chain rule

Theorem
For tense functors F : SetA //SetB, G : SetB //SetC and Φ in SetA we have a
canonical comparison

γ : ∆[G](F (Φ))⊗B∆[F ](Φ) //∆[GF ](Φ)

which is
(1) natural in Φ
(2) natural in F and G
(3) associative
(4) normal

Corollary
T : Tense // Tense

SetA

SetB

F

��

SetA ×SetA

SetB ×SetB

T [F ]

��
7−→

is a lax normal functor
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Multivariable analytic functors

After Fiore et al. [4]

• !A free symmetric monoidal category generated by A

– Objects: finite sequences 〈A1, . . . , An〉
– Morphisms: (σ,〈 f1, . . . , fm〉) : 〈A1, . . . , An〉 // 〈A′

1, . . . , A′
m〉

σ : m //n bijection, fi : Aσi
// A′

i

• A-B symmetric sequence (multivariable species) is a profunctor P : !A • // B

• Defines a multivariable analytic functor

P̃ : SetA //SetB

P̃ (Φ)(B) =
∫ 〈A1...An〉∈!A

P (A1, . . . , An ;B)×ΦA1 ×·· ·×ΦAn

Theorem
P̃ is tense and ∆[P̃ ] is an analytic functor SetA //SetAop×B
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The difference symmetric sequence

∆[P̃ ] ∼= Q̃ for Q : !A • // Aop ×B

Q(A1, . . . , An ; A,B) =
∞∑

k=1
P (A1, . . . , An , A, . . . , A;B)/{idn }×Sk

where there are k A’s in the k th summand

When A = B = 1, !A ∼= Bij and we recover the original definition of species and
analytic functor. Then

Q : Bij //Set

Q(n) =
∞∑

k=1
P (n +k)/{id}×Sk

A Q-structure on n is a positive integer k and an equivalence class of
P-structures on n +k, two structures being equivalent if there is a permutation
of n +k fixing the first n elements which transforms one into the other
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Exponential functors

• How should we categorify f (x) = ax , a > 0?

Example
F (X ) = 2X covariant power set

If L is a sup-lattice we can make F (X ) = LX into a covariant functor
LX : Set //Set by Kan extension. For f : X //Y and φ ∈ LX

F ( f )(φ)(y) = ∨
f (x)=y

φ(x) .

Proposition
LX : Set //Set is taut and

∆[LX ] ∼= L∗×LX

where L∗ = L \ {⊥} .

Example
∆[3X ] ∼= 2×3X
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Dirichlet functors?

• A first try might be
F (X ) = ∑

i∈I
LX

i

• For every positive integer n the ordinal

n = {1 < 2 < 3 < ·· · < n}

is a sup-lattice, but . . .
• For any unbounded sequence n1 < n2 < . . .∑

i∈N
nX

i
∼=

∑
n∈N

nX
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Normalized exponentials
• LX is not connected: π0(LX ) ∼= L

LX ∼=
∑
l∈L

Cl (X ) Cl (X ) = {
f : X //L | ∨

f (x) = l
}

• The normalized exponential

L[X ] = {
f : X //L | ∨

f (x) =⊤}
• LX = ∑

l∈L
(L/l )[X ] L/l = {

l ′ ∈ L | l ′ ≤ l
}

Proposition
L[X ] is taut and

∆
[

L[X ]
]∼= ∑

l∨l ′=⊤
l ′ ̸=⊥

(L/l )[X ]

Corollary
If ⊤ is join irreducible (i .e. l ∨ l ′ =⊤⇒ l =⊤ or l ′ =⊤) then

∆
[

L[X ]
]∼= L∗×L[X ] + ∑

l ̸=⊤
(L/l )[X ]
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(Covariant) Dirichlet functors

Proposition
If 〈Li 〉i∈I and 〈M j 〉 j∈J are two families of sup-lattices such that∑

i∈I
L[X ]

i
∼=

∑
j∈J

M [X ]
j

then there is a bijection α : I // J and lattice isomorphisms

Li
∼= Mα(i ) .

Definition
A (covariant) Dirichlet functor is a functor of the form

F (X ) = ∑
i∈I

L[X ]
i

for 〈Li 〉 a family of sup-lattices.
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Dirichlet difference

Proposition
Dirichlet functors are taut and closed under products and coproducts

Theorem
If F (X ) =∑

i∈I L[X ]
i is Dirichlet, then so is ∆[F ](X ) and

∆[F ](X ) = ∑
i∈I ,l∈Li

Cl × (Li /l )[X ]

where Cl = {l ′ ∈ Li | l ′ ̸= ⊥ ∧ l ∨ l ′ =⊤}
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