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INJECTIVES IN TOPOI, I: 

REPRESENTING COALGEBRAS AS ALGEBRAS 

Linton (Wesleyan U.) and R. Pare (Dalhousie U.) 

Call a cotriple ~ on a topos E with subobject classifier O dually 

~E °p al~ebraic if the composite (~G) °p (v~)Op ~ E is tripleable, V~ 

"u i " " being the IE-valued nder ylng functor on the G-coalgebras (cf. [ZTB]). 

During what has come to be known as the Lawvere-Tierney topos year 1969-70 at 

Dalhousie, J.R. Isbell raised the question whether all cotriples on the topos 

of sets are dually algebraic (see [IGF], p. 588, ~. 4*). By April, 1970 , we 

had a composite tripleableness lemma ([LDC], Th. 2; see [MAT], Exer. 3.1.17, 

for a more polished version) informing us that they are ([LDC], Cor. 5). 

In this lemma, as against the earlier ones of Barr and Beck, the crucial 

ingredient is a requirement (ZHD) on the middle category, roughly, that prac- 

tically all objects be projective. In 1973, consequently, when it was clear 

that O(-):E °p ~ E is always tripleable ([PCT], p. 558), the same lemma 

automatically revealed3 for any topos IE, that all cotriples on ~E must be 

dually algebraic -- provided (coZHD)each nonzero object of E is injective. 

Here we give the latest full proof of that lemma. Moreover, for those 

content merely to know all indexed cotriples (~ la [RAF] ) on ~E are dually 

algebraic, we weaken the seemingly overrestrictive coZHD proviso: it suffices 

that each object X of E be internally injective over its own support ~X, 

i.e., as an object of ~I~X" It suffices -- but it is also necessary; and, 
1 

as a corollary, we establish that the coZHD proviso, sufficient for all co- 

triples on ~E to be dually algebraic, is likewise necessary as well. Thus: 

Theorem A. Necessary and sufficient for all cotrip!es o_nn the toros ~ 

to be dually al~ebraic is that each nonzero object X~O o_~f E be i~ective. 

Theorem B. Necessary and sufficient for all indexed cotriples o__nn IE to 

b__ee dually al~ebraic is that each object X of ~E b_~e internally in~ective i__nn 

the open subtopos E ~X' where ~X is the support of X. 
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U., the National Research Council of Canada (grant ~ A-8141), and the U.S. 

National Science Foundation (MCS 76-10615): we ~ratefully thank them all. 
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i. ~ - ~ - ~ - ~  ~ - ~ - , ~ T h e  ZHD-Lemma and Theorem A ( ~  ~2~) " The ZHD-Lemma be- 

low~ of which the sufficiency assertion in Theorem A is a direct consequence, 

makes use of the following definitions. 

(i.i) Definitions. (i) An object Q of a category ~ is an artificial 

terminal object ("Q is AT") if Q is terminal in B and every ~-morphism 

with domain Q is an isomorphism ("AT" is "isolated" in [MAT], Exer. 3.1.10). 

(ii) The category .9 is ZHD (think "zero homological dimension") if all 

objects~ save perhaps those that are AT, act projective when tested against 

coequalizers; if ~op is ZHD, we say S is coZHD. 

[It is clear that a topos is ZHD if and only if it satisfies the axiom 

of choice (AC). H.-M. Meyer has observed (see Satz 6.4 in [MDT] ) 

that a topos is well-pointed if and only if it is coZHD and Boolean. Sets, 

pointed sets, modules over a semisimple ring, and their fall subcategories, 

all constitute examples of categories that are both ZHD and coZHD.] 

(1.2) ZHD-Lemma. Let g~, S, and ~ b_~e c atesories, with ~ triple- 

able over S via V: ~ > ~, and B tri~01eable over gg via U: S >~. 

Assume S is Z~3. Then ~ i_~s tripieable over ~Z via the composite 

U°V: ~ V>S U>~Z. 

Proof. UoV reflects isomorphisms because U and V do. By the 

absolute version ([PAC], Th. 7.3) of Beek's tripleableness theorem, we need 

only show that ~ has and UoV preserves eoequalizers of (UoV)-absolute 

pairs. If 

(1.2.1) D ~ W (in C,) 
~ r  

(1.2.2) UVD -~ UVW p > P (in gZ) 

depict such a pair and accompanying absolute coequalizer data~ find a map q 

in S, with Uq --- p , coequalizing the U-absolute pair (Vx, Vy) : 

(1.2.3) VD ~ VW g > Q (in S) . 

Where T is (the functor component of) the triple associated with the 

tripleable functor V, the lemma below will assure that both T and ToT 

preserve the coequalizer diagram (1.2.3). It follows (see [LCA], Prop. 3) 

that ~ will have a map r coequalizing (1.2.1) and satisfying Vr --- q ; 

the inference UVr -- p then being immediate, the proof will be complete. 

(1.3) Lemma. Let ~ = (T,~ , ~) be a triple on the ZHD category S, 

and let U: ~ > ~ be a functor reflectin~ coequalizers of U-absolute 

pairs and havir~ a left ad$oint F: ~Y .... > S, with counit e: FU > id S . 
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Then not only i_£s ever~ diagram 

( 1 . 3 . 1 )  E ---~ X ~ Q ( i n  S )  

whose t r a n s f o r m  under  U i s  an a b s o l u t e  c o e ~ u a l i z e r  di.a~ram i n  
c p e ~ u a l i z e r  d iagram i_nn ~ ,  bu t  so a r e  i t s  t r a n s f o r m s  under  T 

Q 

If 

alread~ 

and T@T . 

Proof. We distinguish two cases~ according as Q is or is not AT. If 

is AT, merely apply the following observation to T , T@T , and (1.3.1): 

D: ~ > ~ i__ss an~ diasram with AT colimit Q , then an~ functor S: 

>S admittin~ a natural transformation k: idF > S satisfies SQ ~ Q 

and preserves the colimit of D . Indeed, XQ is an isomorphism; moreover, 

for any cone SoD ooo~ B ~ the cone D ooo> B induced by composition with k 

factors uniquely through Q, whence B ~ Q and SQ ~ colim(S@D) . 

If instead Q is not AT, neither is X or E , and all three are pro- 

jective; it will then turn out that (1.3.1) is an absolute coequalizer dia- 

gram~ which amply fulfills our requirement. Writing G = FU, consider the 

beginnings of a G-resolution of (1.3.1): 

GaE.----~GGX > G~Q 

(1.3.2) GE ~ GX > GQ 

E ~ x  > a  • 

Using the unit of adjunction id~z > UF, note that U transforms each 

column of (1.3.2) into a split coequalizer diagram in 6Z (compare the dis- 

cussion around display formula (5) in [MCL] ~ Ch. VI, 37). As each column is 

then a coequalizer diagram with projective coequalizer, it follows that 

(1.3.3) the maps c E , c x , and CQ are split epimorphisms. 

Moreover, as the transform of (1.3.1) under U is absolute, we know that 

(1.3.4) G transforms (1.3.1) into an absolute coequalizer diagram. 

The following observation~ used again in §2, now concludes the proof: 

(1.4) ABS-Lemma. Let G b_ee an~ endofunctor on a category ~ ~ and 

c: G ~ id~ any natural transformation. Then (1.3.1) is an absolute 

coequalizer diagram if conditions (1.3.3) and (1.3.~) hold. 

Proof. Referring to (1.3.2), the upper two rows are obviously absolute 

coequalizer diagrams by (1.3.h). But the columns are absolute coequalizer 
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diagrams, too -- indeed, they are split: writing B for any one of E, X, 

or Q ~ and choosing a section s: B > GB for CB (available by (i.3.3)), 

we have a split coequalizer diagram 
Gs_ c 

B GGB ~ GB > B , 

Gs 

as is verified by recording the section equation, CBOS = i~ , and applying 

G to obtain GCBOGS = idGB ; the remaining two splitting equations are but 

instances of the naturality of e : CGBOGS = soc B and eBOG~B = SBOCGB . 

Applying any functor to (1.3.2), therefore, we obtain a similar 3 ×3 diagram 

in which all columns and the upper two rows are coequalizers. But then the 

3 x 3 lemma (= Noether Isomorphism Theorem -- the special case of the Fubini 

Theorem (cf. [MCL]~ p. 227) asserting that coequalizers commute with coequal- 

izers) assures that the bottom row is a coequalizer, too, whence the lemma. 

(1.5) Corollary (Theorem A -- sufficiency). If the topos E i_~s coZHD~ 

then every cotriple ~ o_nn I~ is dually algebraic. 

Proof. It is obvious that (V~)°P: (]E~) °p > E °p is tripleable, and 

it is known ([PCT], ~2, Th'm) that O(-): ]E °p > E is tripleable, too. 

Now just apply the ZHD-Lemma (1.2). 

(1.6) Corollary ([LDC]). Every category cotripleable over the category 

g of sets and functions is the dual of a variety. 

Proof. By (1.5), cotriples on the coZHD topos @ are dually algebraic. 

2. Intern~ ~ an ddd Theore~m B ( ~  ~ ) .  Properly to 

understand the basic facts concerning internal injectives, it helps to bear 

in mind, by way of comparison, that an object X of a topos E is injective 

(in the usual sense, that every extension problem 

A >m> B 

(2.1.1) 

X 

with m a monomorphism has a solution ~: B > X extending %0 along m, 

i.e.~ satisfying ~om =~) if and only if the functor X(-): ]E °p > ]E 

converts monomorphisms m: A > > B (in ~ ) to split epimorphisms 

xm: ~ > ~. In fact, because Q and its powers are injective in any 

topos, X is injective iff the singleton map [ "IX: X > QX has a retrac- 

tion; but for each such retraction p: O X > X ~ the composition 

xA ([.]×)A> (~X)A - DXXA ~XXm> oXXB --- (nx)B o--~ xB 
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is easily seen to be a section for X m when m: A > > B is monic; con- 

versely, if X m has a section, passage to global elements shows that each 

extension problem (2.1.1) has a solution. 

We say an object X of the topos ]E is internally inSective if the 

functor X (-)-. ]E °p > ]E merely preserves (that is, converts monomorphisms 

in ]E to) epimorphisms. Observe that the (reversible) "deductions" 

I*B > I*X (in ~ I ) 

11 = I*l > (I~X) I~B -- I*(X B) (in ]E I) 

Ezl I-- I >×B (in E) 

set up a l-to-i correspondence between maps ~: I~B -> I~X in ]E I extend- 

in~ (as we shall say) ~ alon~ m over I (that is, solving the transform 

under 1 + of the extension problem (2.1.1)) and maps ~: I > ~ rendering 

I >i 

commutative. When X m is epic, there are, given r~ : A > X , diagrams 

(2.1.2) with I b ! epic (take (2.1.2) to be a pullback, for example); so 

(2.1.1) has solutions locally (that is, over some I with support ~I = i) 

when X m is epic. In particular, when X is internally injective, X {'} 

is epic, and the singleton map ['}X becomes a split monomorphism in E I ' 

for some I with oI = i. But for such I ~ I~X is then ir4jective in 

]E I ' ioe., X is locally inSective; and it follows, since I*(X m) = I*X I-m, 
I ' 

that, for such X and all maps m monic in • , each X m is a locally split 

epimorphism. Thus internal injectives and local injectives coincide, and all 

the maps X m , for monic maps m, are epic for X internally injective be- 

cause they are locally split -- indeed, they all split in any ~ I in which 

I*X is injective. To sum up: 

(2.1.3) injectives are internally injective; 

(2.1.4) internal injectives are injective locally, and conversely. 

It then follows easily that 

(2.1.5) an object X for which I*X is internally injective qua object of 

]E I' for some I with qI = l, is internally injective in • ; 

and, as each J* preserves injectives (because Ej preserves monomorphisms), 

(2.1.6) J*X is internally ir4jective if X is, for all J in ~. 
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The proof of Theorem B uses the following amusing characterization of 

dually algebraic cotriples on topoi. 

(2.2) Proposition. A cotriple 

algebraic if and only if the functor 

pairs. 

= (G, ¢, 6) on a topos E is dually 

G preserves equalizers of coreflexive 

Proof. We adopt the terminology of -- and assume known the results in 

-- §2 of [PCT]. If G preserves such equalizers, GoG does too, whence (by 

the dual of Prop. 3 of [LCA]) E~ has them and V~ preserves them. It fol- 

lows that (V~)°P: (]E~) °p > ]E up satisfies the hypotheses of the RTT (cf. 

[PCT]). But so does the functor Q(-): ]E °p > ]E, hence so does their com- 

posite. So, applying the RTT, ~ is dually algebraic. 

Conversely, if ~ is dually algebraic, then, because reflexive pairs in 

are O~-)-split" ~ (cf. [PCT] again), the tripleable composite O(-)o(V~) °p 
~op 

is RTT by Beck~s theorem; in particular, it preserves coequalizers of reflex- 

pairs. But ~(-) reflects such. coequalizers, so (V~) °p preserves them, ire 

i.e., V~ preserves equalizers of coreflexive pairs. But so does V@ 's 

right adjoint, whose composition with V~ is G ~ after all; then so does G • 

The proof of the sufficiency clause in Theorem B is now at hand. It is 

convenient to say a topos is ~LZ if it satisfies the condition of Theorem B. 

(2.3) Lemma (Theorem B -- sufficiency). Every indexed cotriple ~ = 

(G, ¢,  5) on a ~LZ tol0os i_~s dually a/~ebraic. 

Proof° Let ~ be an indexed cotriple on the ~LZ topos ]E . By (2.2) 

it suffices to prove G preserves equalizers of coreflexive pairs. So let 

(~) x I ~ x 2 --~ x 3 

be such an equalizer in E. There are four principal steps to take. 

Step I. We find an object I having same support ~I = ~X I as X I for 

which I* carries (-~) to an absolute equalizer diagram I*(-~) in ]E I" 

I and choose, for each i = To do so, we apply (2.1.4) in each topos ]E ~X i 

l, 2, 3, an object I i having support ~I i = ~X i , for which Ii*X i is 

injective in ]E ii . Writing I = I lxI 2x I 3 , it is clear that ~I = ~X 1 

and (from the line before (2.1.6)) that I*X. is injective in ]E I ' for 

each i . Hence, writing Hi: X.l > O (OXi)1 for (the exponential transposes 

of) the evaluation maps (which are monic because O is an internal cogener- 

ator), the monomorphisms I*(~i) are split in E I for each i. Thus, we 

have at least verified the counterpart of condition (1.3.3) for an eventual 

application of the dual of the ABS-Lemma (1.4) within Eli to D Q(-) and to 
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oQ(-) the evaluation ~: id ~ there. For the counterpart of (1.3.4), note 

that, being a logical functor, I*: ]E ~]E I satisfies i,(O(-~)) _-_ f]I*(-~). 

Then, since D (-~) is an absolute coequalizer diagram in ]E, it follows that 

I-~(-~) is an absolute coequalizer diagram in ~ I' whence D DI*(-'~) is an 

absolute equalizer diagram there, which is (1.3.4). By (1.4), then, I*(-~) 

is an absolute equalizer diagram in ]E l I ~ as desired. 

Stel0 II. Capitalizing on the hypothesis that ~ is indexed, we show that 

I* carries G(-~) , the transform of (-~) under G , to an equalizer diagram 

in ]Eil• Recall (from [P&S] or [RAF]) that, to be ]E-indexed, a cotriple 

on ]E must, for all I in ]E , be so accompanied by cotriples ~I on ]{ I 

(~I being ~ ) that, regardless what the map j: J ~ I, each diagram 

G I 
]El ~ ]El 

i 

]E j-------> ]E j 
Gj 

commutes to within a specified equivalence modulo which j* carries counit 

to counit and comultiplication to comultiplication. In particular, from the 

commutativity of (D(I---->I)), we see that I*(G(-~)) ~ GI(I*(-~)); hence, 

recalling Step I, I*(G(-~)) is an (absolute.') equalizer diagram in ]E I" 

Step III. Since the unique map I ~ ~I = ~X I is epic, pulling back along 

it gives a functor E ~X ~ ]E I that, being a faithful right adjoint, 

reflects equalizers. Inlparticular, (~XI)*(G(-~) ) is an equalizer diagram 

in ]E ~X I (because I*(G(-~)) is, in ~Ii, by Step II). 

Step IV. We finally show G(--~) is an equalizer diagram in ]E . Suppose 

f: Y ---> GX 2 is a map equalizing the pair GX 2 ~ GX 3 . It follows that 

the composition Y > GX 2 > X 2 of f with the counit ¢X2 equalizes 

the pair X 2 -~ X 3 , hence that there is a map h: Y ) X I making the box 

f 
Y > GX 2 

X I --> X 2 

commute. But then ~Y ~ ~X I , and as f factors uniquely through G(XI~X2) 

over oX I , by Step III, it must do so in ]~ as well, which ends the proof. 

3. T ~ h e ~ ~ .  That the condition in Theorem A is neces- 

sary will follow from the necessity of the condition in Theorem B. For the 

latter~ however, we need a suitable criterion for a map m: A ~ B in a 
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topos ~ to be locally a split monomorphism; that criterion will center on 

the following construction. Given the map m, form all the cokernel pairs 

X B X m x X 

YX 

o f  t h e  maps X m (X  i n  ~ )  . L e t t i n g  H m ( =  H ) :  • > ~ be  t h e  u n i q u e  

f u n c t o r  w i t h  t h e s e  v a l u e s  f o r  w h i c h  t h e  f a m i l i e s  x = [Xx] x and y = [Yx]x 

a r e  n a t u r a l  t r a n s f o r m a t i o n s  (_)A > H , i t  i s  c l e a r  t h a t  x and y make 

H t h e  c o k e r n e !  p a i r  o f  (_)m i n  t h e  c a t e g o r y  o f  e n d o f u n e t o r s  on ~ . I n  
m 

f a c t ~  a s  p u l l i n g  b a c k  p r e s e r v e s  c o l i m i t s  and as  (_)m i s  an i n d e x e d  n a t u r a l  

t r a n s f o r m a t i o n ,  H i n h e r i t s  an i n d e x e d  s t r u c t u r e  by w h i c h  i t  s e r v e s  ( s t i l l  
m 

v i a  x and y ) as  c o k e r n e l  p a i r  f o r  (_)m i n  t h e  c a t e g o r y  @nd(~)  o f  

i n d e x e d  e n d o f u n c t o r s  on ~ .  [ M o t i v a t i o n :  t h e  Yoneda Lemma p r o v i d e s  a s e n s e  

i n  w h i c h  (_)A i s  t h e  i n d e x e d  e n d o f u n c t o r  on • p r e s e n t e d  by a s i n g l e  f r e e  

g e n e r a t o r  - -  i d  A - -  i n  t h e  v a l u e  a t  A ; i n  t h e  same s e n s e ,  H m i s  t h e  

i n d e x e d  e n d o f u n c t o r  p r e s e n t e d  by two g e n e r a t o r s  i n  Hm(A ) - -  t h e  Yoneda c o r -  

r e s p o n d e n t s  ~ and ~ o f  x and y - -  s u b j e c t  t o  t h e  d e f i n i n g  r e l a t i o n  

[Hm(m)}(~ ) = {Hm(m)}(~ ) in Hm(B ) . Thus H is the generic indexed endo- 
m 

functor hoping to convert the map m to a non-monomorphism.] 

(3.1) Lemma. The followir~ conditions on a monomcr~hism m: A > > B 

in! topos ~ are equivalent. 

(i) m is locally s~lit. 

(ii) For each object X , the map xm: X B "> X A is e~ic. 

x ~ Hm is the cokernei pair in the cate- (iii) Where (_)h > (_)A Y 

gory ~nd(~) (of indexed endofunctors on ~ of (_)m __ , the transition 

map Hm(m): HA > HB is monic. 

(iv) The ~a~ Am: AB ) A A i_~s e~ic. 

Proof. (iv) ~ (i): argue as in the vicinity of (2.1.2). 

(i) ~ (ii): if l~m is a split monomorphism, then I*(X m) = (I~X) (r~m) 

is a split epimorphism. By (i), there is an object I with ~I = 1 , hence 

with I* faithful, for which l~m is a split monomorphism. But then, as 

I* preserves epimorphisms, it reflects them, and X m is epic. 

(ii) = (iii): by (ii), x = y and H m = (_)A so Hm(m) = m A is monic. 

(iii) = (iv): let ~ = XAOrl F and ~ = YAOrlf be the global elements 

1 > H A = HA corresponding to x and y via Yoneda. By the definition 
m 

of H = H, Hm(~) = Hm(~) ; then by (iii), ~ = 9 ; so x = y, by an indexed 
m 

Yoneda Lemma. In particular, XA = YA ' and (iv) follows, as the cokernel 
x 

pair ~ H is computed pointwise. 
Y 
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We are now ready to prove (somewhat more than) the rest of Theorem B. 

(3.2) Proposition. For any topos 

(i) • is ~. 

(ii) Every indexed cotriple o_nn 

(iii) For every indexed co tri~le 

~reserves monomorphisms. 

, the following are equivalent. 

i__ss duall X al~ebraic. 

= (G, c, 6) on E, the functor 

Proof. (i) = (ii) is ~ma (2.3). 

(ii) =(iii): every monomorphism in ]E is the equalizer of its own 

(eoreflexive) cokernel pair. Hence any endofunctor on • preserving equal- 

izers of coreflexive pairs preserves monomorphisms. Now apply (2.2). 

(iii) = (i): to prove that an object A of ~ is internally injective 

as an object of ]E oA' it suffices~ by the considerations of (2.1), to show 

that each monomorphism m: A > ~ B in ]E becomes locally split when pulled 

back into ]EI~A; and for this, in turn, it is enough to prove that (A×A)*m 
i 

is locally a split monomorphism in ]EIA×A . To this end, let H = H m be the 

indexed endofunctor on ]E contemplated in (3.1(iii)). As we shall see in a 

moment~ the endofunctor G given by GX = X × X x hO( is an indexed cotriple 

on ]E ~ so that, by (iii)~ Gm= mXmXHm is monic. [Were H itself an 

indexed cotriple~ Hm would be monic and, by (3.1)~ m would be locally 

split; but this is~ in general, too much to hope for.] Now~ because 

mXmXHm 
AXAxHA > > BXBXH~ 

A x A x ~ . X ~  / m x m x ~  
A X A X ~  

is monic in ]~ , whence (A × A)* (Hm) commutes, AXAXHm is monic in 

]E AXA" Using^the indexedness of H~ however, it is easy to verify that 

(AXA)*(Hm) = H~XA((AXA)*m) ~ and an application of (3.1) in • AxA shows 

(AXA)*m is locally split~ as required. 

It remains only to indicate how G is an indexed cotriple. Given any 

object X of ]E, freely adjoin a (global) zero element by forming X+ 1 ; 

writing o: 1----> X+I for the injection~ endow X+I with the trivial 

(constantly zero) semigroup multiplication (X+l) 2 > 1 o > X+I . Next, 

adjoining another (global) "unit" element~ convert the semigroup X + 1 into 

the monoid X+2 = (X+I) +i it freely generates. It is clear that this 

procedure is perfectly functorial, so that m: A > > B induces a monic map 

of monoids m+2 : A+2 > > B+2 . Notice that, whatever the map of monoids 

w: M' ----> M, the induced functors (_)M and (_)M' are indexed cotriples, 

and (_)~J: (_)M > (_)M' is a map of indexed cotriples. In particular, 
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(_)m+2:(=)B+2 ~ (_)A+2 is such. To obtain the cotriple ~, we use: 

(3-3) Lemma. The forgetful flmctor ~otrip(~) --->@nd(E) , from the 

cate@ory of indexed cotriples o__nn ~ t__oo the category of indexed endofunctors 

on • , creates colimits. 

Proof. For any monoidal category I#, the forgetful functor from the 

category ~on(~#) of monoids in ~ to ~ itself creates limits. So take 

9/ = @nd(]E) °p , note that ~on(~) = (~otrip(]E)) °p , and dualize for the lemma. 

For $ , now, take the cokernel pair indicated below: 

(_)B+ 2 (_)m+ ~ )i+2 
;(- G. 

Y 
By the lemma, G "is" an indexed cotriple ~ ; on the other hand, concluding 

the proof, we have, for every X, a commutative diagram 

~+2 X m+2 x ' > - "  

x x x × x  x × x x x  m > XxxxxA XXXX___ x XxxxHx . 

X X X X y  x 

Finally, we settle the necessity of the condition in Theorem A. 

(3.4) Lemma. If every cotriple on the tol~os ' • is dually al6ebraic , 

then ever~f nonzero object X # 0 o__ff ~ has a global section. 

Proof. There is an idempotent cotriple $ on ~ defined by 

GX = ~X, if X has a global section i > X ; 

[o , if not. 

As @ of E appears as the equalizer 

~+inj'l ~ X+I+I 

(3.~.i) 

X + codiag 

of a coreflexive pair, (2.2) assures that the diagram 

is dually algebraic and as each X 

inj. 
X • > X+I 

obtained by applying 

then GX Z X for all 

GX > X+I { X+I+I, 

C to (3.4.1)5 remains an equalizer diagram. 

X, and the lemma holds. 

But 

(3.5) Lemma. A ~LZ to~x)s E in which every nonzero object has a 

global section is coZHD. 

Proof. If I*X is injective in Eli and y: I > I is a global 

section, then X ~ V*I*X is injective in (E i) ¥ ~ ~ . 
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(3.6) Corollary (Theorem A -- necessity), l_~f every cotri~le o_~n 

dually algebraic, then ~ is coZHD. 

Proof. Apply Lemma (3.5) to Theorem B and Lemma (3.4)• 

is 
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