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Abstract

Partial difference operators for a large class of functors between presheaf categories are introduced, extend-
ing our previous work on the difference operator to the multivariable case. These combine into the Jacobian
profunctor which provides the setting for a lax chain rule. We introduce a functorial version of multivari-
able Newton series whose aim is to recover a functor from its iterated differences. Not all functors are
recovered but we get a best approximation in the form of a left adjoint, and the induced comonad is
idempotent. Its fixed points are what we call soft analytic functors, a generalization of the well studied
multivariable analytic functors.

Keywords: Tense functor, profunctor, finite difference, presheaf category, symmetric sequence, analytic functor, lax chain
rule, soft analytic, Newton series

In memory of Phil Scott, 1947-2023
Philip Scott

I knew Phil for most of his career, from when he was a post-doctoral fellow at McGill in 1977, a
colleague the following year at Dalhousie, and a friend ever since. His knowledge of the literature
in category theory, logic and computer science was phenomenal. He travelled a lot and spoke to
many people. This way, he kept up to date on the latest developments and each time he visited
Halifax, he had some new topic he thought I should look at. This was good advice which I wish
I had been more diligent following up. We’ve lost a great ambassador for our subject as well as a
friend. I dedicate this work to him.

Introduction

This is a sequel to (Paré, 2024). Here we are interested in the structure of functors Set* — Set®
(A and B small categories) generalizing the difference calculus for endofunctors of Set. An impor-
tant example is given by the generalized analytic functors of Fiore et al. (2008). As in that work,
profunctors are central. That is perhaps the main difference the present work has with (Paré, 2024).
This is somewhat of a simplification like saying that multivariate calculus is just single variable
calculus plus linear algebra. The added dimensions open up a whole array of possibilities.

The work here is a categorified version of the classical partial difference operators for real
functions

R —R"™,

a discrete version of partial derivatives. The analogy is quite fruitful.

As the paper is quite long, it may be helpful to point out the main results, namely the lax
chain rule (Theorem 4.2) and the Newton adjunction (Theorem 5.1) together with the convergence
© Cambridge University Press 2019
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2 Multivariate functorial difference

theorem (Theorem 5.2). These results are proper to the categorical setting and have no counterpart
for real-valued functions. They could not be formulated without the pivotal definitions of the
(discrete) Jacobian as a profunctor (Definition 4.1) and soft analytic functor (Definition 5.2).

Apart from the obvious (Fiore et al., 2008) and the references therein, the present work was
strongly influenced by the work of the Calgary-Ottawa-Montreal consortium on tangent cate-
gories and cartesian differential categories. Several talks in the ATCAT seminar by regulars Geoff
Cruttwell and Marcello Lanfranchi as well as guest speakers, notably Robin Cockett and JS
Lemay, helped form my ideas on the categorical theory of differentials. After completion of this
work, the paper “Cartesian difference categories” by Alvarez-Picallo and Pacaud Lemay (2021)
came to my attention. This is clearly relevant as it deals with the categorical understanding of
finite difference. What is less clear is precisely how they are related. Further work in this direction
should prove fruitful.

Thanks to Nathanael Arkor, Andreas Blass, John Bourke, Aaron Fairbanks, Marcelo Fiore,
Richard Garner, Theo Johnson-Freyd, Tom Leinster, Matias Menni, Deni Salja, and Peter Selinger
for their insightful comments and interest. A special thanks to Peter Selinger for helping me
prepare the final version in the MSC style.

1. Profunctors

Profunctors (a.k.a. bimodules, modules, distributors) will be at the heart of this work. Widely
viewed as categorified relations, for our purposes they are better viewed as categorified matrices.
They correspond to cocontinuous functors between functor categories. Such functors are consid-
ered to be linear. This section contains nothing new (except perhaps Definition 1.2 and Proposition
1.2). It is included for completeness and to set notation.

1.1 Definitions

We have opted, not without thought, for the following definition which is the opposite of the
majority view.

Definition 1.1. (Lawvere, Bénabou) Let A and B be small categories. A profunctor P: A —e> B
is a functor P: A% x B—sSet. A morphism of profunctorst: P—s Q is a natural transformation.

This gives the basic data for a bicategory, ZZof, of profunctors. Composition is given by
“matrix multiplication” which takes the form of a coend. For P: A —e> Band Q: B —> C,
the composite Q ® P is defined by

BcB
Q@ P(A,C) = 0(B,C) x P(A, B).

The identity Idy : A —e> A is the hom functor
Ida(A,A") =A(AA).

The reader is referred to the standard texts (see e.g. Borceaux (1994b)) for a proof that we do
get a bicategory.

For explicit computations involving profunctors, the following notation is useful. An element
x € P(A, B) is denoted by a pointed arrow, sometimes called a heteromorphism, x: A —e> B,
orx: A HP—>B if it’s necessary to keep track of the profunctor. The functoriality of P manifests
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itself as a composition
f / \\ 8
xf 8x
A B
which is associative (left, right, and middle) and unitary.
It is in dealing with composition that this is most useful. An element of Q ® P(A,C) is an

equivalence class of pairs
[A—3>B—+>Clp
P Q
where the equivalence relation is generated by identifying [A J—>8Hy—>C] and

[A HX/—>BHy—>C] if we have

<

A - B - C,

X/ yl

so they are equivalent iff there exists a path of pairs

<

A—s B

g

A - B] * C

Y2

A—% =B C *)

I

A . B - C.
X y

We write the equivalence class [A —s— B s Clp as
y®px orsimply y®x.
The equivalence relation is generated by
YoRx=yRbx.
Every functor F: A— B induces two profunctors
F.:A —= B F':B —e= A

and
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F.(A,B)=B(FA,B)  F*(B,A)=B(B, FA).
F* is right adjoint to F, in Zof.

1.2 Biclosedness

The bicategory Z7rof is biclosed, that is ® admits right adjoints in each variable giving two hom
profunctors @ and © characterized by natural bijections

P—QOScR
Q®BP—>R
QO—=RQAP

for profunctors

We use Lambek’s notation for the internal homs. Inasmuch as & is a product, the right adjoints
are quotients of a sort.
An element of (Q O¢ R)(A, B) is a C-natural transformation

t: Q(B, —)—R(A, —)
and an element of (R @A P)(B, C) is an A-natural transformation

u: P(—,B)—R(—,C).

1.3 Cocontinuous functors

Our interest is in functors between functor categories and a profunctor will produce an adjoint pair
of them. A profunctor : 1 —e> A is a functor

1°7 x A —Set

which we identify with a functor @: A —Set. A profunctor P: A —e> B will then produce, by
composition, a functor

P®a (): Set* —Set®
with a right adjoint
Pop (): Set® —Set? .

It follows that P ®4 ( ) is cocontinuous and is considered to be the linear functor corresponding
to the matrix P.
As is well-known, we have:

Proposition 1.1. The following categories are equivalent:

(1) Profunctors A —e= B
(2) Cocontinuous functors Set* — Set®
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(3) Adjoint pairs SetA ~ 1~ Set®
<Lt

Given a cocontinuous functor F : Set® — Set®, the corresponding profunctor P: A —e> B
is given by

P(A,B)=F(A(A,-))(B).

Note that this doesn’t use cocontinuity of F, which leads to the following.

Definition 1.2. The core of a functor F : Set® — Set® is the profunctor defined by
Cor(F)(A,B)=F(A(A, —))(B).
The functor
Cor(F) ® ( ): Set* — Set®
is the “linear core” of F.

Proposition 1.2. Cor is right adjoint to the functor Prof (A, B) — %at(Set*, Set®) which takes
a profunctor P to the (cocontinuous) functor P @4 ().

Proof. A profunctor P: A —e= B can be viewed, by exponential adjointness, as a functor
A°? — Set®. Then Cor is just restriction along the Yoneda embedding
F:Set* —Set® +— A%? Y- Set Lo Set®

and P ®4 () is left Kan extension

AP — T Geth

\ Aﬂyf) PQ@

Set?
O

Thus for F: Set® —Set®, Cor(F) @4 ( ) is the best approximation to F by a cocontinuous
functor. As a matter of interest, the counit of the adjunction

e(F): Cor(F)®( )—F
is given as follows. An element of (Cor(F) @ ®)(B) is an equivalence class

[xePA,y: A—e—=B|s

Cor(F)
A4, —) =, ye F(A(4, —)(B)]
giving
F(AG, —)(B) — 22 p(a)(8)
v FE)(B)(y).

Example 1.1. If A and B are discrete categories, i.e. sets A and B, then a profunctor P: A —e> B
is just a A x B-matrix of sets [P,] and a morphism of profunctors P—= P’ a A x B-matrix of
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functions. The identity Idy is the matrix with 1’s on the diagonal and O elsewhere. If C is another
discrete category and O: B —e> C a profunctor, then Q ®g P is the B x C-matrix

[Z Ope X Pab}

beB :
IfR: A —e= C then

ROAP= [H ng”}

acA

and

0ock=[T1R%|

ceC

A profunctor X: 1 —e= Aisa 1l x A matrix of sets, i.e. a vector [X,] and P ®4 X is the vector

{Zp‘lb XX“L;.

acA
On the other hand forY: 1 —e= B a B-vector PO Y

T,

So P®a () is a “linear” functor, and P Op ( ) a “monomial” functor.

2. Tense functors

In Paré (2024) we developed a difference calculus for taut endofunctors of Set, functors preserving
inverse images. However, the important example of multivariable analytic functors of Fiore et al.
(2008) are not taut. In fact the linear functors P® ( ) are not taut. They don’t even preserve
monos. What we need are functors preserving complemented subobjects and their inverse images.
Of course, in Set, all subobjects are complemented so it would make no difference, so maybe
that’s what taut should be after all. But the word “taut” is pretty well established, so we use
“tense” instead.

2.1 Complemented subobjects

In this section we collect some useful facts about complemented subobjects in functor categories
Set®, most of which are well-known from topos theory. We first list some general topos theory
results which will be useful for us. Proofs can be found in any of the standard topos theory books
(see Borceaux (1994a) for an easily accessible account).

Definition 2.1. A subobject' ¥ >— ® is complemented if there exists another subobject ¥>—= P
for which the induced morphishm ¥ + ¥ — & is invertible.

We will use the hooked arrow ¥ < ® as a reminder that ¥ is complemented,

Recall that every subobject ¥ >— @ has a pseudo-complement - >— &, the largest sub-
object of ® whose intersection with W is 0. It can be calculated as the pullback of the element
false: 1 >— Q along the characteristic morphism of .
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Proposition 2.1. [. A subobject ¥ >— ® is complemented iff its characteristic morphism factors
through 1 + 1

@LQ

AN
\
N N A’ue, false)

1+1

2. Complemented subobjects are closed under composition.

3. Complemented objects are stable under pullback: if ¥ — ® is complemented and
f: @—=, then ~f 1 (¥) = f~1(=¥) and we have isomorphisms

)+ () ——©

g+g’l f

¥+ (-Y) — v,

4. If ¥ — @ is complemented, its complement is =V, so complements are unique when they
exist.

5. Given an inverse image diagram (pullback)

f restricts to

and the resulting square is also a pullback.

Complemented subobjects in functor categories Set® are better behaved than in general
toposes. For example - >— ® is always complemented for any subobject ¥ >— ®.

Proposition 2.2. For Set® we have
(1)¥Y > ® is complemented iff for all f: A—=A’ and x € PA we have

xePA = P(f)(x)e¥(A).
This is equivalent to saying that for all f: A—=A’
YA >——> PA

v of

YA > DA’
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is a pullback diagram. This in turn is equivalent to saying that for all f: A—=A', every
commutative square
A(f,—
A(A,’ _> M A(Aa _)

e

has a unique fill-in making the bottom triangle commute, i.e. ¥ —= ® is orthogonal to every
representable transformation.
(2) For¥ ==&,

“W(A)={acPA| (Vf: A—A")(D(f)(a) ¢ ¥(A)}

and ——\P(A) consists of all elements, x of ®(A) connected to an element x' of ¥ by a zigzag of
elements of ®

A<—A —Ar<— - —A,=—A’

PA<—DPA| —> DAy <— - - - DA, <—PA’

x < X1 . x2<—|"'|—>xn7x/

(3) For any ¥ >—=®, =WV is complemented and its complement is ——Y which is the smallest
complemented subobject of ® containing V.

Thus the class of complemented subobjects consists of all transformations right orthogonal to
the representable transformations A(f, —), suggesting that it may be the .# part of a factorization
system on SetA, which is indeed the case.

For ® in Set?, let ~ be the equivalence relation on the set of all elements of ® generated by
identifying x € ®A with ®f(x) € A’ for all f: A—=A’. Thus x € PA ~ x’ € PA’ if there exists
a zigzag path as in (2) above. The set of equivalence classes is the set of components of P,
Tod = 1113 ., DA, and two elements are equivalent if and only if they are in the same component.

Definition 2.2. A transformation t: ¥ — @ is my-surjective if myt : w7V — myd is surjective.

Thus ¢ is my-surjective iff every element of @ is connected by a zigzag path to an element in
the image of ¢.

Proposition 2.3. (1) ¢, u my-surjective = tu my-surjective.
(2) tu my-surjective =t Ty-surjective.
(3) Every t factors uniquely up to a unique isomorphism as a Ty-surjective followed by a
complemented monomorphism.
(4) The my-surjective transformations are left orthogonal to the complemented monos.

Proof. (1) and (2) are obvious from the definition. For (3), let 7 : ¥ — ® be any transformation.
Let @pA C PA be the set of all x € PA connected to an element in the image of ¢. Py is easily seen
to be a complemented subfunctor of @, and is in fact the union of all of the components of ® that
contain an element in the image of ¢. Then ¢ factors as

[ Y S



Robert Paré 9

and #g is mp-surjective by construction. This is our factorization. The uniqueness part will follow
from (4).
Consider a commutative square in Set*

N} t

(o
r ‘/S
A

F m

where 7 is my-surjective and m is a complemented mono. Any x € PA is connected to some 7(A”)(y)
fory € WA', so s(A)(x) is connected to s(A")t(A") (y) = m(A")r(A")(y). As m is complemented, this
implies that s(A)(x) is in I'(A). This gives the diagonal fill-in 6 : & —T such that m 6 =s and
0 t =r. 0 is unique as m is monic. O

These results tell us that we have a factorization system on Set® with & the class of m-
surjections and .# the class of complemented monos. We call it the Boolean factorization.
Note that the class of my-surjections is not stable under pullback however. Consider morphisms
fit Ap—=A;,i=1,2 in A and consider the pullback

A(Ar, -)

A(fh_)

A(A,, — A(Ag, —) .
(27 )m (0,)

X

Y.(A) consists of pairs of morphisms (g1, g2) such that
Ao _h A
2 81

Ay ——— A
82

commutes, which well may be empty for all A. In that case, taking 7y of the above pullback gives

0
1
showing that A(g;, —) is m-surjective but its pullback is not.

Nevertheless, it will be useful for us in Section 5 where we will be particularly interested in
transformations defined on sums of representables. We record here the following facts for use

later.
A natural transformation

-

-

1
1

t: Z A(CJ’, —)‘> X:A(Al7 —)

jeJ i€l
is determined by a function on the indices ¢t : J —1 and a J-family of functions (f;),

fji Aa(j) ‘>C]’ .
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Write t = Y A(f}, —).
o

Proposition 2.4. Witht, a, f; as above we have

(1) t is a complemented mono if and only if &t is one-to-one and the f; are isomorphims.
(2) t is my-surjective if and only if o is onto.
(3) For a general t given by (o, (fj)) we get its Boolean factorization by factoring o

J—2 >
W
K
and then taking

ZGA(f 77) Z A(lAl‘f_)
Y AC, )" Y A4, ) Y A (A, ).

jeJ kek i€l

It’s implicit in (1), but may be worth mentioning explicitly, that the complemented subobjects
of Y;c; A(A;, —) are the subsums, i.e. of the form Y cx A(Ay, —) for K C I. It is also clear from the
fact that each hom functor A(A;, —) is connected and complemented, so is one of the components
of ¥;c; A(A;, —), and any complemented subfunctor is a union of components.

The following is well-known (see Borceaux (1994a), Example 7.2.4).

Proposition 2.5. Every subobject in Set? is complemented ( Set? is boolean) ifand only if Ais a
groupoid.

We end this subsection with the following, which says that limits and confluent colimits of
complemented subobjects are again complemented.

Proposition 2.6. LerT': 1 —>Set? be a diagram in Set* and Ty =>Ta subdiagram such that
for every I, To(I) < I'(I) is complemented, then

(1) 1@111 Iy— lér‘n I" is a complemented subobject.
If1is confluent we also have that

(2) hﬂ Iy— hHm I" is a complemented subobject.

Proof. (1) Top(I) — I'(I) is complemented iff for every f: A—=A’,
Lo(1)(A) ——T(1)(4)

1"o(l)(f)l LF(I)(f)

To(1)(A") ——T(1)(4")

is a pullback (2.2 (1)). Limits of pullback diagrams are pullbacks, and the result follows.

(2) Recall from Paré (2024) that a category I is confluent if any span can be completed to a
commutative square, and that confluent colimits commute with inverse image diagrams in Set.
This gives (2) immediately. O
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Corollary 2.1. The intersection of an arbitrary family of complemented subobjects in a presheaf
category is again complemented. The same for union.

Proof. Let W; — @ be a family of complemented subobjects. Without loss of generality we can
assume that the total subobject & — @ is contained in it so that the indexing poset I is connected.
Then by the previous proposition

Jim ¥; — Jim &

is a complemented mono. Because I is connected the limit of the constant diagram lim & = &, and
the lim ¥; is NW; < ®. The lattice of complemented subobjects of @ is self-dual which implies
the result for unions. O

Note that this result does not hold in an arbitrary Grothendieck topos.

2.2 Tense functors

As mentioned above, the functors P® ( ): Set® —> SetB arising from profunctors are not gen-
erally taut. In fact they don’t even preserve monos in general. This may not be surprising if we
consider the tensor product of modules but one might have hoped that things would be better in
the simpler Set case.

Example 2.1. For any epimorphism e: A—=A’ in A, the natural transformation
A(e,—): A(A’,—)—=A(A,—) is a monomorphism. If, for a profunctor P: A —e> B,
P®(): Set* —Set® were to preserve monos, we would need that P ® A (e, —) be a mono, but
P®RA(e,—)is

P(ea 7): P(A/a 7)%P(Aa 7) .
So P(e,B): P(A’, B)—= P(A, B) would have to be one-to-one for all B, but that’s hardly always

the case. The simplest example is when A =2 and B = 1. Then P(e, 0) is an arbitrary function in
Set (e is the unique morphism 0 — 1, which is of course epi).

Now, the functors P ® () are “linear functors” and any theory of functorial differences that
doesn’t apply to them is seriously flawed. This leads to the main definition of the section.

Definition 2.3. A functor F: Set® — Set® is rense if it preserves
(1) complemented subobjects, and
(2) inverse images (pullbacks) of complemented subobjects.

A natural transformation is fense if the naturality squares corresponding to complemented
subobjects are pullbacks.

Tense functors are closely related to, though incomparable with, taut functors. For this reason
we chose the word “tense” as an approximate synonym and homonym of “taut”.

Any functor preserving binary coproducts is tense, in particular P ® ( ), which preserves all
colimits, is tense. So Example 2.1 shows that tense does not imply taut. On the other hand the
functor

Set —= Set?

A— (A—1)
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is taut (a right adjoint, so preserves all limits) but not tense: any proper subset A C B gives a
non-complemented subobject

A

1

The following is obvious but worth stating explicitly.

>

—_—<=

Proposition 2.7. Identities are tense and compositions of tense functors are tense. Horizontal and

vertical composition of tense natural transformations are again tense, giving a sub-2-category
Tense of the 2-category 6at of categories.

Proposition 2.8. For any functor F : Set® — Set® we have

(1) If Set? is Boolean then tense implies taut
(2) If Set® is Boolean then taut implies tense

(3) If F is taut then it is tense if and only if F applied to the first injection j: 1 —1+1 is
complemented.

Proof. (1) and (2) are obvious as is the “only if” part of (3), so assume F is taut and F(j) com-

plemented. If ¥ — ® is complemented, its characteristic morphism factors through 1 + 1 >—=Q
giving a pullback

¥

1

F of which is also a pullback, so F(¥) —— F(®) is complemented.

= |
+<—®

1+1,

]

Evaluation functors preserve tenseness but, contrary to tautness, they don’t jointly create it.
However if we consider “evaluating at a morphism” they do.

Proposition 2.9. A functor F . Set® —> Set® is rense if and only if

(1) for every Bin B, evgF : Set® —= Set is tense, and
(2) for every g: B—=B', ev,F : evgF —>evg F is a tense transformation.

Furthermore, a natural transformation t : F — G is tense if and only if evpt is tense for every
B.

Proof. evg: Set® — Set preserves coproducts so is tense and thus evgF will be tense if F is. To
say that ev,: evg —>evp is tense is to say that for every complemented subobject ¥ —— @ we
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have a pullback

YR —- ®B

Yg dg
YR - OF

which Proposition 2.2 (1) says is indeed the case. So ev,F’ will be tense when F is.

In fact, this says that being complemented is equivalent to every g giving a pullback as above.
So our condition (2) implies that F preserves complemented subobjects. And the evaluation
functors evp jointly create pullbacks. So (1) and (2) together imply that F is tense.

The second part is clear as the functors evp jointly create pullbacks and tenseness of natural
transformations is a purely pullback condition. O

Corollary 2.2. The following are equivalent.

(1) F: Set® —Set® is tense.
(2)(a) For every complemented subobject ¥ < ® and every morphism g: B—=B’,

F(¥)(B) — F(®)(B)

F(¥)(B') — F(®)(B)

is a pullback diagram, and
(b) For every pullback diagram of complemented subobjects

\P/(—>q)/

|
| LG, ))

and every B in B,

F(¥)(B) — F(®)(B)

F(¥)(B) — F(®)(B)

is a pullback.
(3) For every pullback diagram of complemented subobjects

\P/(—>q)/

|
B
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and every g: B—=B/,
F(¥')(B) — F(®')(B)

|

F(¥)(B)) —= F(®)(B))

is a pullback.

Furthermore, t: F — G is tense if and only if for every complemented subobject ¥ — ® and
every object B in B,

F(¥)(B) — F(®)(B)

lf@)(B)

G(¥)(B)) —= G(®)(B)

1(¥)(B)

is a pullback.

Proof. That (1) is equivalent to (2) follows immediately from the previous proposition, the
definition of tense, and Proposition 2.2, as does the statement about tense transformations.

(2) (a) and (b) are special cases of (3) and the pullback in (3) can be factored into two pullbacks
of type (a) and (b). O]

2.3 Limits and colimits of tense functors
Proposition 2.10. Let I': I— %ar(Set®, Set®) be a diagram such that for every I in 1, T(I) is
tense. Then
(1) 1<lr1 I is tense.

Ift: I'— O is a natural transformation such that for every I in 1, tI: I'l — Ol is tense, then
(2) the induced transformation

1<iLn t: l<ln — l<ln O]

is tense.

If1is confluent, then under the same conditions as above we have
(3) h_n>1 I is tense, and
(4) lilgt is tense.

Proof. (1) and (3). The preservation of complemented subobjects follows immediately from
Proposition 2.6. The preservation of pullbacks of complemented subobjects follows from the fact
that limits commute with limits for (1) and that confluent colimits commute with inverse images
for (3).

Tenseness of natural transformations is also a pullback condition, so (2) and (4) follow for the
same reasons. O

This is a result about limits and colimits of tense functors taken in %ar(Set®, Set®). It is not
assumed that the transition transformations I'(/) —-T'(J) are tense, and unsurprisingly we don’t
get a universal property for tense cones or cocones. Given a tense cone or cocone, the uniquely
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induced natural transformation is tense but this doesn’t establish the required bijection because
neither the projections in the limit case nor the injections in the colimit case are tense.

It’s more natural to consider diagrams where the transitions are tense,
ie. ' I— ,%nse(SetA, SetB). For such diagrams, things are better. We lose products as
the projections are not tense but that’s the only obstruction. Limits of connected tense diagrams
are created by the inclusion

Tense(Set | Set®) >~ Zur(Set*, Set®)
as are all colimits, not just confluent ones.
First we analyze diagrams I': I— Zense(Set®, Set®).

Proposition 2.11. The bicategory Jense is Gat-cotensored. The cotensor of Set® by I is Set®*],

ie.

(1) diagrams T: 1— Zense(Set*, Set®) are in  bijection with tense functors
T: Set® —Set® ! and

(2) natural transformations t: I'—= @ are in bijection with tense natural transformations
:T—0.

Proof. Functors I': Iﬁ\‘fm(SetA7 SetB) correspond bijectively to functors I': Set® —> Set®*!

by exponential adjointness:

I(®)(B, 1) =T(1)(®)(B).

If T factors through %nﬁe(SetA, Set®) then we want to show that T is tense.
First of all T'(¥) —I'(®) must be a complemented subobject for ¥ —— & complemented, i.e.

T(¥)(B,1) —=T(®)(B,1)
F(\P)(&a)t lr(ﬂb)(g,a)

T(¥)(B,I') —T(®)(B,I')

for g: B—=B' and a: [—1I', should be a pullback of monos. If we rewrite this in terms of T’
and use functoriality on the vertical arrows we see that it is

L(D)(¥)(B) ——T(1)(®)(B)
r()(®)(e) o r()(@)(s)
I()(¥)(B") ——T(1)(2)(B)

T(a)(¥)(B') @ [(a)(®)(B)

L(I)(¥)(B') =—T(I')(®)(B')

(1) is a pullback of monos because I'(7) is tense, and (2) is a pullback of monos because I'(¢) is
a tense transformation (the mono part because I'(1’) is tense).

This shows that if I'(1) preserves complemented subobjects and I'(t) is tense, then T preserves
complemented subobjects. The converse is also true as can be seen by taking o = id; for I'(1) and
g=lpforT(cx).

Preservation of inverse images by T is equivalent to that of I'(/) as can be seen immediately
upon writing it down. Likewise for the tenseness of 7. O
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Theorem 2.1. The inclusion Jense(Set, Set®) >~ %ur(Set®, Set®) creates colimits and
connected limits.

Proof. Given a diagramI': I— %nse(SetA, SetB), its colimit is given by the composite

Set* Lo SetB T 71 GetB

tB><I

ligI is left adjoint to the diagonal functor D: Set® —>Se , S0 it preserves coproducts and a

fortiori is tense. And T is tense by the previous proposition, so lim, T'(/) is tense.

D itself preserves coproducts being left adjoint to lim, the limit functor. So D is tense. Natural
transformations between coproduct preserving functors are automatically tense, so the adjunc-
tion @I D is an adjunction in the bicategory Zense, and this gives the universal property of

lim, r'():

Tense(SetA, ll_r>n)

Tense(Set?, Set®)! ——> Zense(Set?, Set®*T) Tense(Set? | Set®)

is left adjoint to

Tense(Setd | D)

Tense(Set*, SetB) Tense(Set*, Set®*T) = Tense(Set, SetB)!

which is itself the diagonal functor.
If I is non-empty and connected, then lim_ : Set®*! — Set® preserves coproducts, so the same
argument as above shows that I-limits are created in this case. O

2.4 Internal homs

Part of the motivation for introducing tense functors was that the functors P ® ( ), thought of as
linear, were not in general taut but preserved coproducts, so were tense. The other side of the story
is that the right adjoint to P ® ( ), namely P © ( ), is taut but not always tense. As Example 1.1
suggests P © () is a functorial version of a monomial with the P acting as the powers, and perhaps
we shouldn’t expect them to be nice for all P. After all, even for real valued functions, fractional
powers can be problematic, and for rings the powers are taken to be integers, not elements of the
ring.

Proposition 2.12. For a profunctor P: A —e= B the internal hom functor
Po(): Set® —> Set? is rense if and only if for every f: A—s=A’, the function

moP(A', —) —mP(A, —)
is onto.
Proof. P () preserves limits and so is taut. Thus by Proposition 2.8 (3) it is only necessary to
check that

12PO1—=PO(1+1)



Robert Paré 17

is complemented, and it’s also sufficient. This is equivalent to the condition, that for every

fiA—=A'

1 ——Set?(P(4,-),1+1)

|

1 —Set®(P(A', -),1+1)
be a pullback. This says that every natural transformation ¢ for which (the outside of)
PA,—)——>1+1
N
P(f,)T N N

N

P@A, -) ——1

commutes, factors through the injection j. This is in SetB. Using the adjunction my
Const : Set — SetB, we have, equivalently, that every function 7 for which

MP(A, =) —=1+1

~
N
N J
~
N

mP(A, —) ——1

commutes, factors through j (in Set). This is equivalent to

EQP(A/, —) —>7t0P(A, —)

being onto.

The condition on P making P © ( ) tense is a kind of lifting condition. For every element of
P, p: A —e> B and morphism f: A—A’ there exist a B’ and a P-element p': A’ —e> B’ for

which p'f is connected to P by a path of P-elements

(A |
17’\b J/pl ¢1?72 ¢P3 \LP
B <— B —> By <~— By _.B.
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Or more fancifully and more memorably, it’s a kind of homotopy pushout condition: for every
f and p as below there exist a lifting to a p’ with a fill in “fan”

A/
B/
A .
\\ B

1

2.5 Multivariable analytic functors

Following Fiore et al. (2008) we define analytic functors of several variables F': Set® —> Set®
as follows. First, for a category A, its exponential 'A (from linear logic) is the free symmetric
strict monoidal category generated by A. In concrete terms, !A is the category with objects finite
sequences (A ...A,) of objects of A and morphisms finite sequences of morphisms of A con-
trolled by a permutation. There are no morphisms between sequences unless they have the same
length and then

(Ay... A)—= (A} ... A])
is a permutation of the indices, o € S, and a sequence of morphisms
fit Agi—=A}.
Composition is as expected
(7, (&))(0, (fi)) = (07, (gifxi))-
An A-B symmetric sequence is a profunctor P: !A —e> B, which for us is a functor (1A)°? x
B —Set. (Warning: Our definition of profunctor is the opposite of theirs.) P encodes what are to
be the coefficients of a B-family of multivariable power series.
The analytic functor determined by P
P: Set* —>Set?
is given by

(A1..An)E 1A
P(CID)(B):/ P(A1 ... Ay B) x ®A; x DAy x - - - X DA, .

We'll show that P is tense. Define a profunctor Q: 'A —e> A by

OAr,...,An;A)=A(A1,A)+ A(A2,A) + - - -+ A(4,,A)
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with the obvious definition on morphisms. We may consider Q as a functor (!A)°? — Set* and
P is the left Kan extension of P, considered as a functor (!A)% — SetB, along Q

(1A)? — 2 Seth
N /
P P=LangpP
SetB .

For our purposes a different description of P will be useful.

Proposition 2.13. 1. P is the composite P (Q © ( )

09( ) Pa( )

Set® Set'A Set® .

2. Q satisfies the condition of Proposition 2.12.

Proof. (1) Let ® € Set®. An element of (Q © ®)(Ay, ..., A,) is a natural transformation
AA, =)+ +AA,, ) —
which by the universal property of coproduct and the Yoneda lemma corresponds to an element of
DPA| X PAy X --- X DA, .

Now the result follows by the definition of P ® () and P.
(2) Q(Ay, ..., Ay;—)=A(A1,—)+ -+ A(A,, —) a sum of representables each of which is
connected. So

nOQ(Alv s 7An; _) =n
and, as !A has only morphisms between sequences of the same length, we get
EOQ(Ala cee aAn; _) = EOQ(Alla e 3A:1’ _) .

Corollary 2.3. P is tense.

Corollary 2.4. For P: 'A —e= B an A-B symmetric sequence and R: B —e= C a profunctor,
we have

—_~— ~

RRP=ZRRP.

Proof.

ROP=(R®P) (00 ())
~R® (P2 (Q0())
~R®P.

3. Partial difference operators

We want to think of a functor F: Set® —Set® as a B-family of Set-valued functors in A-
variables and study its change under small perturbations of the variables. The context is that of
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tense functors and for these we get a theory that parallels the usual calculus of differences for real-
valued functions of several variables, much as our theory for taut functors did for single variables
(Paré, 2024).

3.1 Partial difference

A functor @ € Set® is a multisorted al gebra, the sorts being the objects of A, with unary operations
corresponding to the morphisms of A. Freely adding a single element of sort A gives

PP +AA, ).

Definition 3.1. The A-shift functor, for an object A in A is

Sa: Set® — Set*
SA(P)=D+A(A, —).

Sy is clearly tense, in fact a tense monad. Although we won’t use it here, it may be of interest
to note that an Eilenberg-Moore algebra for S4 consists of a functor ® € Set? together with an
element x € PA. A Kleisli morphism ® —e> ¥ is a partial natural transformation

dD/q)O\‘P

defined on a complemented subobject ®( together with a transformation on the complement
d{,—= A(A, —), perhaps quantifying the degree of undefinedness.
These monads commute with each other

SA1 o SAZ = SAZ o SA]

and for every f: A— A’ there is a monad morphism S4 —= S, which is tense.
The main definition of the paper is the following.

Definition 3.2. The partial difference with respect to A, or the A-partial difference, As[F], of a
tense functor F : Set® — Set® is given by

A4[F]: Set* — Set®

MIF|(®)=F(P+A(A, -)) \ F(P),

the complement of F(®) — F (D + A(A, —)).
Proposition 3.1. For a tense functor F: Set® —Set®, A4 [F] is also a tense functor. A tense
natural transformation t : F — G restricts to one, Ap[t]: Ay[F]— Aa[G], making A4 a functor

Ay: Tense(Set?, Set®) — Zense(Set?, Set®) .

Proof. Let ¢ : ¥ — ® be a natural transformation. We have the following pullbacks
Y YL A4A ) FY——F¥+A(A, -))

¢ 9+A(A,-) Fo F(0+A(A,—))

P> DP+A4, ) FOP——=F(®+A4, ).
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From the second one we get that F (¢ + A(A, —)) restricts to the complements and gives another
pullback

M[FI(W) —F(¥ +A(4, -))

AA[F](cb)l

MIF)(®) —F(®+A(4, -))

F(9+A(A,-))

which gives functoriality and tenseness.
Suppose ¢t : F—G is a tense transformation. Then we get a pullback for any ®

F(®)——F(®+A(A,-))

J/t(dHA(A,))

G(®)—G(P+A4,-))

1(®)

s0 1(P + A(A, —)) restricts to the complements, giving another pullback

MIF)(®) — F(® +A(4, -))

‘/t(<1>+A(A,—))

M[G)(P) —G(P+ A4, —)).

Apl)(®)

It follows immediately that A4[f] is natural. Tenseness follows by comparing the following
diagrams that we get for any complemented subobject ¥ & @.

MIFI(¥) — M[F](®) — F(®+A(4,-))

AAl(F) (1) Ar(®)  (2) H(P+A(A,-))

M[G(¥) — M[GI(®) — G(P+A(4,-))

M[F](¥) —— F(Y+AA,-)) —— F(®P+A4,-))

Ay [t](‘f’)l ®3) lf(‘*’ﬂ\(fh)) (4) H(P+A(A,-))

MGI(¥Y) —— G¥+AA,—-) —— G(P+A4,-)) .

The pasted rectangles are equal, and (2), (3) and (4) are pullbacks, so (1) is too. OJ

Corollary 3.1. Aj[F] is a complemented subobject of the shifted F
AQ[F]|“—F 08,4

F—I—AA[F]i)FOSA

where the first component is F of the unit N4 : id —=Sy.
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3.2 Limit and colimit rules

Ay satisfies all the same commutation properties with respect to limits and colimits as the A of Paré
(2024). This may be proved directly with virtually the same proofs as in loc. cit. However, just as
the usual properties of partial derivatives follow from their single variable versions by fixing all
the variables but one, those of A4 follow from their A counterparts.

Proposition 3.2. Objects A in A and ® in Set® give an affine functor Set — Set*
Affas(X)=A(A,—)-X + .
For any tense functor F : Set® — Set® and object B in B, the translated functor

Affa® B

F/f,;r,:(Set Set* —> Set®

Set)
is taut and
AA[F)(®)(B) = A[F{4)(0).

Proof. The evaluation functors are tense as is Affa o so the composite avg o F' 0 Affs ¢ is too, so
taut.

AlF{61(0) = Fig(1) \ Fig(0)
=F(AA,—)-1+DP)(B)\F(A(A,—) -0+ D)(B)
= F(P+A(A,-))(B)\ F(P)(B)
= M[F](B).
O
Precomposing by any functor, in particular Affs o, preserves all limits and colimits (of the
F’s), and precomposing by a functor that preserves complemented subobjects preserves tense

transformations. The same holds for postcomposing by evp. Furthermore, the evp jointly create
limits and colimits. These considerations give the following results.

Theorem 3.1. (1) If1is confluent and I': 1 — %nse(SetA, SetB) a diagram of tense functors
(and tense transformations), then

Ml T(1)) = lim A4 [T(1).
I 1
(2) IfLis non-empty and connected and T': 1—> Jense(Set™, Set®), then
Alim T(1)] 2 i Ay [T (7).
I I

(3) For any set I and tense functors F; (i € I) we have

A [HF,} ~y (HF,-) X (HAA[Fk]).

iel ‘];1 jeJ k¢J
Corollary 3.2. (1) Ax[F + G] = Ap[F] + As[G]
(2) Ap[C - F] 2 CA4[F] (C a constant set)
(3) AA[F x G] = (Mu[F] x G) + (F x As[G]) + (Aa[F] x A4[G]).

We now look at a few special cases.
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Proposition 3.3. A profunctor P: A —e> B gives a tense P® ( ): Set® —Set® and Ay[P ®
(=P, -).

Proof. P® () is cocontinuous so preserves binary coproducts

PR(P+AA, ) ZPRO+PRA4, )
~PRd+PA, ).

Corollary 3.3. Ajfidg ] =A(A, —).
All that was used in 3.3 was that P ® ( ) preserved binary coproducts, so we can improve it.

Proposition 3.4. If F : Set® — Set® preserves binary coproducts, then
A [F(®) = F(A(A, -)).
Note that A4 [F] is independent of @, so A4[F] is the constant functor Set® — Set® with value
F(A(A, —)).
We can do better than (2) in the corollary 3.2.

Proposition 3.5. Let F: Set® —> Set® be tense and P: B —e> Ca profunctor. Then
M[PRF| =P ® As|F].

Proof. We have a coproduct diagram preserved by P® ()

F(®) PQF(®)
F(®+A(4,-1)) — PRF(®+A(A, 1))
A4[F)(®) P ® (As[F](P)
from which the result follows. O

The notation P ® F may need some explanation as it doesn’t type check. It is componentwise
tensor, (P ® F)(®) = P ®p F(P). We can interpret 3.5 as saying that multiplying F by a matrix of
constants is preserved by differences. But we can generalize this result to the following, although
the interpretation of “pulling constants out”” may be lost.

Proposition 3.6. If F : Set® — Set® is tense and G: Set® — Set® preserves binary coproducts,
then

AA[GF)] = GAL[F).

3.3 Analytic functors

In this section we prove that the generalized analytic functors of Fiore et al. (2008) are closed
under taking differences and, in fact, derive an explicit formula for the symmetric sequences so
obtained.
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We start with an addition formula for analytic functors which may look obvious but is frustrat-
ingly hard to make precise. The integral notation for coends conveniently hides the functoriality
of the arguments, which in the case at hand is not trivial, involving permutations as it does.

We introduce some notation, without which we run the risk of drowning in a sea of subscripts,
subsubscripts, ellipses, and so on.

In what follows A represents an arbitrary object of !A, (Aj,...,A,) of length n. Recall
that a morphism (0, (fi,..., fu)): (A1,...,A,) —=(A],...,A}) is a permutation ¢ € S, and
a sequence of morphisms

fi:AGi—>Af.

We will denote that by (o,f): A—=A’. We also use objects X = (X;,...,X;) and ¥ =
(Y1,...,Y;) whose lengths are k and [ respectively. By construction, !A is a monoidal category
whose tensor is concatenation

X@Y=(X,..., X, ",.... %)
a notation which we use extensively. Of course, it also applies to morphisms
(1.8)® (g h)=(t+p,§2h)

where T+ p: k+ [ —k+ [ is the ordinal sum, and § ® 7 is concatenation.
We also use the notation, and obvious variants,

[]®A: =4, x - x @4,

for ® in Set*. An element (ay, .. ., a,) of [] A is denoted @ € [] PA.
The addition formula alluded to above is given in the following statement.

Theorem 3.2. Let P: A —e> B be an A-B symmetric sequence and P: Set® —Set® the
analytic functor it defines. Then for ®| and @, in Set® and B in B we have a natural isomorphism

_ X v . -
B(®, + ©»)(B) g/ / P(X @ ¥;B) x [Jo1X x [[ @Y.
The idea of the proof is simple:

P(d) + @) (B) = /IK P(A; B) x [J(®14 + @A)

g/KP(K;B)x Y J[®.A

a:n>2

X _ B}
g/ P(X @7:B) x [[®:X x [] @7

X Y
= [ [ PR&V:B) < [[0X x [[ 82,

The first line is just the definition of P, the second line is distributivity of [] over +, and the last
line is Fubini for coends. It’s in going from the second to the third line that everything happens.
The “reason” for the isomorphism is that for each summand with ®; and &, interspersed “at
random” in the product, there is an isomorphism in !A which permutes them so that all the &,
come first followed by the ®,. And, indeed that’s the reason. The devil is in the details, as they
say.

We step back and consider how we might show that two coends are isomorphic. Let I': I°7 x
I— Set be a functor which we might think of as a profunctor I': I —e> I. The coend [’ T'(I, 1)



Robert Paré 25

consists of equivalence classes of elements of I, [/ Hx—>l], the equivalence relation generated by
identifying x: I —e= I withx': I’ —e> I’ whenthere are f: [—1" and x: I’ —e> [ such that
x=Xxf and x' = fx:

f

I ———=T

»
|

4
I——1T.
f
So x is equivalent to x’ if there’s a zigzag of such diagrams joining them.
But in the case at hand the equivalence relation is simpler because both of the diagrams whose

coends we’re considering are separable into a product of a contravariant functor times a covariant
one.

Definition 3.3. A diagram I': I°? x I—=Set is separable if for every f: [ —1I',

v, 1 e v, 1)

1"<1’,f>‘ Lr(l,f)

i, ry—-—-sra,r
7, r) T (1, r)
is a pullback.

For example, if (1, 1') =Tol x T'1I’ forTy: 17 —=Set and I'; : I— Set, then I' is separable.
Or, if Iis a groupoid, every I is separable.
The point of this definition is that the equivalence relation is generated by identifying x with x’
when there is an f: I —1I’ such that X' f = fx:
f

[ ———T

»
|

i
I——1T.
f

The x is automatic. This is important because we can compose such squares.

Let us call an x € I'(I, ) a T-algebra and an f as above a homomorphism. Then we get a
category Alg(I") and [ (I, I) = myAlg(T"), the set of connected components of Alg(T).

Let ®: J°7 x J—Set be another bivariant diagram. A morphism (Z, &): I'— @ is a functor
E: I—J and a natural transformation £ : T —= O (E(—), E(—))

| = J

. EPXE .
P x I ——————— = J? x ]J

\ 5/
= r
r @

Set

- <@

£

H-%éih
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Such a morphism induces a functor

Alg(E, &): Alg(T) — Alg(0®)

Ir (1)
|

X 3ENW

! )

I ().

We are now ready to apply this to our addition formula. Let I": !Ax!A —e= !AX!A be given by
I(X,7:X' .Y )=PX®Y:B) x [[®:1X' x [] ¥’
and @: A —e= !A by
OA;A')=PA:;B) x Y []®eA’
o:n>2

with the obvious action on morphisms. Note that I" and ® are both products of a covariant part
(with the primes) and a contravariant part (without primes) so that they are separable. Thus we will
be able to compute the coends by taking connected components of their categories of elements.

Theorem 3.3. With the above notation, there is a morphism
IAXIA —Z ~ 1A

IAX!IA A

such that the induced functor
Alg(®, §): Alg(I') —Alg(©)

is an equivalence of categories.

Proof. Throughout, B is a fixed object of B.
Anelement of (X, Y; X', Y") is a triple

(peP(X®Y:B), e[[2:X', ye[]2.Y'),
and an element of @(A, A’ ) is a triple
(peP(A:B), a:n=2, de H@ag'),

where [] P A’ is H;’;l Dy;AL, as expected.

E:TX,7:XY)—=0XxY,X )
is given by

§E(p.%, ) =(pePXQY;B), apy: K +1'>2, %3 €[[ Pap , (X' ©7")).

Here oy y is the indexing that consists of 1’s followed by 2’s,

aoniy {1 I<i<k
(1) =
i 2if K <i<K 41,
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and (¥, ¥) is concatenation
@B F) = X1y oy Xy Y1y ey Yy EPIX] X oo X P1X] X DY X - x DYy

Naturality of £ is a straightforward calculation.
The morphism (®, §) induces a functor

E: Alg(l')—Alg(@).
Explicitly, a I"’-algebra is a 5-tuple
(X, Y, peP(X@Y;B), ¥ [[®:X, e [] 22Y)
and a ®-algebra is a quadruple
(A, pe P(A;B), o: n>2, EZ'GHCIJWZ)

% assigns to (X, Y, p, X, y) the algebra (X @ ¥, p, oy, (%, 7).
A homomorphism (X, Y, p, %, ) — (X', ¥’ p/,¥,5’) is a pair of morphisms in !A,

(1,8): X—X' and (p,h): ¥ —Y'

preservmg everything. It is sent to (7, 8) ® (p h) by E.
® is faithful as it is just concatenation, so Z is also faithful.
If (o, f) is a homomorphism

(X®?v P, Qj, <f,y>)‘>(5f,®?lv plv O 1 <X¥ay/>)

we have
k+1
Q|
c 2
K+l

which implies that ¢ restricts to bijections 7: ¥’ —=k and p: I’ —1 (by taking inverse images
of {1} and {2}) so K =k and I’=1 and 6 =7+ p. It follows that f consists of morphisms
(7,8): X—=X' and (p,h): Y —=¥’ and the preservation of (¥,¥) becomes preservation of ¥
and ¥ separately. Le. (o, f ) is 2((1, g), (p, b)) and so Z is full.

For any ®-algebra (Zf , D, &, d), there is a permutation of o € S, such that

c o
n—sn—--2

is order-preserving, i.e. all the 1’s come first and then the 2’s, so that €c = oy ; where £ is the
cardinality of o~ '{1} and [ that of & ~'{2}. Associated to o is an isomorphism

(6.1): As i,

where Ay is (Agl,...,Agn) and 1= (lag,»- - - 1ag,). We can transport the @-algebra structure
on A to one on A giving an algebra isomorphism

(G7T): (va’ ava)4><A_‘G7 p'(G_l,T)v Ok 15 ao)

where p- (671, 1)=P((67",1);B)(p) and G = (a1, . . . , don) in [[ PesAs. The O-algebras
with indexing of the form oy; are precisely those in the image of E. Indeed, the X are
the first k A’s, (Ag1,...,Agi) in this case and ¥ the last / of them (As(kt1)s - - -1 Ac(n))-
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Similarly ¥=(ao1,...,ae) and ¥=(ag(11),---aon). Then E(X,¥,p- (071, 1),%5) is
(A;, p-(o71, 1 ), O, d), so E is essentially surjective, which shows it’s an equivalence. O

If we take connected components we get
moAlg(I") = mAlg(0)

so the coend of I" is isomorphic to that of @.

Corollary 3.4.

/x,yp()?@?;B)XHq)l}?XHq)zyg/AP(A’;B)>< Y JI®.A.

o:n>2

Our addition formula, Theorem 3.2, now follows by a simple application of the Fubini theorem
for coends, which is what we wanted, but Theorem 3.3 is a stronger result.

Our next step in the derivation of the formula for A4 [P] is to specialize our addition formula to

the case ®; = ® and &, = A(A, —). This gives

_ X v - -

P(®+A(4, —))(B) :/ / P(X ©7; B) x [] X x [[ A4, 7)
in which the expression

[TAAY)=AA, 1) x -+ x A(A,Y))
appears, not surprisingly, as it already appears in the definition of P. It defines a functor
[TA@, —): 'A—Set

closely related to the representable functor !A(A®", —) where A*" = (A, ..., A), the n-fold tensor
of A.

Proposition 3.7. With the above notation we have

oo

[TAMA, —) =) 1A%, —)/S,.

n=0

Proof. Ifﬂ)7 =(Y1,...,Y;), then 'A(A®".¥) is O unless / =n in which case an element of
IA(A®"Y) is a morphism
(6,7): A% —F
so that 1A(A®", ¥) =S, x A(A1Y;) x - -- X A(A, Y,) and if we quotient by S, we get
IA(A®"Y) /S, =[] A(A,Y)

easily seen to be natural in Y. The result follows. O
Lemma 3.1. Let W: |A% —Set. Then

/? W) < [JA@A,Y)= i W(A®™)/S,.
n=0
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Proof.

w(

—
~i
~i

)XHA(A,?)N/ W(¥ IA(A®", 7)/S,

= Z/ W(Y) x (!A(A®",Y)/S,

IIZ

/W ¥)xIA(A®" Y))/S

= Z W(A®") /S, .
n=0

The second isomorphism is commutation of coends and coproducts, the third commutation of
coends with colimits (“modding out” by S, is a colimit), the last isomorphism comes from the fact
that tensoring with a representable is substitution. O

Corollary 3.5.

P(®+A(A, —))(B) = /X i P(X @ A", B)/({id} x S,) x [] @X

n=0

Proof.

P(®+A(A N//PX@YB < [T®X x[JAA,Y).
If we fix X and consider the coend over ¥, we can apply the previous lemma with
W(¥)=PX®Y;B) x [] X

and the result follows immediately. O

Corollary 3.6.

(B) = /X i P(X ® A®"; B)/({idi} x S,) x [] @X.
n=1

Proof. The inclusion P(®) < P(® + A(A, —)) corresponds to the n = 0 summand. O
For any A-B symmetric sequence P: !A —e> B and object A of A we define a new symmetric

sequence V4P: !A —e= B by the formula

VaP(X;B) = i P(X @ A®", B)/({id} x S,,).

n=1

Now Corollary 3.6 can be stated in its final form, giving the main theorem of the section.

Theorem 3.4. Analytic functors Set® —Set® are closed under taking differences. If
P:'A —e> B is a symmetric sequence, then

AA[P] 2 V,P.

The definition of V4P as a coproduct of quotients is clear but for formal manipulations a more
abstract definition is useful. Let S be the category whose objects are positive finite cardinals,
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k > 0, and whose morphisms are bijections. So S_ is the coproduct
S =) S
k=1
where S; is the symmetric group S; considered as a one-object category.

Given an A-B symmetric sequence P: !A —e> B and an object A of A we get an S, family
of A-B symmetric sequences

Py: S — Zrof ('A, B)

Py(k)(Ay ... Api;B)=P(A) ... Ay, AA, ... A;B)
where there are k A’s. Functoriality and naturality are obvious. Now V4P = li_n;k Py (k).

Proposition 3.8. For P: |A —e> B an A-B symmetric sequence and Q: B —e> C a profunc-
tor, we have

VA(QRP) = QR VuP.
Proof.
VA(Q®P)(A ... A C) zlg/lg O(B,C) x P(A; ... Ay, A ... A;B)
k
~ /B Q(B,C) x lim P(A; ... Ay A ... A B)
k

o /B O(B,C) x VAP(A; ... Ay B)
=~ (Q®VAP)(A1 .. An,C)

O
Corollary 3.7. For any A-B symmetric sequence P we have
VAP=ZPRValdis .
Proof.
VAPZEVA(PRTIdA) 2P RV Id)4 -
O

V4 1dy, is easy to describe:
Valdi: Set'’* —Set'*

AA; .. An A AA, AL/ {ide) X S)

12
s

VA Id!A(Al .. .A,,;A/l .. A;n)

k=1

which is 0 if m < n and
A(A] .. A A, AAL ALY /(i) X Sn)
when m > n. There are m —n A’s and the action we’re modding out by is S,,_, acting on those
A’s.
There is also a generic difference formula.
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Corollary 3.8.
As[P| =P @ Ag[ldy] .
Proof.
AP =V, P (Thm. 3.4)
> (P®V41dia)~ (Cor. 3.7)
>2PRVuIda (Cor. 2.4)
>2PRAM[Ida] (Thm.3.4)

3.4 Higher differences

As A4 [F] is also tense, its difference can also be taken Ay [Ag[F]] = Ay 4[F] and so on, iteratively.
For any sequence (A; . ..A,) of length n of objects of A we define

Aay[F] = {

F ifn=0
Ax, [Apy. ap[F]] ifn>1.

Definition 3.4. We say that an element of F(®+ A(A,—)+---+ A(A,, —))(B) is new (for
(A1, --- ,Ay))) ifitis not in any F(® + A(Aq1, —) + - - - + A(Agx, —))(B) for any proper mono

ok > n.

If an element is in F of a subsum, it’s in every bigger subsum, so it is sufficient to consider
only those subsums with one less term.Thus the new elements are those in the set difference
n n
F(®+) A(A,=)(B)\ | F(®+ Y AA;, -))(B) .

i=1 =1 )

Theorem 3.5. The higher difference Ay)[F|(®) consists of the new elements of F(® +
AAL, =)+ +AA, —)).

Proof. We prove this by induction on n. For n =0, 1 the result holds by definition. Assume the
result holds for sequences of length n — 1 and take (A;) = (A1, ..., A,). Let (A;)T = (Aa, ..., Ay).

An element of A, [F](P)(B) is an element of A+ [F](® + A(A1, —))(B) which is not in
A+ [F](®)(B). An element of Ay y+ [F](® + A(A1, —))(B) is, by the induction hypothesis, an
element of

F@+ AL ) +Y AL )B) 2 F(@+ Y Al —))(B) ()
i=2 i=1
not in
F@tAGAL )+ Y AL )B=F@+ Y A, -)(B) @)
i=2,i%] =it

for any 2 < j <n. From this we must exclude the elements of A4,y+[F](®)(B) and these, again
by the induction hypothesis, are elements of

F@+Y AA, —)(®)(B) 3
=2

=
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except for any in some
n
F(@+ Y A(Ai,-)(®)(B) @)
for2<j<n.
To summarize,

but (4) C (2) so

Now (2) U (3) is the union of

over all j, 1 < j <n, and the result follows. O

We see from this formula that A4,y [F] is independent of the order of the differences, a version
of Clairaut’s theorem.

Corollary 3.9. Let (A;) be a sequence of length n of objects of A and ¢ € S,, a permutation, then
At 1= Ay [F].-

4. The discrete Jacobian
4.1 Definitions and functoriality
Let F: Set® — Set® be a tense functor and let f: A—=A’ be a morphism of A. Then, as

P> d+AM, )
lwu,_)
P— P+A4, )
is a pullback of complemented objects, so is
FOPC— F(@+AA,-))
lF(<1>+A(f7))
FO—— F(®P+A(A,-))
and it follows that F(® + A(f, —)) restricts to complements giving another pullback
Au[F)(@) > F(@+A(,-))

Af[F](‘P)l F(®+A(f,-))

M[F(®) —— F(®+A4,-)) .

This proves the following:
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Proposition 4.1. For any ® in Set®, A, [F](®) is functorial in A, i.e. is the object part of a functor
A[F](®): AP —Set® .

By exponential adjointness we get a functor A°”? x B—Set, i.e. a profunctor A —e> B.

Definition 4.1. The (discrete) Jacobian profunctor of F at ®
AF)(®): A —= B
is given by
A[F](P)(A, B) = A[F](P)(B) .

It’s more or less clear that A[F](®) is functorial in ®, which we express in the following
proposition.

Proposition 4.2. For any tense functor F: Set® — Set®, A[F)(®) is the object part of a tense
functor

A[F]: Set® —SetA” B — Zof (A, B).
Proof. For a natural transformation ¢: @ — ¥ and object A in A,

P~ CI)+A(A, —)

t ‘t+A(A,)

Y—— ¥+A@4,-)
is a pullback of a complemented subobject, so

FO— F(®+A(4,-))
Ft ‘F(t+A(A,))

F¥—— F(W+A(4,-))
is too. So F(r + A(A, —)) restricts to the complements, giving another pullback
AF|®—— F(®+A(A,-))

A[F}ZL F(i+A(A,-)) (*)

AIFI¥ —— F(¥+A(4,-)) |

hence functoriality.

We still must prove that it is tense.

Proposition 3.1 says that for a fixed A, Ay [F]: Set® — Set® is tense and A4 [F] is the composite

A[F
Set® i>

The evp are the evaluation functors which preserve pullbacks and collectively reflect them, so
that A[F] will preserve pullbacks of complemented subobjects. However, the evg don’t reflect
complemented subobjects, so we still must show that A[F] preserves those.

op evp
SetA”*B_"F . GetB .
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Let ®y = ® be a complemented subobject. We want to show that A[F](®Pg ) A[F](®) is
complemented, or equivalently, for every f: A'—=Aand g: B— B’

A[F)(®o)(A, B) —— A[F](®)(A, B)

A[F](Do)(f.8) A[F(®@)(f.8)

A[F](®o)(A", B') — A[F](®)(4', B)

is a pullback. We can do this separately for f and g, fixing B and then A. We already know for
fixed A it’s a pullback. So let’s fix B.
Let f: A’ —A and consider

A[F](®o)(f,B)

A[F](®o)(A, B) A[F](do)(A", B)

A[F](®)(A, B)

A[F|(®)(A/ B
AFI(@)(/.B) [F](®)(A,B)

F(®+A(A,—))(B) F(®+A(A,-))(B)

F(®+A(f,—))(B)
and

A[F)(®o)(f,B)

A[F](Po)(A, B) A[F](®)(4’, B)

F(®o+A(A, —))(B) F(®o+A(A', -))(B)

F(®o+A(f,-))(B)

F(®+A(A,—))(B) F(@®+A(A,-))(B) .

F(®+A(f,—))(B)

The second and third squares are pullbacks by (x) and the fourth because F is tense. As the
composite of the first and second squares is equal to the composite of the third and fourth, we get
that the first square is a pullback, which shows that A[F](®g) > A[F](P) is complemented. []

To complete the discussion of functoriality of A note that A4 [F](®) is a subfunctor of F (P +
A(A, —)) which is not only functorial in ® and A but by Proposition 3.1 also in F' but only for tense
transformations. Proposition 2.9 says that the evaluation functors evp jointly reflect tenseness of
transformations, so that A4 [t] itself will be tense. Thus we get a functor

A: Tense(Set®, Set®) — Zense(Set?, SetA” *B)

the (discrete) Jacobian functor.
There are various ways of reformulating the Jacobian which are of independent interest.
Given a tense functor F: Set® —Set®, we get another tense functor analogous to the
differential operator

DI[F]: Set* x Set* — Set®
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DIF|(®,¥) = A[F|(®) ©a ¥

where W is considered as a profunctor 1 —e= A.
Definition 4.2. DI[F| is called the difference operator.

In (Paré, 2024) we used the finite projection Set x Set — Set as a tangent bundle and saw that
this supported a definition of functorial differences where the lax chain-rule was actually a lax
functor. This generalizes to the multivariable setting. We define

TF
Set* x Set® — "' . Set® x Set®

A B
Set — Set

by T[F](®,¥)= (F®,A[F|(P) ®a ¥). We see that T[F] preserves colimits in the second
variable.

Definition 4.3. T[F] is called the (discrete) tangent functor.

Profunctors A —e> B are in bijection with profunctors B°? —e> A°P:

P: A x B—Set
PT: (BoP) x A% — Set

ie. P'(B,A) = P(A, B), the transpose as matrices. This gives the reverse difference operator

AT[F]: Set* — Prof (B°F, A°P).
Definition 4.4. AT [F] is the reverse difference operator.

This suggests that we take as the cotangent bundle the first projection Set* x SetA” — Set?.
As the Yoneda embedding ¥ : A%P>— Set® is the cocompletion of A, the category of cocontinu-
ous functors

Set* — Set
is equivalent to the category of functors
A% — Set

ie. Set’”. So Set*” has a legitimate claim to be the (linear) dual of Set*. Now we can extend
the reverse difference to the cotangent bundle. Given a tense functor F: Set? QSetB, we first
pull back the cotangent bundle along F

<F3P2>
_—

Set® x Set?” Set® x Set?”

Set® Set®

and then take the functor coT[F]
(®,0)—(®,A" [F](®) ©6)
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Set? x SetB” — > Set? x SetA”

N

Set? .

In this © in Set®” is considered as a profunctor 1 —e> BP.
Definition 4.5. coT[F] is the cotangent functor.

A differential form is a global section of the cotangent bundle, which in our case amounts to a
functor Set* — Set”’.

For a tense F: Set* —Set® we get another tense functor A[F]: Set® — Set*””*® which,
upon composing with the evaluation at B, evp: SetA” B _- SetA”’ gives another tense functor
Set® —> SetA” . This way the difference A[F] may be viewed as a B-family of differential forms

B —> Zense(Set®, Set*™) .
It is tempting to write Q! (Set*) for Zense(Set®, SetA”).

Definition 4.6. A[F](—)(B) is the differential form of F at B.

4.2 Product and sum rules

The evaluation functors evy: SetA” *B > SetP jointly create limits and colimits, and as the
composites evy o A[F|(®) are A[F](P), the limit rules of Section 3.2 lift to A[F].
Theorem 3.1 gives the following.

Theorem 4.1. (1) IfT': I— Zense(Set, Set®) then Allim, T'7] 2= lim  A[T'7].
(2) If 1 is non-empty and connected and T: 1— Jense(Set®, Set®), then A[lgll, V=

lim, A[I'7].
(3) I%r any set I and tense functors F;, i € I, we have

s[[TR| = L (I15) * [TAR)-
iel ]g] jeJ k¢J

Corollary 4.1. (1) A[F + G] = A[F] + A[G].

(2) A[C - F]| 2 C - A[F] for any set C.

(3) A[F x G] = (A[F] x G) 4 (F x A[G]) + (A[F] x A[G]).

Note that on the right hand side of (3) we have A[F] x G for example. A[F] is a functor
Set® —>SetA” "B whereas G is a functor Set® — Set®. Looking at where this came from

Ap[F X G] = (Ma[F] % G) + (F x Aa[G]) + (Aa[F] x M[G])

we see that the G is the same for all A, which means the G in (3) should be interpreted, as is often
done, to be the functor

P, op
Set* — 9. SetB 52 getA” xB

for P,: A°? x B— B the second projection, i.e. G followed by the inclusion of Set® in Se
given by functors A°? x B —Set constant in the first variable.

tA"l’ xB
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Of course similar remarks go for the F in the second term of (3) and the F; in (3) of Theorem 4.1.

Proposition 4.3. For a profunctor P: A —e> B we have
AP® ()](P)=P.
This is just a restatement of Proposition 3.3.

We think of P® () as a linear functor with coefficients P, and its difference is the constant
functor

Set* —> SetA” *B

with constant value P.
Corollary 4.2.
A[idsetA] (@) =Tda

where idgga : Set® —>Set is the identity functor and 1ds: A —e> A is the identity profunctor.
Like we did in Proposition 3.4, we can generalize 4.3 to the following:

Proposition 4.4. If F : Set® — Set® preserves binary coproducts, then
A[F](A, B) = F(A(A, —))(B)
i.e. A[F| = Qr(F), the core of F (see Definition 1.2).

We can improve (2) in Corollary 4.1, replacing the set C by a profunctor P: B —s> C. Given
a tense functor F : Set* —>Set®, we can compose it with P ® () to get another tense functor

Pe( )

Set®
which will be called P ® F as its value at @ is P @ (F(®)) although it might be hard to parse.

SetA - SetB

Proposition 4.5.

A[PR F] 2P ®A[F].

Proof. The P ® F is the composite
P®( )

Set* —> Set® Set®
s0 A[P ® F] is the functor Set® — Set*”"*C with values
AP @ F](®)(A, C) = Ap[P @ F](P)(C).
On the other hand P ® A[F] is the composite
Set* A SetA”" B _PesC) SetA”" <€

so has values
(P A[F])(®)(A,C) = (P @B (A[F](P)))(4,C).

By the definition of composition of profunctors, this is
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" P(B,C) x A[F](®)(4, B)
= J" P(B.C) x A4[F)(®)(B)
= (PR A[F](®))(C)

and by Proposition 3.5 this is isomorphic to A4 [P ® F|(®)(C). O

4.3 A natural reformulation

It will be conceptually clearer to reformulate the definition of A in more categorical terms,
that is, in terms of natural transformations, Yoneda style. This rids us of many of the element-
based proofs, eliminating, as it does, membership and especially non-membership. The results are
cleaner and clearer, especially in the next section where we see the chain rule reduced to compo-
sition. This is a vast improvement over the construction and proof of the one-variable chain rule
given in (Paré, 2024) which is far from transparent.

So why not just start with this as a definition? The basic intuition of finite differences would
be lost. It is hard to imagine why one would define a profunctor using (2) or (3) in the proposition
below, or formulate the product and sum rules or the chain rule.

Proposition 4.6. Let F: Set® —>Set® be a tense functor and ® an object of Set®. Then there is
a natural bijection between the following:

(1) Elements x € A[F](®)(A, B)

(2) Natural transformations t: B(B, —) —F (® + A(A, —)) giving a pullback

B(B,—) —— F(®+A(A,—))

] = |

0 F(®)

(3) Natural transformations u: F(®) + B(B, —) —F(® + A(A, —)) giving a pullback
F(®)+B(B,—) — F(®+A(A,-))

] = ]

F(®) ———F(®) .

Proof. An element of A[F]|(®)(A,B) is an element of F(®+ A(A,—))(B) which is not in
F(®)(B). By Yoneda, this corresponds bijectively to a natural transformation

t:B(B,—)—F(®+A(4,—))
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for which #(B)(1g) ¢ F(®)(B). As F(®) —F(® + A(A, —)) is complemented by tenseness,
that’s equivalent to none of the values of 7 being in F(®), which means that

B(B,—) —— F(®+A(A,—))

] ]

0O —— s F (CI))
is a pullback. And this, in turn, is equivalent to

F(®)+B(B,—) —= F(®+A(4,-))

J J

F(®) ———F(d) .

being a pullback, where u is the inclusion on the first summand and ¢ on the second. O

As mentioned in 1.1 it is useful to think of the elements of a profunctor as some sort of mor-
phism but between objects of different categories (sometimes called heteromorphisms). Because
of the representables appearing in the natural transformations above, it’s not unreasonable to think
of them as morphisms from A to B, as a kind of Kleisli morphism although F is not a monad. If
F were the identity for example, 7 is equivalent to a natural transformation B(B, —) —A(4, —)
so to an actual morphism A — B. This is just another way of saying that A[l1g,](®) =1Id,, the
identity profunctor on A, i.e. the hom functor.

More generally, if F preserves binary coproducts, a t as above corresponds to a natural
transformation

B<Bv _) %F(A(A’ _)) ’
another way of viewing the identity
A[F|(®) = Cor(F)

of Proposition 4.4.
With the natural transformation version of A it is easy to see how A[F](®)(A, B) is functorial
in A and B. Given a ¢ as in (2) and morphisms f: A’—=A and g: B— B’ we get pullbacks

B(g,—) 1 F(®+A(f,-))

B(B, ) B(B, —) F(®+A(A,-)) F(®+A(A,-))
RN |
0————0 F (D) F(®),

the third one because F is tense.
Similarly, functoriality in @ is clear. For ¢ : & — ¥ we get pullbacks

B(B,—) — > F(®+ A4, —)) — A0 oo a4, —)
e |
0 F(®) F(¥)
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again using tenseness of F.
The same goes for the functoriality in F. If o: F—G is a tense transformation, we get
pullbacks

B(B, -) a(@+ A4, ) —2 AT oo A4, —))
e |
0 F(®) — G(®).

Showing that A[F]: Set® —SetA” *B is tense in this context is probably no easier than the
element-wise proof given for Proposition 4.2 but it may be more conceptual. It is a result we need
if we want to iterate A, as we do. So we reprove it.

The proof that A[F] preserves the pullbacks of complemented subobjects is basically the same
as in 4.2 but we reproduce it here without reference to partical differences or evaluation functors.

Let

Py —s P
¢
D e 4

be a pullback of complemented subobjects in Set® and A an object of A. Consider the four squares
in Set®

Al®o)(A, =) = A[P](4, -) Al®o)(A, =) = A[P(4, -)
(1) (3)
F(®o+A(A, ) &> F(®+A(A, —)) AlWo](4, —) —— A[P)(A, -)
(2) (4)
F(¥o+A(A, ) & F(¥+A(4,-)) F(¥o+A(4,—) = F(¥+AA, ) .

(1) and (4) are pullbacks by definition of A and (2) because F is tense. As the pasted rectangle (1)
+ (2) is equal to (3) + (4), we get that (3) is also a pullback.

As A[F] preserves pullbacks of complemented subobjects, it will take a complemented subob-
ject @y P to a mono, but we still have to prove that it’s complemented. We have to prove that
forany f: A'—=Aandg: B—B,

A[Cbo](A, B) - A[q)] (A, B)

A[Do](f ’g)l lA[‘I’](f 8)

A[®Do) (A, B') = A[D|(A’, B')

is a pullback.
An element of A[®](A, B) is a natural transformation 7: B(B, —) —F(® + A(A, —)). To be
in A[®g](A, B) means that it factors through F (P + A(A, —)) —F(® + A(A, —)). Referring
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to the following diagram

B(B,—) '~ F(®+AA,—)) — AU

-

F(®+AA,-))

F(do+AA", —))

A[DP](f, g)(¢) is the composite of the left arrow with the two top arrows, and to say that it is in
F(®y+ A(A’, —)) means that there is a u making the outside boundary commute. The square in
a pullback because F is tense so there exists a unique u’ as shown and as F(®y + A(A, —)) is
complemented there exists a u” by Proposition 2.2. So ¢ factors through F(®Py + A(A, —)) which
is what we wanted.

4.4 Lax chain rule

We saw in (Paré, 2024) that the chain rule for the single variable functorial difference was
expressed as a laxity morphism rather than an isomorphism, and the same applies in the mul-
tivariable case. For tense functors F: Set® —Set® and G: Set® — Set® we will construct a
comparison transformation

Y(®@): A[G](F(®)) @ A[F](®) — A[GF](®)

and establish associativity and unit laws for it. In fact, considering A[F](®) as a profunctor may
not mean much unless it composes like a profunctor. Otherwise it is just an object of SetA” *B,
The construction of y in (Paré, 2024) is perhaps a bit opaque and the profunctor interpretation
clarifies this. We’ll see that it is, in a sense, just composition as it should be.
In the previous section we described the functoriality of A in terms of the characterization (2)
of Proposition 4.6, but for the chain rule the characterization (3) is better, so we reformulate the
functorialities in this context. As we will refer to it a lot, let us call a natural transformation ¢ such

that

F(®)+B(B,—) ——=F(®+A(4, —))

J J

F(®) ———— F(®)

is a pullback, a PPI transformation (for pullback preserves injections).

Functoriality of A[F](®)(A, B), considered as a set of PPI transformations, is easy. It’s just
composition with F(® + A(f, —)) and F(P) + B(g, —) respectively.

Functoriality in ® and F are a bit more complicated as the ® and F appear in both the domain
and codomain of ¢. The following characterization will be useful, although it is nothing but a
reformulation.

Proposition 4.7. Lett: F(®P)+B(B,—)—F(® + A(A, —)) be a PPI transformation.
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(1) If ¢ : ®—¥ is a natural transformation, then A[F|(¢)(A, B)(t) is the unique PPI transfor-
mation t' such that

F(®)+B(B,—) ——=F(®+A(4,—))

F(¢)+B(3»)l F(9+A(A,-))

F(¥)+B(B,—) ——~ F(¥+A(4,-)).

(2) If oo: F —=G is a tense transformation, then A[ct](®)(A, B)(t) is the unique PPI transforma-
tiont" such that

F(®)+B(B,—) ——=F(®+A(4, —))

F(a)ﬂs(s,)l F(a+A(A,-))

F(¥)+B(B,—) —;~ F(¥+A(4, ).

Theorem 4.2. For tense functors F: Set® —Set® and G: Set® —Set® there is a natural
transformation

v: (A[G) o F) @ A[F]—A[GF]
which is:

(1) natural in F and G
(2) associative
(3) normal (invertible unitors)

Proof. v is to be understood pointwise, i.e. as a profunctor morphism

Y(P): A[G)(F (P)) ®p A[F](®) —A[GF](P)

B
A[F](®) A[G|(F (P))
Jr(@)
A o C
A[FG(®)

for each ® € SetA, and furthermore natural in that ®.
Let A € A and C € C. An element of

(A[G)(F (®)) @B A[F](P))(A, C)

is an equivalence class

U@pt=[A—e>B—s>(]
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where u and ¢ are PPI transformations. Let y(®)(A, C)(u ®p t) = Gt - u which is indeed PPI:

Gt

GF(®) +C(C, —) —*—= G(F(®) +B(B, -)) GF(®+A(A, —))

e e

GF(®) GF(®) GF(®).

We must show that y(®)(A, C) is well-defined. Suppose we have another pair of transformation
related by a single morphism

This means that we have commutative squares

GF(®) + C(C, —) - G(F(®) +B(B, —)) F(®)+B(B,—) ——=F(®+A(A, —))

WG(F(‘PHB(&)) F(®)+B(g,-) T

GF(®) + C(C, —) — G(F(®)+B(B,-)) F(®)+B(B,—) — F(®+AA,-)).

If we apply G to the second and paste it to the first we get a commutative diagram which shows
that Gt - u= Gt' - . Tt follows that y(®)(A, C) is well-defined.

Naturality in A and C is clear as it is just composition with F(® + A(f, —)) and F(®) +
C(h, —) respectively and has nothing to do with the equivalence relation, which is localized at B.
So we get a profunctor morphism y(®).

To show that 7y is natural in @, let ¢ : & — ¥ be a natural transformation and consider

AG](F(®)) @8 A[F](@)(A, C) — 2 A[GF](®)(4, C)

| |

A[G](F(¥)) ®B A[F](¥)(A,C) A[GF](¥)(4,C)

where the vertical arrows are induced by ¢. If we chase an element u ®p ¢ in the domain, first
around the left-bottom we get u’ ®p 1’ and then G’ - u’ where ' and ¢’ are the unique PPI’s such
that

GF(®) + C(C, —) —= G(F(®) + B(B, -))

GF(<P)+C(C)[ G(F(¢)+B(B,-))

GF(¥) +C(C, —) —~ G(F(¥) +B(B, -))
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t

F(®)+B(B,—) F(®+A4,-))
F(¢)+B(B,—) F(¢+A(A,-))
F(¥)+B(B,—) F(¥Y+A@A4,-)).

t/

On the other hand, going around the top-right we get Gt - u and then v’ the unique PPI such that
GF (®) + C(C, —) —“~ GF(® + A(4, —))
GF(¢)+C(C,)‘ ‘GF(¢>+A(A,))
GF(W)+C(C,—-) — GF(W+A(,-)).

If we apply G to the diagram for ¢’ above and paste it to the one for i/, we see that Gz’ - i is such
aV,and so V' = Gt' - u/'. This gives naturality in .

We can check naturality in F and G separately. First, let o.: F —=F’ be a tense natural
transformation. We wish to show that

A[G](F(®)) @5 A[F](®) (4, C) — 2

|

A[GI(F'(®)) @n AIF'|(®)(4,C) — = AlGF')(®)(4,C)

A[GF](®)(A,C)

commutes. @ acting on an element u ®p 1 of the domain gives v’ ®p 1’ which gets sent to Gr’ - v/,
where

GF(®) + C(C, —) —= G(F(®) + B(B, —))

GF(a)+C(C,~)

lG(a(q’)JrB(Bv))

GF'(®) + C(C, -) —> G(F'(®) + B(B, -))

t

F(®)+B(B, -) F(®+AA,-))

(x((l))+B(B,—)‘ Fa+A(4,-))

F'(®)+B(B,—-)

F'(®+A(A,-)).

t/
On the other hand we first get Gt - u and then V' such that

Gt-u
_—

GF(®) + C(C, —) GF(® +A(4,-))

Ga(¢’)+C(C,—)J/ GF(a+A(A,-))

GF'(®) + C(C, —) —— GF(® + A(A, -)).
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Again, applying G to the square for ¢’ and pasting to the one for u’, we see that v/ =Gu' -1/,
i.e. naturality in F.
For naturality in G, let B: G— G’ be a tense natural transformation. We’ll show that

A[G](F(®)) @8 A[F)(®)(4, C) — "~ A[GF](®)(A, C)

|

A[G'|(F(®)) ®p A[F](®)(A,C)

o AGFI@)(4.0)

commutes. An element u ® ¢ of the domain, goes down to u’ ® ¢ and then G't/’ - ¢ for #’ such that
GF(®)+C(C, —) —*— G(F(®) + B(B, -))

ﬁF(¢’)+C(C7_)

lﬁ<F<¢))+B<B7_))

G'F(®) + C(C, -)

—— G/(F(®) +B(B,-)).

u®t goes across to Gt - u and then down to v/ such that
GF(®) + C(C,—) —"“ = GF(®+A(4, —))

BF(®)+C(C,—)

lﬁ(F(CDHA(A-,))

G'F(®) +C(C,-) G'F(®+AA,-)).

Vl

If we paste the diagram for ' with the naturality square
G(F(®) + B(B, -)) —— GF(®+A(4, -))
B(F¢’+B(By))l lﬁF(‘NA(A))

G'(F(®)+B(B,-))

GF(®+A4,-))

G't

and compare with the diagram for v/ we see that v/ = G’t - «/, which gives naturality in G.
Let

Set* - Set® 95 Set€ - SetP
be tense functors. Associativity involves taking an element v ® u @ t of
A[H](GF (®)) @8 A[G](F®) @c A[F](®P)

at (A, D) and applying ¥ in two different ways to reduce it to elements of A{[HGF](®), and seeing
that they are equal. This is for any PPI transformations

t: F(®) + B(B, —)—F(® +A(4, )
u: GF(®) + C(C, —) —= G(F(®) + B(B, -))
v: HGF(®) + D(D, —) — H(GF(®) + C(C, -)).
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And indeed, we get

VUt v (Gt - u)
!
H(Gt-u)-v
|
(Hu-v) ®t+———> HGt-Hu - v.
For the unit laws, first assume that B = A and that F = idg,a. Then y(<P) takes the form
7(®@): A[G] @4 Alidg,a ) (®) —A[G](P)

and an element of the domain is an equivalence class u ® t for PPI’s

@+ A<A/a _) ‘l>q) + A(Aa _) G((D> + C(Ca _) — G((D + A(Ala _)) .
For ¢ to be a PPI it must be of the form

P+A(f,—)
_—

D+AMA, ) d+AA, )

and every equivalence class has a unique representative where f is 14. Then y(®)(u® 1) =u
gives our bijective right unitor.
For the left unitor, let B = C and G = idg,c. Then 7 takes the form

Y(®): Alidgyc] (F(P) ® A[F](®)) —A[F](P)

and an element of its domain is an equivalence class u ® ¢ with PPI’s

F(®)+C(C,—)—>F(®+A(A,-)) F(®)+C(C,—)—2>F(®)+C(C,-)

For u to be a PPI it must be of the form F(®) + C(g, —). Again every equivalence class contains
a unique representative with g = 1¢. Then

VP (1®1) =1

gives the bijective unitor. O

As stated, the lax chain rule is called lax just because what might have been hoped to be an
isomorphism is merely a comparison morphism reducing a more complicated expression to a
simpler one. But, if we reformulate it in terms of the tangent bundle of Section 4.1, we get an
actual lax normal functor.

Recall that the tangent functor T'[F]

Set? x Set? & Set® x Set?

Set?® - Set?

is given by
TIF](®,¥) = (F(®), A[F](®) @A ) .
If G: Set® —>Set® is another tense functor, then the composite

TGl o T[F] = (GF(®), A[G|(F(P)) @B A[F|(®) @4 P)
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and
(Lor@), V(®) ®a ¥): T[G] o T[F] —T[GF]

makes 7': Zense — Zense into a lax normal functor. We omit the details which only involve the
rearrangement of the facts proved in Theorem 4.2.

5. Newton series
5.1 Multivariable Newton series

The Newton series of a function of a real variable f: R—R is a discrete version of Taylor
series. Its aim is to recover f from its iterated differences, or to approximate f by polynomials.
The formula is well-known

- :ng”[ﬂ.(O) ()

when x" is the falling power x(x —1)...(x—n+1) and (*) is the “binomial coefficient”
x(x—1)...(x—n+1)

; .
Altﬁough not so well-known, a recursive argument produces a multivariable version: for

f: R"—R we have
= ANAR - AR[f)(0,. .., 0)

Xn

kilka! - k!

Iky ko k,
x] X e Xy
kl,k27...7kn:0

= Y AbakAR[A0,...,0 <x1)<x2>...<xn>_
klykzganO b ,,[f]( )kl ky ky,

In (Paré, 2024) we gave a categorified version for taut endofunctors of Set and showed that
for analytic functors their Newton series converge to them. In fact this holds for a larger class
of taut functors, which we call soft analytic. Not only that, the approximation alluded to above
manifests itself as a categorical adjointness. In this section we develop multivariable versions of
these results.

5.2 Soft multivariable analytic functors

In order to categorify multivariable Newton series we must modify the notion of A-B symmetric
sequence to take into account the extra structure that the iterated differences have. We replace
the category !A of (Fiore et al., 2008) by the larger category |A with the same objects, finite
sequences (Aj, ..., A,) of objects of A, but where the morphisms

(A, ... Ay —=(C1,...Ca)

are pairs (o, (f;)) such that 6: m—n is a surjection and (f;) is a family of morphisms indexed
by m

fj . A(;j — Cj .
Composition is formally the same as for |A

(7, (&r)(0, {fj)) = (07, (grfu) -
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Whereas A is the free symmetric strict monoidal category generated by A, JA is the free
symmetric monoidal category in which every object has a canonical cocommutative coassociative
comultiplication.

Definition 5.1. A soft A-B-symmetric sequence is a profunctor P: |[A —e> B.

Given a soft A-B-symmetric sequence P: JA —e> B we define the functor P: Set* — Set®
by the formula

~ (A)..Ap)ElA
P(cp)(B):/ P(A1, ..., A:B) x DA, % ... x DA, .

Of course, for this to make sense @A x ... x ®PA, must come from a functor |A — Set, which
is indeed the case. For a morphism

(o, (fi- - fm): (A1,...,Ay)—=(C1,...,Cn)

we have a unique morphism making

PA; x ... x PA,

OC) X ... x DPC,
Projs proj j

DAy

@C;
Df;

commute for all j € m.
A more conceptual description of P is in terms of Kan extensions. Let Q: ({A)°? —> Set® be
the functor defined by

O(A.. A) =AA,—)+ ...+ A4y, —) .
It is indeed a functor, its value on a morphism

(0, {fis- s Sm): (A1, .. Ap)—=(C1,...,Cp)
being the unique morphism making all the squares

A(Cj’ _) - A(AGJ" _)

injj‘/ Linjaj

AC,—)+...+ACy,—) ——=AA,-)+... + A4y, )

commute. A profunctor P: |A —e> B is a functor P: (JA)°? x B—>Set which may be alter-

nately described as a functor (JA)?” —> Set® (which we denote by the same letter). Then P is the
left Kan extension of P along Q:

(JA)oP 0 Seth

\ AQPP

Set® .
Indeed,

Ap Ay
LangP(®) :/ P(Ar. . Ap—) x Set*(Q(Ay, . . ., Ay), ®)
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(see Mac Lane (1971), p. 236) and SetA(Q<A]. AR, D) DA X ... X PA,.
0O may be considered as a profunctor JA —e> A and we have the following “softening” of
Proposition 2.13.

Proposition 5.1. 1. P is the composite P® (Q © ())
e
Set? & Set'A % Set® .

2. Q satisfies the condition of 2.4.1.

Proof. (1) Same as in 2.13.
(2) Again myQ(Ay, . . ., A,; —) = n for the same reason (sum of n representables), but now for
a morphism (o, (f1, ..., fm)): (A1,...,Ap)—=(C1, ..., Cy) the morphism

7'[«'()Q(C17 .. .7Cm; —)—>7’COQ(A1, .. .,An; —)

is 0 : m—n, which is onto. O
Corollary 5.1. P is tense.

A more elementary understanding of P will be useful. From the coend formula for Kan
extension we see that an element of P(®)(B) is an equivalence class of pairs (p, ¢)

[p: (A1,...,Ay) —»= B, ¢: LA(A;, —) — D]
where peP(Ay,...,Ap;B) and Y A(A;, —) is short for Y!  A(A;, —). The equivalence

relation is generated by identifying (p,¢) and (g,y) when there is a morphism
(o, (f;)): (A1,...,Ay)—=(C1,...,Cy) in |A such that

(A],...,An> ZA(AI; _)
\p\\ K

(o,(£)) B Yo Alfj—) o}
/ /

<C15"'5Cm> ZA(CJ7 _)

where Y, A(fj,—) represents the natural transformation taking g: C;—=A to
fi
Ag(j) —=Cj—>A.
Functoriality of Pin B and @ is by composition: for b: B— B’
P(®)(b): (p, §) — (bp, 9)
and for 6: & —Y¥
P(6)(B): (p. ¢)— (p,69).

The universal property of Kan extensions says that for any functor F: Set® —>Set® we have
a natural bijection
P>F
P“~FQ.
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The correspondence between ¢ and u is the following. ¢: P—>Fis given by a family of natural
transformations

(P(®) —F(®))a
natural in ® € Set®, which further breaks down into a doubly indexed family of functions
(P(®)(B) —F (®)(B))a.z5
natural in both ® and B. So for every equivalence class
[p: (A1, .. Ay) —> B, ¢: ) A(A;,—) —D]

we get an element ¢[p, @] € F(P)(B).
On the other hand u: P— FQ is a doubly indexed family of functions

(P(Ay,...,Ay;B)—F (Y A(A;, —))(B))
natural in (Aq,...,A,;) € JA and BinB.
Given ¢ we get u by restricting to the case ® =) A(A;, —) and ¢ the identity

u(p) =t[p,idy g4, -
Given u we get t by

tlp, 9] =F(9)(u(p)) .

There is nothing to check, such as naturality or well-definedness, as it all follows by the general
theory of Kan extensions. We will use these formulas in the proof of Theorem 5.1.

Another result that will be useful is the following fact which, although trivial, is interesting in
its own right and worth pointing out.

Lemma 5.1. For a pair (p: (A;,...,A,) —= B,¢: Y A(A;, —) —P), the Boolean image of
¢

Y A(A;, —)—Bim(¢) —®
is an invariant of the equivalence class [p, 9].

Proof. Suppose (p, ¢) and (g, y) are related by a single morphism (o, (f;)) of A, i.e.

(A1, ..., An) YA(A;, )
\\ X\\
Yo Afj—) o}
/ =
<C1""’ ZA(CN_)

commute. Because (o, (f7)) isin |A, Y5 A(fj, —) is mo-surjective, so Bim(¢) = Bim(y). O

Definition 5.2. A functor of the form P: Set® —Set® for P: |[A —e> B will be called soft
analytic.

It will become clear below that P is uniquely determined by P (see 5.2).

Proposition 5.2. Analytic functors are soft analytic.
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Proof. The category !A of Section 2.5 is a subcategory of |A, and the Q of 2.5, the restriction
of the one just introduced. For an A-B symmetric sequence P: !A —e> B, P is the left Kan
extension

(1A)oP (1A)? —2 - Seth
= | =
2 i P
SetP

which can be taken in stages giving, first a soft A-B symmetric sequence P’ and then the analytic
functor P which is isomorphic to P'. L

We can describe P’ explicitly. It’s the left Kan extension of P along the inclusion
(1A)°P >~ (JA)? so

) (Cy..Cn)EIA
P(Al...A,,;B)%/ P(Ci...CoiB) X LA(A) ... A;Cy ... Co) .

An element of P'(Ay, ..., A,; B) is thus an equivalence class
(0,(f1--fn))
[Ar .. A — ey G) —o>B]

where 6: m—=n is onto, fj: Agj—=Cj and p € P(C ...Cy;B). The equivalence relation is
generated by identifying (o, (f;), p) with (p, (g;), ¢) is there exists a morphism (7, (h;)) in !A
such that

(0,(fi---1n))
A1, .. A~ ey, Gy —— B
1(7’<hlmhm>)
Al,... A Dy,...,Dp) —o——>B
< 1 s n> m ( 1, s m> g
ie.
i
m Ao’j*>Cj <C1Cm>
/ \p\
n T ‘h, (‘c,(h,,,..hW)L B
X /.q/’
m Aproj>DTj (Dy...Dy)

In every equivalence class there are representatives of the form

o, le" p
(A1, .. Ag) ——(As1,Ac2, - - - , Agm) —*—>B

and, after some calculation, we see that two such are equivalent if and only if there is a T € S,
such that
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We can further nail down the equivalence class by choosing canonical surjections m —> n, the
order preserving ones, and these are determined by their fibres m; which are positive integers. This
gives a relatively simple description of P’

P(Ay,...AxB)= Y PAT™, .. A™:B)/Sw X ... X Sp,

my,...my,>0

where A?m" = (Aj, A, ..., A;) € A™ and the action is by permuting those entries.

5.3 The Newton series comonad

In this section we show that taking iterated differences is right adjoint to summation of a multi-
variable symmetric series. We first combine all the iterated differences into one soft symmetric
sequence.

Proposition 5.3. Let F: Set® —Set® be tense. Then taking the iterated symmetric differences
of F evaluated at ® gives an A-B symmetric sequence

AJF](®): A —s= B
AJF)(®)(Ar, ..., AwiB) =Dy, ... Ay, [F)(®)(B) .

Proof. Ax, ... Ax,[F](®)(B) = A, [F](P)(B) consists of the new elements of
F(®+A(A,—)+...+A(A;,—))(B) .,

i.e. those elements not in F(®+A(Aq1,—)+ ...+ A(Agk, —)) for any proper subsequence
(Aal, -y Agk), 02 k >—n a proper mono. We’ll show that A, [F] is a subfunctor of F(® + Q).
Let (o, (fi,..-,fm))): (A1,...,Ay)—={(Ci,...,Cyp) be a morphism in |A, and let x be an
element of

Ac, ... Ac, [FI(®)(B) SF(®+A(Ci, =) +...+A(Cu, —))(B) .

Then y=F(o,(fi,--.,fm))(B)(x) is an element of F(®+A(A;,—)+...+A(A,, —)(B)
and suppose it’s not new. There is a proper monomorphism «: k >—n such that ye
F(Pa(Aar;, =) + ...+ AlAak, —))(B).

The pullback of a proper mono along an epi is again proper so we get

which, in turn, gives a pullback of complemented subobjects in Set?

A(Cpr,—)+ ... +A(Cp,—) & A(C1, =) + ...+ A(Cp, —)

(Pv(fﬁl,~fﬁn>) (G»<f17"'-,fm>)

A(Aal,—)—i- .. .+A(Aak, —) C—>A(A],—)-|-. . .+A(An,—) .
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Adding ® produces another such pullback and F', being tense, will preserve it

F(®+A(Cp1,—)+...+A(Cp,—)) & F(@+A(Cl,—) +...+A(Cp, —))

F@+A(Aa1,—)+... +A(Aak, =) ——=F(P+A(A1,—)+ ...+ A(As, ) .

Then x in the upper right corner gets sent to y which is in the lower left corner, so x itself is in the
upper left corner, i.e. x wasn’t new after all. Thus A,[F](®) is a subfunctor of F(® + Q). O

A.[F](®P) is functorial in F. Indeed, applying Proposition 3.1 recursively, we see that any tense
transformation ¢t : F — G restricts to

Ad, .. Ay, [F](®) = F(®+A(A1, =) + ...+ A4y, -))
|
|
A

Ad, .. A4, [G)(®) = G(@+A(A1, =) +. .. + A(An, —))

H(D+A(AL,—)+..+A(An,—))

which will be natural and functorial automatically. Thus for each ® in Set* we get a functor
Al [(®): Tense(Set*, Set®) — Frof (|A,B) ,
i.e. A([F](®) is an A-B soft symmetric sequence.
The main result of this section is the following:
Theorem 5.1.
A.[ 1(0) is right adjoint to () .

Proof. P is the left Kan extension of P along O

(A)P — 2 geth

\ AQP —p

Set®

so for any functor F : Set* —> Set® we have a bijection
P'>F
P—=FQ
as discussed above. Now A,[F](0) is a subfunctor of FQ. Indeed
AL[F](0)(A1, ..., An)(B) =A4, ... A4, [F](0)(B)

consists of the new elements of
F(Q(Al,...,A))(B)=F(A(A;,=)+...+A(A,,—))(B) .

We’ll show that t: P—>F is tense if and only if u factors through A, [F](0) & FQ which
will establish the theorem.

First assume ¢ is tense. Let p be in P(A,...,A,;;B) so u(p) is in F(A(A;,—)+ ...+
A(A,, —))(B) and assume u(p) is in F of some subsum F(A(Agi, —)+ ...+ A(Agk, —))(B)
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for a subset o: k >—=n of the indices. Tenseness of ¢ applied to the complemented subsum
w: YA(Ay, —) <= Y A(A;, —) gives a pullback

JEEIEA P((C}); B) x Set* (L A(Cj, —), L A(Ai, —))(B) F(LA(Ai, —))(B)

| |

JEIEA p((C;); B) x Set* (L A(C), —), £ A(Aai, —))(B) F(EA(Agi, —))(B) .

Then u(p) =T|[p,idy a(a;,—)] is in F(¥ A(Agi;, —))(B) so [p,id] is in the lower left corner
which means there are g: (Cj,...,Cy) —>= Band y: Y A(C;, —) —= Y A(Aq;, —) such that
[4, L] = [p,id]. Thus by Lemma 5.1 we see that Bim(uy) = Bim(id) =Y. A(A;, —). It follows
that p is the identity, so u(p) is not contained in F of any proper subsum, i.e. is new. This gives
our factorization of u through A, [F](0).

Conversely, assume that u factors through A, [F](0). We’ll show that 7 is tense. Let ¥ < ® be
a complemented subobject. We must show that

B@) s F(o)

|

P(¥) o F(¥)
is a pullback. Take an element [p: (A;,...,A,) —s> B,¢: Y A(A;, —)®] of P(®)(B) and
assume 7(P)[p, §] = F(¢)(p) is in F(¥). Form the pullback

LA, -) — =@

] = |

It is induced by a monomorphism & : m >——sn because a complemented subobject of a sum of
representables is a subsum. We get a new pullback now by tenseness of F’

F(LA(Ai, —)) Fo

]

F(ZA(Aej, —)) oI

F(¢) takes u(p) to an element of F(¥) so u(p) € F(¥ A(Aaj, —)). But u(p) was supposed to be
anew element of F (Y A(A;, —)) so « is not a proper subsum which means that

YA —)Hd)

S~
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Thus [p, 9] is in P(¥). This shows that our square () is indeed a pullback. O

The adjoint pair () 4A.[ ](0) induces a comonad on Zense(Set*, Set®) which we call the
Newton series comonad.

5.4 Convergence
In this section we show that the Newton series for a soft analytic functor “converges to it”.

Theorem 5.2. For every A-B soft symmetric sequence P: |A —e= B, the unit for the adjunction
of 5.1

is an isomorphism.

Proof. An element of A,[P](0) at (A, ...,A,), Bis a new element of P(¥. A(A;, —))(B), i.e. of

JErCnS A P(Cy L Gy B) X Set* (L A(C), —), L A(A;, —))

which is an equivalence class
[p: <C17 se 7Cm> > B’ ¢: ZA(C], _)% ZA(AH _)]

(satisfying the newness condition, of course).

The unit P— A,[P](0) takes p: (A1, ...,A,) —e> B to the equivalence class
[p: (A1,...,Ay) —= B,id: LA(A;,—)— LA(A;,-)].

A ¢ as above is, as explained in the discussion around Proposition 2.4, of the form Y., A(fj, —)
for a: m—n and f;: Agq;—C; and we can take its Boolean factorization by factoring ¢ (in

Set)
m——2% o
x /
k
and taking
Yo A(f) Ly Allyi-)
Y A(C, ) Y AAu, —) = Y A4 ).
JjEmM ick ien

If 4 were a proper mono, [p, ¢] wouldn’t be new as it would be in P(¥;c; A(Aui, —)), so p=id,
and a = o, a surjection. Thus (o, (f1)) is a morphism of |A and we have

(Ci1,...,Cn) 5 A(C;, )
o =y
(o.(£)) \B .- s -
/ Ya A(.f/-, ) ZA(A“ )

/' p/ 4
(A1, ..., A Y A4, —)
so [p, ¢] = [p’, id], which shows that the unit

P—A.[P(0)
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p—[p,id]

is onto.
To show that the unit is one-one we must show that if [p, id] = [g, id] then p = q. [p, id] = [g, id]
means there’s a zigzag path of

(C1,...,Cp) 5 AC )
\ p Jr P
(p.(h3)) \B - ™ L
/ Zp A(h], ) ZA(AH )

A gl

<D1, e ,Dr> ZA(Dsa _)

with (p, (h;)) in JA joining [p,id] to [g, id]. The Boolean image of ¢; (and ;) is an invariant of
the equivalence class (5.1) and as Bim(id) =} A(A;, —), all the ¢ and y also have Y A(A;, —) as
their images. That means that the morphisms (o, (f;)) and (7, (g)) corresponding to ¢ and y are
actually morphisms in |A, i.e. 6: m—n and T: r—n are surjections. Now we have

(Ciy- ., G
(o.1£) \p\
(Aiy ..., Ap) (p,(hj)) B
(t.s) /
(Di,...,D,)

commuting p(o, (f;)) =q(7, (gs)) at every stage of the path joining (p,id) to (g,id), and for
these endpoints we get p and g respectively, i.e. p =gq. O

This shows that the Newton series comonad is idempotent.

Corollary 5.2. If F : Set® — Set® is soft analytic (in particular analytic) then its Newton series
converges to it, i.e. the counit

A F](0)—F

is an isomorphism.

5.5 Concluding remark

—_—~—

In the previous sections, we touted the functor taking F to F = A,[F](0) as a categorical version
of the Newton summation formulas at the beginning of 5.1, but in fact it looks nothing like them.
Let’s consider the first one

_ AR AR £)(0, ..., 0)
o, x)= Y — k?: o Xt ke

Ky ... skn
where f is a function R” — R and the sum is taken over all n-tuples of natural numbers. We’ve
replaced f by a (tense) functor Set® —= Set® and the difference operators by our functorial ones,
but it’s not clear how to interpret the rest of the formula. Let’s look at it more carefully.

The first thing to note is that, while the x; in A, and in x; ki refer to the same thing, they play
different roles. The x; in A,, is merely a subscript indicating which difference operator is used,
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ki

and we could well have written A; instead, although A, is more descriptive. The x; in x;™, on the

other hand, represents a variable which can take values, c;. So we have

k
Ax{ . . Aﬁz [f](ov sy 0) Cikl Cikn
kit - K b

Here all the like A’s have been grouped together which is fine as we have finitely many variables
and they’re totally ordered. It would be more natural to sum over all finite sequences of variables
<xa(]) .. .xa(m)> and group the terms together by the length m. Of course we get more terms:

AL . A% gets counted

ki+... 4k (ki k) m!
ki,..., ky, B ki!'...k,! okl k!

times, so now we have

_ y Ag(1) - - - Da(my[£1(0, 0) el b

m!

In fact this takes care of the finiteness and total ordering of the variables, as far as the A part of
the formula is concerned. We take a set of variables Var and consider the free monoid on it Var®,
over which the sum is to be taken. The ¢; are a choice of value for each variable ¢ : Var—R but
we still have to deal with the k; in this setup.

The &’s count the number of occurrences of a given variable y in a sequence (xj, ..., x,). Let

&8: Var x Var—N

be the Kronecker delta, i.e. §(x,y) =1 if x =y and 0 otherwise. For each y, extend §(—,y) to a
function 6(—, y): Var* — N using the additive structure of N, so

3(x1,...,x,,;y)225(x,-,y)

is exactly the number of y’s in (xi, ..., x,). Thus we end up with the Newton series in the form
we want

F Ay - - - Ay, [f1(0) 51y

flo)= Z % I I ¢(y)i (X150 Xn3Y)

y€E Var

which, admittedly, looks more complicated than the original but it’s the closest we can get to the
categorical version.
Now the Newton series comonad of Section 5.3

—~— Al

ALF)(0) = /<Al et Aa, - A4, [F](0) x Set*(A(A1, =) + ...+ A(A,, —), )
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looks similar to the above, with the following correspondences:

fiR"—=R < F: Set® —> Set®

variables x <> objects A of A

Var < A
Var* + JA
¢: Var—R < &: A —Set
S(x,y) <> A(A',A)
O(x1y ..y Xn,y) < AALA)+...+ A4, A)
To()WPE=5) oy Setd(A(A1, =)+ ...+ A(Ap, —), ®)
The correspondence is not perfect, of course. Var* might rightly be said to correspond to !A rather

than JA. Then the m! in the sum is incroporated in the coend via the symmetric groups.
Also [T ¢ (y)+001--*mY) should correspond to monomorphisms

AAL,-)+...+A(Ap,—)—D

rather than arbitrary natural transformations. That’s what the extra morphisms in JA (involving
surjections o) take care of. We need a bit more theory to explain this.

Definition 5.3. Let ®: A —Set and x € PA. An ancestor of x is a y € PA’ for which there is
a morphism f: A’—=A such that ®(f)(y) =x. Two elements x; € PA; and x, € DA, are rel-
atives if they have a common ancestor. A sequence (x| € Ay, ..., x, € PA,) is called diverse
if no two elements are relatives. A natural transformation ¢: Y A(A;, —) —® is diverse if the
corresponding sequence of elements (¢ (A;)(14,)) is.

All the elements of a diverse sequence are different and more, but not enough more to make
the corresponding transformation monic. One could have i # jand f: A; —A, g: A;—A with
D(f)(x;) =P(g)(x;). But if A is a groupoid, then ¢ is monic if and only if it is diverse. The
variables xi, ..., x, in the formula we’re abstracting from form a finite discrete set so diverse
restricts to one-one in that case.

Proposition 5.4. (1) ¢ as below is diverse if and only if for every factorization of ®

Z A(Ah _)

~

ZG A(fhi) ¢

/
ZA(CJ" _)

with (o,(fi)): (C1,...,Cn)—={(A1,...,A,) in LA, we have that © is a bijection,
ie (o, (fi)) €A.
(2) Every ¢ factors as WY A(f;, —) with (0, (f;)) € LA and y diverse.

Proof. (1) ¢ and y as in the statement correspond to an n-tuple x; €Ay, ..., x, € PA, and an
m-tuple y; € ®Cy, ..., y, € PC,, respectively. The x’s and y’s are related by

xi = D(fi) (Voi) -
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If o is not one-to-one, say o (i) = o (i2), then x;, and x;, are relatives as they have the common
ancestor ye ;) = Yo (ip)- S0 the x; are not diverse nor is ¢.

Conversely, if the x; are not diverse, then there are two x’s that are relatives. Assume, for
simplicity of notation, that they are x,_; and x,. So we have f: C—A,_1,g: C—=A, and
y € ®C such that ®(f)(y) = x,—1 and ®(g)(y) = x,,. Then we get a morphism

(o, (fi)): (A1, ..., Ap—2, C) —= (A1, ... Ap)

G(i):{i ifi<n

n—1ifi=n,

<fl> = <1A1a ey 1An,27f7g> .
Let (y1,...,Yn—1) = {x1,...,X—2,). Then
x;i = P(fi)(yoi)

so the y determine a y giving a factorization as above, and o is not a bijection.

This proves (1).

(2) If ¢ is not diverse, there exists a factorization as in (1) with ¢ onto but not one-to-one, so
Y A(Cj, —) has fewer terms than Y A(A;, —). If we take, among all factorizations, one with the
minimal number of terms, the Y must be diverse, otherwise we could factor it again and get a
smaller one. O

Corollary 5.3. Every equivalence class
[(xe F(LA(A;,—))(B),9: LA(A;, —)— D]
in
(A1, A)ElA A
/ A, ... Aa[F](0)(B) x Set* () A(4;, ), @)
has a representative in which ¢ is diverse.

Proof. Factor ¢ as in 5.4 (2) above. Then

x € FLAM,)(B) LAW;,-) ——®
l F(o.(f:) Yo A(fi-)
Y € FLAC,-)®) LA(C), ) —y> P
so [x, §] = [y, v] and y is diverse. O

The diverse transformations are our categorified set injections so
Diverse (Y A(4;, —), ®)

is our version of falling power. Note, however, that it is not functorial, and we need all
transformations to make it so.
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