INJECTIVES IN TOPOI, I:

REPRESENTING COALGEBRAS AS ALGEBRAS

F.E.J. Linton (Wesleyan U.) and R. Paré (Dalhousie U.)

Call a cotriple & on a topos E with subobject classifier O dually

algebraic if the composite (E.)°F E°P E is tripleable, V
(1] op (=) [+
(Vq;) n\v-

being the IE-valued "underlying" functor on the G-coalgebras (cf. [ZTB]).
During what has come to be known as the Lawvere-Tierney topos year 1969-70 at
Dalhousie, J.R. Isbell raised the question whether all cotriples on the topos
of sets are dually algebraic (see [IGF], p.588, £.4*). By April, 1970, we
had a composite tripleableness lemma ([LDC}, Th. 2; see [MAT], Exer. 3.1.17,
for a more polished version) informing us that they are ([LDC], Cor. 5).

In this lemma, as against the earlier ones of Barr and Beck, the crucial
ingredient is a requirement (ZHD) on the middle category, roughly, that prac-
tically all objects be projective. 1In 1973, consequently, when it was clear
that O(-) : EP —> E is always tripleable ([PCT], p. 558), the same lemma
automatically revealed, for any topos I, that all cotriples on E must be
dually algebraic -- provided (coZHD) each nonzero object of E is injective.

Here we give the latest full proof of that lemma. Moreover, for those
content merely to know all indexed cotriples (‘a la [RAF]) on E are dually
algebraic, we weaken the seemingly overrestrictive coZHD proviso: it suffices
that each object X of E be internally injective over its own support oX,

i.e., as an object of E It suffices =~ but it is also necessary; and,

oX *
as a corollary, we establish that the coZHD proviso, sufficient for all co-

triples on E to be dually algebraic, is likewise necessary as well. Thus:

Theorem A. Necessary and sufficient for all cotriples on the topos E

to be dually algebraic is that each nonzero object X#0 of E be injective.

Theorem B. Necessary and sufficient for all indexed cotriples on E 1o

be dually algebraic is that each object X of E be internally injective in
the open subtopos E oX ’ where oX is the support of X.
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at times, by the Izaak Walton Killam Trust, Dalhousie U., Wesleyan U., MCGill
U., the National Research Council of Canada (grant # A-8141), and the U.S.
National Science Foundation (MCS 76-10615): we gratefully thank them all.
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1. The ZHD-Temma and Theorem A (sufficiencx Rroof) . The ZHD-Iemma be-
low, of which the sufficiency assertion in Theorem A is a direct consequence,
makes use of the following definitions.

(1.1) Definitions. (i) An object Q of a category £ 1is an artificial
terminal object ("Q is AT") if @ is terminal in B and every /A-morphism

with domain Q is an isomorphism ("AT" is "isolated" in [MAT}, Exer. 3.1.10).

(ii) The category & is ZHD (think "zero homological dimension") if all
objects, save perhaps those that are AT, act projective when tested against

coequalizers; if 8% s ZHD, we say 2 is coZHD.

[It is clear that a topos is ZHD if and only if it satisfies the axiom
of choice (AC). H.-M. Meyer has observed (see Satz 6.4 in [MDT])
that a topos is well-pointed if and only if it is coZHD and Boolean. Sets,
pointed sets, modules over a semisimple ring, and their full subcategories,

all constitute examples of categories that are both ZHD and coZHD.]

(1.2) ZHD-lemma. Let &, B, and C be categories, with & triple-
able over 5B via V:C —> B, and 5 triplesble over ¢ via U: B8 —>4.

Assume 2 is ZHD. Then C is tripleable over & wvia the composite

Uev:e Y5 —Us g,

Proof. UoV reflects isomorphisms because U and V do. By the
absolute version ([PAC], Th. 7.3) of Beck's tripleableness theorem, we need
only show that € has and UeV preserves coequalizers of (UeV)-absolute
pairs. If

(1.2.1) DX:>>w (in C)
(1.2.2) UVDijVW—R%P (in @)

depict such a pair and accompanying absolute coequalizer data, find a map q

in A3, with Ug £ p, coequalizing the U-absolute pair (Vx, Vy):
(1.2.3) VD=2 W -2>q (in B).

Where T is (the functor component of) the triple associated with the

tripleable functor V, the lemma below will assure that both T and ToT
preserve the coequalizer diagram (1.2.3). It follows (see [ICA], Prop. 3)
that @ will have a map r coequalizing (1.2.1) and satisfying Vr = q;

it

the inference UVr = p then being immediate, the proof will be complete.

(1.3) Lemma. Let T = (T,TN,u) be a triple on the ZHD category &,
and let U: @ —> @ be a functor reflecting coequalizers of U-absolute
pairs and having a left adjoint F: & —> @, with counit €: FU —> id@'
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Then not only is every diagram

(1.3.1) EZRX—>Q (in 7)

whose transform under U is an absolute coequalizer disgram in & already

a coequalizer diagram in £, but $0 are its transforms under T and TeT.

Proof. We distinguish two cases, according as Q is or is not AT. If
Q 1is AT, merely apply the following observation to T, TeT, and (1.3.1):
If D: #—>08 is any diasgram with AT colimit @, then any functor S:

B —> 3 admitting a natural transformation A: id 5 —> S satisfies 5Q =Q

and preserves the colimit of D. Indeed, A is an isomorphism; moreover,

Q
for any cone SeD oee®» B, the cone D ece» B induced by composition with A

factors uniquely through Q, whence B £ Q and $Q £ colim(SeD) .

If instead Q 1is not AT, neither is X or E, and all three are pro-
Jjective; it will then turn out that (1.3.1) is an absolute coequalizer dia-
gram, which amply fulfills our requirement. Writing G = FU, consider the
beginnings of a G-resolution of (1.3.1):

GGE T—2 GGX —> GGQ
GeE‘lLleGE Gexllecx GteleGQ

(1.3.2) GE —/= GX —> GQ

eEl exl te
ET—_—3Z3X—>Q .

Using the unit of adjunction id , —> UF, note that U transforms each

a
column of (1.3.2) into a split coequalizer diasgram in & (compare the dis-
cussion around display formula (5) in (MCL], Ch. VI, §7). As each column is

then a coequalizer diagram with projective coequalizer, it follows that

(1.3.3) the maps and €. are split epimorphisms.

€ps Ey Q
Moreover, as the transform of (1.3.1) under U is absolute, we know that
(L.3.4) G transforms (1.3.1) into an absolute coequalizer diagram.

The following observation, used again in §2, now concludes the proof:

(1.4) ABS~Lemma. Let G be any endofunctor on a category 2, and

€: G —> id/.? any natural transformation. Then (1.3.1) is an absolute

coequalizer diagram if conditions (1.3.3) and (1.3.4) hold.

Proof. Referring to (1.3.2), the upper two rows are obviously absolute

coequalizer diagrams by (1.3.4). But the columns are absolute coequalizer
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diagrams, too -- indeed, they are split: writing B for any one of E, X,

or Q, and choosing a section s: B —> GB for €g (available by (1.3.3)),

we have a split coequalizer diagram
Ge €
B
GGB e::g 6B —=——> B,
W NS

Gs
as is verified by recording the section equation, €pes = idB , and applying
G to obtain GeB°Gs = ldGB;
instances of the naturality of e€:

the remaining two splitting equations are but
eGBoGs = segg and eB°GeB = eBoeGB .
Applying any functor to (1.3.2), therefore, we obtain a similar 3 X3 diagram
in which all columns and the upper two rows are coequalizers. But then the
3X3 lemma (= Noether Isomorphism Theorem -- the specisl case of the Fubini
Theorem (cf. [MCL], p. 227) asserting that coequalizers commute with coequal-

izers) assures that the bottom row is a coequalizer, too, whence the lemma.

(1.5) Corollary (Theorem A -~ sufficiency). If the topos E is coZHD,
then every cotriple ¢ on E is dually algebraic.

Proof. It is obvious that (Vy)%P: (By)®® —> E°F is tripleable, and
it is known ([BCT], §2, Th'm) that Q(—): E®? —> E is tripleable, too.
Now just apply the ZHD-Lemma (1.2).

(1.6) Corollary ([IDC]). Every category cotripleable over the category

Proof. By (1.5), cotriples on the coZHD topos 8 are dually algebraic.

2. Internal injectives and Theorem B (sufficiencx Eroof) . Properly to
understand the basic facts concerning internal injectives, it helps to bear

in mind, by way of comparison, that an object X of a topos E is injective

(in the usual sense, that every extension problem

A>S> B

(2.1.1) Q\

X

with m a monomorphism has a solution §: B —> X extending ¢ along m,
i.e., satisfying $%om =¢) if and only if the functor X(->: ? —> E
converts monomorphisms m: A >>B (in E) to split epimorphisms

K™ XB —> X‘A . In fact, because 0 and its powers are injective in any
topos, X is injective iff the singleton map {-}X: X —> 0" has a retrac-
tion; but for each such retraction p: QX —> X , the composition

X)A—- X XA XXB ~ (QX)B

=N —— ()

@
Iy x m

—_
oB

(['}X)A
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is easily seen to be a section for Xm when m: A >—> B 1is monic; con~
versely, if Xm has a section, passage to global elements shows that each

extension problem (2.1.1) has a solution.

We say an object X of the topos E 1is internally injective if the

functor X(_): ]Eop —> E merely preserves (that is, converts monomorphisms

in E to) epimorphisms. Observe that the (reversible) "deductions"

"B —> 1% (in E|)
1= T —> () 7B 2 %(xB)  (in ]E.I)

— B .
2111—1—-—>x (in E)

set up a 1l-to-1 correspondence between maps $:I*B —> I*X in ]EtI extend-
ing (as we shall say) ® along m over I (that is, solving the transform

under I* of the extension problem (2.1.1)) and maps ¢: I —> © rendering

I—>1

(2.1.2) $l l"*”
KR

commutative. When X° is epic, there are, given ¢:A —> X, diagrams

(2.1.2) with I —b 1 epic (take (2.1.2) to be a pullback, for example); so
(2.1.1) has solutions locally (that is, over some I with support oI = 1)
when Xm is eplc. 1In particular, when X is internally injective, X T
is epic, and the singleton map {']x becomes a split monomorphism in E.I 5
for some I with oI =1. But for such I, I*X is then injective in

E 17
that, for such X and all maps m wmonic in E , each X" is a locally split

¥
i.e., X is locally injective; and it follows, since I*(Xm) = % m’

epimorphism. Thus internal injectives and local injectives coincide, and all
the maps X , for monic maps m, are epic for X internally injective be-

cause they are locally split -~ indeed, they all split in any E I in which

*X is injective. To sum up:

(2.1.3) injectives are internally injective;

(2.1.4) internal injectives are injective locally, and conversely.
It then follows easily that

(2.1.5) an object X for which I*X is internally injective qua object of
IEII, for some I with oI = 1, is internally injective in I ;

and, as each J* preserves injectives (because ZJ preserves monomorphisms),

(2.1.6) J*X is internally injective if X is, for all J in E.
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The proof of Theorem B uses the following amusing characterization of
dually algebraic cotriples on topoi.

(2.2) Proposition. A cotriple & = (G, €, 8) on a topos E is dually
algebraic if and only if the functor G preserves equalizers of coreflexive

pairs.

Proof. We adopt the terminology of -~ and assume known the results in
-- %2 of [PCT]. If G preserves such equalizers, GeG does too, whence (by
the dual of Prop. 3 of [ICAl) Eg has them and VG preserves them. It fol-
lows that (VG)OP: (]EG)OP —> EP satisfies the hypotheses of the RIT (cf.
[PCT]). But so does the functor Q(-): E°® —> E, hence so does their com-

posite. 8o, applying the RIT, & is dually algebraic.

Conversely, if & is dually algebraic, then, because reflexive pairs in
EP are Q(-)—split (ef. [PCT] again), the tripleable composite ('2(_)"(\/(1})C>p
is RIT by Beck's theorem; in particular, it preserves coequalizers of reflex-
ive pairs. But Q(-) reflects such-coequalizers, so (VG)OP preserves them,

t

i.e., VG preserves equalizers of coreflexive pairs. But so does V. 's

[
right adjoint, whose composition with VG is G, after all; then so does G.

The proof of the sufficiency clause in Theorem B is now at hand. It is

convenient to say a topos is oLZ if it satisfies the condition of Theorem B.

(2.3) Lemma (Theorem B -- sufficiency). Every indexed cotriple & =

(G, €, 8) on a glZ topos is dually algebraic.

Proof. Let & be an indexed cotriple on the ¢lZ topos IE. By (2.2)

it suffices to prove G preserves equalizers of coreflexive pairs. So let
(=) X > X, B X
be such an equalizer in E . There are four principal steps to take.

Step I. We find an object I having same support ol = chl as Xl for
which I* carries (-=) to an absolute equalizer diagram I*(~=) in IE.I .
To do so, we apply (2.1.4) in each topos ]Ehcxi and choose, for each i =

1, 2, 3, an object Ii having support cI:.L = cXi , Tfor which Ii*‘Xi is
injective in IE 1. ° Writing I = IlX 12 X I5 » it is clear that oI = OXl
and (from the liné before (2.1.6)) that T*X, 1is injective in IE.I , for
each 1. Hence, writing n; ¢ Xi —> ) +) for (the exponential transposes
of) the evaluation maps (which are monic because  is an internal cogener-
ator), the monomorphisms I*(ni) are split in E|, for each i. Thus, ve
have at least verified the counterpart of condition (1.3.3) for an eventual

application of the dual of the ABS-lemma (1.4) within E to 02 and to

T
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Q(')

the evaluation m: id —> () there. For the counterpart of (1.3.4), note

that, being a logical functor, I*:E -—elElI satisfies I*(Q(_t’)) = Ql*(_m>.
(=)

is an absolute coequalizer diagram in E

Then, since Q0

is an absolute coequalizer disgram in E , it follows that
AT =)

e
’I , whence QO is an
absolute equalizer diagram there, which is (1.3.4). By (1.4), then, I*(—=)

is an absolute equalizer diagram in IE\I , as desired.

Step II. Capitalizing on the hypothesis that & 1is indexed, we show that
I¥ carries G(—=), the transform of (—==) under G, to an equalizer diagram
in ]E‘I . Recall (from [P&S] or [RAF]) that, to be E-indexed, a cotriple &

on E must, for a1l I in E, be so accompanied by cotriples &. on E

I I
(Gl being & ) that, regardless what the map j: J —> I, each diagram
G1
IEII —_ IE~I
|
(D(3)) j*l 13*
E‘J G, g EQJ

commutes to within a specified equivalence modulo which j¥* carries counit
to counit and comultiplication to comultiplication. In particular, from the
commtativity of (D(I—>1)), we see that I*(G(~=)) = GI(I*(—':)); hence,
recalling Step I, I*(G(—=)) is an (absolute!) equalizer diagram in IE.I .

Step III. Since the unique map I —>ol = ch is epic, pulling back along
it gives a functor Elcx —> E|, that, being a faithful right adjoint,
reflects equalizers. In particular, (ch)*(G(—':)) is an equalizer diagram

in ]E‘ (because I¥(G(~=)) is, in ]E‘ , by Step II).
ch I

Step IV. We finally show G(—~=) is an equalizer disgram in IE . Suppose

f: Y —>GX, is a map equalizing the pair GX, = Gx3 . It follows that
the composition Y —> GXE —> )(2 of f with the counit E:X equalizes
2
the pair X, —3 X, , hence that there is a map h: Y —> X, making the box
7y L GX,,
n| lexz
Xl ———>X2

commute. But then oY CoX,, and as f factors uniquely through G(Xl-*Xz)
over oXl , by Step III, it must do so in E as well, which ends the proof.

3. [The necessity arguments. That the condition in Theorem A is neces-
sary will follow from the necessity of the condition in Theorem B. For the

latter, however, we need a suitable criterion for a map m: A—>B in a
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topos IE to be locally a split monomorphism; that criterion will center on

the following construction. Given the map m, form all the cokernel pairs
m X
B X X
i S == 5,0 (= HX)
X

of the maps X" (X in E). Letting Hm (=H): E—> T Dbe the unique
functor with these values for which the families x = {XX}X and y = {yX}X
are natural transformations (—)A —> H, it is clear that x and y make
H the cokernel pair of (-)m in the category of endofunctors on E. In
fact, as pulling back preserves colimits and as (-)™ is an indexed natural
transformation, Hm inherits an indexed structure by which it serves (still
via x and y) as cokernel pair for (-)" in the category &nd(IE) of
indexed endofunctors on IE . [Motivation: the Yoneda Lemma provides a sense
in which (-)A is the indexed endofunctor on IE presented by a single free
generator =- idA -- in the value at A; in the same sense, Hm is the
indexed endofunctor presented by two generators in Hm(A) -- the Yoneda cor-
respondents ¥ and § of x and y =-- subject to the defining relation
{Hm(m)}(i'c) = {Hm(m)}(fi) in Hm(B) . Thus H_ is the generic indexed endo-

functor hoping to convert the map m to a non-monomorphism. ]

(3.1) Lemma. The following conditions on a monomorphism m: A >—> B
in a topos E are equivalent.

(1) m 1is locally split.

(ii) For each object X, the map X% — & is epic.

AN B A _X

(1i1) Where (-)" —> (-)

H, 1is the cokernel pair in the cate~
gory &énd(E) (of indexed endofunctors on E) of )", the transition
map H (m): HA —> HB 1is monic.

(iv) The map A™: A® —> A% is epic.

Proof. (iv) = (i): argue as in the vicinity of (2.1.2).

G;: (ii): if I*m is a split monomorphism, then (™) = (I*X)(I*m)
is a split epimorphism. By (i), there is an object I with oI = 1, hence
with I* faithful, for which T m is a split monomorphism. But then, as
* preserves epimorphisms, it reflects them, and Xm is epic.

(ii) = (iii): by (ii), x =y and H = (—)A; s0 Hm(m) = w* is monic.

(iii) =» (iv): let x=x,M,"Y and y =y,° rlA-' be the global elements

y
A TA A
1l —> HmA = HA corresponding to x and y via Yoneda. By the definition

of H =H, Hn(%) = Hm(¥) ; then by (iii), % =F%; so x =y, by an indexed

Yoneda Lemma. In particular, X,

=V and (iv) follows, as the cokernel
X
pair =X H is computed pointwise.

¥
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We are now ready to prove (somewhat more than) the rest of Theorem B.
(3.2) Proposition. For any topos E, the following are equivalent.
(i) B is olZ.

(ii) Every indexed cotriple on IE is dually algebraic.

(iii) For every indexed cotriple & = (G, €, ) on T, the functor

G preserves monomorphisms.

Proof. (i) = (ii) 1is Lemma (2.3).

(ii) = (iii): every monomorphism in E is the equalizer of its own
(coreflexive) cokernel pair. Hence any endofunctor on E preserving equal-
izers of coreflexive pairs preserves monomorphisms. Now apply (2.2).

(iii) =» (i): to prove that an object A of E is internally injective
as an object of E\cA , it suffices, by the considerations of (2.1), to show
that each monomorphism m: A >—> B in E Dbecomes locally split when pulled
back into ]E‘UA; and for this, in turn, it is enough to prove that (AXA)*m

is locally a split monomorphism in E To this end, let H = Hm be the

indexed endofunctor on IE contemplatlgxgn (3.1(iii)). As we shall see in a
moment, the endofunctor G given by GX = XXXXHX 1is an indexed cotriple
on E, so that, by (iii), Gm = mXmXHm is monic. [Were H itself an
indexed cotriple, Hm would be monic and, by (3.1), m would be locally
split; but this is, in general, too much to hope for.] Now, because

AXAXHA >DXBXHN o oy by mp

AxAme\ /:rLmeI-IB
AXAXHB

commites, AXAXHm is monic in E, whence (AXAY(Hn) is monic in

E|pxa * ne
(AXAY* (Hn) = HA ((AXAYm) , and an application of (3.1) in E\AXA shows

(AXAYm is locally split, as required.

Using the indexedness of H, however, it is easy to verify that

It remains only to indicate how G is an indexed cotriple. Given any
object X of E, freely adjoin a (global) zero element by forming X+1;
writing o: 1 —> X+1 for the injection, endow X+1 with the trivial
(constantly zero) semigroup multiplication (X+ 1)2 —> 12> ¥X+1. Next,
adjoining another (global) "unit" element, convert the semigroup X+1 into
the monoid X+2 = (X+1)+1 it freely generates. It is clear that this
procedure is perfectly functorial, so that m: A >—> B induces a monic map
of monoids m+2: A+2 >>B+2. Notice that, whatever the map of monoids
w: M' —> M, the induced functors (-)M and (-)M' are indexed cotriples,
and (-)w: (-)M —> (-)M' is a map of indexed cotriples. In particular,
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+ + +
(-)m Z, (-)B 2 (-)A 2 is such. To obtain the cotriple &, we use:

(3.3) lemma. The forgetful functor Cotrip(E) —> 4nd(E) , from the

category of indexed cotriples on IE to the category of indexed endofunctors

on E, creates colimits.

Proof. For any monoidal category 7, the forgetful functor from the
category %on(¥) of moncids in ¥ to ¥ itself creates limits. So take
v = 8nd(]E)Op , note that 7%on(V¥) = (COtrip(]E))Op , and dualize for the lemma.

For @, now, take the cokernel pair indicated below:

m+2 '
B+2 - A+2 X
(=) L) s (=) 26
¥
By the lemma, G "is" an indexed cotriple & ; on the other hand, concluding

the proof, we have, for every X, a commutative diagram

m+2 t
xo+e X s e - > X

e

X XXX Xx
XXXXXB—K—M——)XXXXXA_—EE ;XXXXHX .
XXX Xyx

Finally, we settle the necessity of the condition in Theorem A.

(3.4) Jemma. If every cotriple on the topos E is dually algebraic,
then every nonzero object X 7‘ O of E has a global section.

Proof. There is an idempotent cotriple & on E defined by

X, if X has a global section 1 —>X;
GX =

/ 0, if not.

As & is dually slgebraic and as each X of E appears as the equalizer
nj X+in,j.l

X — syl X+1+1
(3.4.1) X+inj.o
X + codiag

of a coreflexive pair, (2.2) assures that the diagram
GX —> X+1 = X+1+1,

obtained by applying G to (5.&.1), remains an equalizer diagram. But
then GX = X for all X, and the lemma holds.

(3.5) Lemma. A olZ topos E in which every nonzero object has a
global section is coZHD.

Proof. If I*X is injective in ]Eh and y: 1 —> 1 is a global
section, then X = y*I*X is injective in (]E.I) ’Y ZE.
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(3.6) Ccorollary (Theorem A -- necessity). If every cotriple on E is
dually algebraic, then E 1is coZHD.

Proof. Apply Lemma (3.5) to Theorem B and Lemma (3.4).
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