
Mathematical Structures in Computer (2019), 1–00
doi:10.1017/xxxxx

ARTICLE

Multivariate functorial difference
Robert Paré

Department of Mathematics and Statistics, Dalhousie University
Halifax, NS, Canada, B3H 4R2
pare@mathstat.dal.ca

(Received xx xxx xxx; revised xx xxx xxx; accepted xx xxx xxx)

Abstract
Partial difference operators for a large class of functors between presheaf categories are introduced, extend-
ing our previous work on the difference operator to the multivariable case. These combine into the Jacobian
profunctor which provides the setting for a lax chain rule. We introduce a functorial version of multivari-
able Newton series whose aim is to recover a functor from its iterated differences. Not all functors are
recovered but we get a best approximation in the form of a left adjoint, and the induced comonad is
idempotent. Its fixed points are what we call soft analytic functors, a generalization of the well studied
multivariable analytic functors.

Keywords: Tense functor, profunctor, finite difference, presheaf category, symmetric sequence, analytic functor, lax chain
rule, soft analytic, Newton series

In memory of Phil Scott, 1947–2023
Philip Scott

I knew Phil for most of his career, from when he was a post-doctoral fellow at McGill in 1977, a
colleague the following year at Dalhousie, and a friend ever since. His knowledge of the literature
in category theory, logic and computer science was phenomenal. He travelled a lot and spoke to
many people. This way, he kept up to date on the latest developments and each time he visited
Halifax, he had some new topic he thought I should look at. This was good advice which I wish
I had been more diligent following up. We’ve lost a great ambassador for our subject as well as a
friend. I dedicate this work to him.

Introduction

This is a sequel to (Paré, 2024). Here we are interested in the structure of functors SetA // SetB

(A and B small categories) generalizing the difference calculus for endofunctors of Set. An impor-
tant example is given by the generalized analytic functors of Fiore et al. (2008). As in that work,
profunctors are central. That is perhaps the main difference the present work has with (Paré, 2024).
This is somewhat of a simplification like saying that multivariate calculus is just single variable
calculus plus linear algebra. The added dimensions open up a whole array of possibilities.

The work here is a categorified version of the classical partial difference operators for real
functions

Rn //Rm ,

a discrete version of partial derivatives. The analogy is quite fruitful.
As the paper is quite long, it may be helpful to point out the main results, namely the lax

chain rule (Theorem 4.2) and the Newton adjunction (Theorem 5.1) together with the convergence
© Cambridge University Press 2019

https://doi.org/10.1017/xxxxx
mailto:pare@mathstat.dal.ca


2 Multivariate functorial difference

theorem (Theorem 5.2). These results are proper to the categorical setting and have no counterpart
for real-valued functions. They could not be formulated without the pivotal definitions of the
(discrete) Jacobian as a profunctor (Definition 4.1) and soft analytic functor (Definition 5.2).

Apart from the obvious (Fiore et al., 2008) and the references therein, the present work was
strongly influenced by the work of the Calgary-Ottawa-Montreal consortium on tangent cate-
gories and cartesian differential categories. Several talks in the ATCAT seminar by regulars Geoff
Cruttwell and Marcello Lanfranchi as well as guest speakers, notably Robin Cockett and JS
Lemay, helped form my ideas on the categorical theory of differentials. After completion of this
work, the paper “Cartesian difference categories” by Alvarez-Picallo and Pacaud Lemay (2021)
came to my attention. This is clearly relevant as it deals with the categorical understanding of
finite difference. What is less clear is precisely how they are related. Further work in this direction
should prove fruitful.

Thanks to Nathanael Arkor, Andreas Blass, John Bourke, Aaron Fairbanks, Marcelo Fiore,
Richard Garner, Theo Johnson-Freyd, Tom Leinster, Matı́as Menni, Deni Salja, and Peter Selinger
for their insightful comments and interest. A special thanks to Peter Selinger for helping me
prepare the final version in the MSC style.

1. Profunctors
Profunctors (a.k.a. bimodules, modules, distributors) will be at the heart of this work. Widely
viewed as categorified relations, for our purposes they are better viewed as categorified matrices.
They correspond to cocontinuous functors between functor categories. Such functors are consid-
ered to be linear. This section contains nothing new (except perhaps Definition 1.2 and Proposition
1.2). It is included for completeness and to set notation.

1.1 Definitions
We have opted, not without thought, for the following definition which is the opposite of the
majority view.

Definition 1.1. (Lawvere, Bénabou) Let A and B be small categories. A profunctor P : A • // B
is a functor P : Aop ×B // Set. A morphism of profunctors t : P //Q is a natural transformation.

This gives the basic data for a bicategory, Prof , of profunctors. Composition is given by
“matrix multiplication” which takes the form of a coend. For P : A • // B and Q : B • // C,
the composite Q⊗ P is defined by

Q⊗ P(A,C) =
∫ B∈B

Q(B,C)× P(A, B) .

The identity IdA : A • // A is the hom functor

IdA(A, A′) = A(A, A′) .

The reader is referred to the standard texts (see e.g. Borceaux (1994b)) for a proof that we do
get a bicategory.

For explicit computations involving profunctors, the following notation is useful. An element
x∈ P(A, B) is denoted by a pointed arrow, sometimes called a heteromorphism, x : A • // B,
or x : A •

P
// B if it’s necessary to keep track of the profunctor. The functoriality of P manifests



Robert Paré 3

itself as a composition

A B•x //A

A′

OO

f

B

A′

??

•
x f

A B•x //A

B′

•gx

��

B

B′

g

��

which is associative (left, right, and middle) and unitary.
It is in dealing with composition that this is most useful. An element of Q⊗ P(A,C) is an

equivalence class of pairs

[A •x
P
// B •

y

Q
//C]B

where the equivalence relation is generated by identifying [A •x // B •
y //C] and

[A •x
′
// B •

y′ //C] if we have

A B′•
x′

//

A

A

A B•x // B

B′

b

��
B′ C ,•

y′
//

B

B′

B C•
y // C

C ,

so they are equivalent iff there exists a path of pairs

A B′ C .

...
...

...

A B2 C

A B1 C

A B C

bn

OO

b3��

b2

OO

b1

��

•
x′

//
y′

//

•
x2 // y2 //

•
x1 // •

y1 //

•x // •
y //

(*)

We write the equivalence class [A •x // B •
y //C]B as

y⊗B x or simply y⊗ x .

The equivalence relation is generated by

yb⊗ x = y⊗ bx .

Every functor F : A //B induces two profunctors

F∗ : A • // B F∗ : B • // A

and



4 Multivariate functorial difference

F∗(A, B) = B(FA, B) F∗(B, A) = B(B, FA).

F∗ is right adjoint to F∗ in Prof .

1.2 Biclosedness
The bicategory Prof is biclosed, that is ⊗ admits right adjoints in each variable giving two hom
profunctors ⊘ and ; characterized by natural bijections

P //Q ;C R

Q⊗B P // R

Q // R⊘A P

for profunctors

A B•P //A

C .

•
R ##

B

C .

•Q
��

We use Lambek’s notation for the internal homs. Inasmuch as ⊗ is a product, the right adjoints
are quotients of a sort.

An element of (Q ;C R)(A, B) is a C-natural transformation

t : Q(B,−) // R(A,−)
and an element of (R⊘A P)(B,C) is an A-natural transformation

u : P(−, B) // R(−,C) .

1.3 Cocontinuous functors
Our interest is in functors between functor categories and a profunctor will produce an adjoint pair
of them. A profunctor : 1 • // A is a functor

1op ×A // Set

which we identify with a functor Φ : A // Set. A profunctor P : A • // B will then produce, by
composition, a functor

P⊗A ( ) : SetA // SetB

with a right adjoint

P ;B ( ) : SetB // SetA .

It follows that P⊗A ( ) is cocontinuous and is considered to be the linear functor corresponding
to the matrix P.

As is well-known, we have:

Proposition 1.1. The following categories are equivalent:

(1) Profunctors A • // B
(2) Cocontinuous functors SetA // SetB



Robert Paré 5

(3) Adjoint pairs SetA SetB//
SetA SetB

oo ⊥

Given a cocontinuous functor F : SetA // SetB, the corresponding profunctor P : A • // B
is given by

P(A, B) = F(A(A,−))(B) .

Note that this doesn’t use cocontinuity of F , which leads to the following.

Definition 1.2. The core of a functor F : SetA // SetB is the profunctor defined by

Cor(F)(A, B) = F(A(A,−))(B) .

The functor

Cor(F)⊗ ( ) : SetA // SetB

is the “linear core” of F .

Proposition 1.2. Cor is right adjoint to the functor Prof (A, B) //Cat(SetA, SetB) which takes
a profunctor P to the (cocontinuous) functor P⊗A ( ).

Proof. A profunctor P : A • // B can be viewed, by exponential adjointness, as a functor
Aop // SetB. Then Cor is just restriction along the Yoneda embedding

F : SetA // SetB 7−→ Aop Y // SetA F // SetB

and P⊗A ( ) is left Kan extension

Aop

SetB

P
��

Aop SetAY // SetA

SetB

LanY P=P⊗( )
��

+3

.

Thus for F : SetA // SetB, Cor(F)⊗A ( ) is the best approximation to F by a cocontinuous
functor. As a matter of interest, the counit of the adjunction

ε(F) : Cor(F)⊗ ( ) // F

is given as follows. An element of (Cor(F)⊗Φ)(B) is an equivalence class

[x∈ΦA, y : A •
Cor(F)

// B]A

so

[A(A,−) x̄ //Φ, y∈ F(A(A,−))(B)]
giving

F(A(A,−))(B)
F(x̄)(B) // F(Φ)(B)

y 7−→ F(x̄)(B)(y) .

Example 1.1. If A and B are discrete categories, i.e. sets A and B, then a profunctor P : A • // B
is just a A× B-matrix of sets [Pab] and a morphism of profunctors P // P′ a A× B-matrix of



6 Multivariate functorial difference

functions. The identity IdA is the matrix with 1’s on the diagonal and 0 elsewhere. If C is another
discrete category and Q : B • // C a profunctor, then Q⊗B P is the B×C-matrix[

∑
b∈B

Qbc × Pab

]
.

If R : A • // C then

R⊘A P =
[
∏
a∈A

RPab
ac

]
and

Q ;C R =
[
∏
c∈C

RQbc
ac

]
.

A profunctor X : 1 • // A is a 1× A matrix of sets, i.e. a vector [Xa] and P⊗A X is the vector[
∑
a∈A

Pab × Xa

]
b .

On the other hand for Y : 1 • // B a B-vector P ;B Y[
∏

b
Y Pab

b

]
a .

So P⊗A ( ) is a “linear” functor, and P ;B ( ) a “monomial” functor.

2. Tense functors
In Paré (2024) we developed a difference calculus for taut endofunctors of Set, functors preserving
inverse images. However, the important example of multivariable analytic functors of Fiore et al.
(2008) are not taut. In fact the linear functors P⊗ ( ) are not taut. They don’t even preserve
monos. What we need are functors preserving complemented subobjects and their inverse images.
Of course, in Set, all subobjects are complemented so it would make no difference, so maybe
that’s what taut should be after all. But the word “taut” is pretty well established, so we use
“tense” instead.

2.1 Complemented subobjects
In this section we collect some useful facts about complemented subobjects in functor categories
SetA, most of which are well-known from topos theory. We first list some general topos theory
results which will be useful for us. Proofs can be found in any of the standard topos theory books
(see Borceaux (1994a) for an easily accessible account).

Definition 2.1. A subobject Ψ // //Φ is complemented if there exists another subobject Ψ′ // //Φ
for which the induced morphishm Ψ + Ψ′ //Φ is invertible.

We will use the hooked arrow Ψ ↪→Φ as a reminder that Ψ is complemented,
Recall that every subobject Ψ // //Φ has a pseudo-complement ¬Ψ // //Φ, the largest sub-

object of Φ whose intersection with Ψ is 0. It can be calculated as the pullback of the element
false : 1 // //Ω along the characteristic morphism of Ψ.



Robert Paré 7

Proposition 2.1. 1. A subobject Ψ // //Φ is complemented iff its characteristic morphism factors
through 1 + 1

Φ

1 + 1
��

Φ Ω
χΨ // Ω

1 + 1

AA

⟨true, false⟩AA

2. Complemented subobjects are closed under composition.

3. Complemented objects are stable under pullback: if Ψ ↪→Φ is complemented and
f : Θ //Φ, then ¬ f−1(Ψ) = f−1(¬Ψ) and we have isomorphisms

Ψ + (¬Ψ) Ψ .// ∼= //

f−1(Ψ) + f−1(¬Ψ)

Ψ + (¬Ψ)

g+g′

��

f−1(Ψ) + f−1(¬Ψ) Θ// ∼= // Θ

Ψ .

f

��

4. If Ψ ↪→Φ is complemented, its complement is ¬Ψ, so complements are unique when they
exist.

5. Given an inverse image diagram (pullback)

Ψ Φ ,// //

Γ

Ψ

g

��

Γ Θ// // Θ

Φ ,

f

��

Pb

f restricts to

¬Ψ Φ// //

¬Γ

¬Ψ

¬g

��

¬Γ Θ// // Θ

Φ

f

��

and the resulting square is also a pullback.

Complemented subobjects in functor categories SetA are better behaved than in general
toposes. For example ¬Ψ // //Φ is always complemented for any subobject Ψ // //Φ.

Proposition 2.2. For SetA we have
(1) Ψ // //Φ is complemented iff for all f : A // A′ and x∈ΦA we have

x∈ΨA ⇐⇒ Φ( f )(x)∈Ψ(A) .

This is equivalent to saying that for all f : A // A′

ΨA′ ΦA′// //

ΨA

ΨA′

Ψ f

��

ΨA ΦA// // ΦA

ΦA′

Φ f

��



8 Multivariate functorial difference

is a pullback diagram. This in turn is equivalent to saying that for all f : A // A′, every
commutative square

Ψ Φ// //

A(A′,−)

Ψ

��

A(A′,−) A(A,−)
A( f ,−) // A(A,−)

Φ

��

A(A,−)

Ψ
zz

has a unique fill-in making the bottom triangle commute, i.e. Ψ //Φ is orthogonal to every
representable transformation.

(2) For Ψ // //Φ,

¬Ψ(A) = {a∈ΦA | (∀ f : A // A′)(Φ( f )(a) /∈Ψ(A′)}

and ¬¬Ψ(A) consists of all elements, x of Φ(A) connected to an element x′ of Ψ by a zigzag of
elements of Φ

A oo A1 // A2 oo · · · // An A′

ΦA oo ΦA1 //ΦA2 oo · · ·ΦAn oo oo ΨA′

x oo � x1
� // x2 oo

� · · · � // xn x′

(3) For any Ψ // //Φ, ¬Ψ is complemented and its complement is ¬¬Ψ which is the smallest
complemented subobject of Φ containing Ψ.

Thus the class of complemented subobjects consists of all transformations right orthogonal to
the representable transformations A( f ,−), suggesting that it may be the M part of a factorization
system on SetA, which is indeed the case.

For Φ in SetA, let ∼ be the equivalence relation on the set of all elements of Φ generated by
identifying x∈ΦA with Φ f (x)∈ΦA′ for all f : A // A′. Thus x∈ΦA∼ x′ ∈ΦA′ if there exists
a zigzag path as in (2) above. The set of equivalence classes is the set of components of Φ,
π0Φ = lim−→A

ΦA, and two elements are equivalent if and only if they are in the same component.

Definition 2.2. A transformation t : Ψ //Φ is π0-surjective if π0t : π0Ψ // π0Φ is surjective.

Thus t is π0-surjective iff every element of Φ is connected by a zigzag path to an element in
the image of t.

Proposition 2.3. (1) t, u π0-surjective⇒ tu π0-surjective.
(2) tu π0-surjective⇒ t π0-surjective.
(3) Every t factors uniquely up to a unique isomorphism as a π0-surjective followed by a

complemented monomorphism.
(4) The π0-surjective transformations are left orthogonal to the complemented monos.

Proof. (1) and (2) are obvious from the definition. For (3), let t : Ψ //Φ be any transformation.
Let Φ0A⊆ΦA be the set of all x∈ΦA connected to an element in the image of t. Φ0 is easily seen
to be a complemented subfunctor of Φ, and is in fact the union of all of the components of Φ that
contain an element in the image of t. Then t factors as

Ψ
t0 //Φ0

� � //Φ



Robert Paré 9

and t0 is π0-surjective by construction. This is our factorization. The uniqueness part will follow
from (4).

Consider a commutative square in SetA

Γ ∆
� �

m
//

Ψ

Γ

r

��

Ψ Φ
t // Φ

∆

s

��

where t is π0-surjective and m is a complemented mono. Any x∈ΦA is connected to some t(A′)(y)
for y∈ΨA′, so s(A)(x) is connected to s(A′)t(A′)(y) = m(A′)r(A′)(y). As m is complemented, this
implies that s(A)(x) is in Γ(A). This gives the diagonal fill-in δ : Φ // Γ such that m δ = s and
δ t = r. δ is unique as m is monic.

These results tell us that we have a factorization system on SetA with E the class of π0-
surjections and M the class of complemented monos. We call it the Boolean factorization.
Note that the class of π0-surjections is not stable under pullback however. Consider morphisms
fi : A0 // Ai, i = 1, 2 in A and consider the pullback

A(A2,−) A(A0,−) .
A( f2,−)

//

Σ

A(A2,−)
��

Σ A(A1,−)// A(A1,−)

A(A0,−) .

A( f1,−)

��

Pb

Σ(A) consists of pairs of morphisms (g1, g2) such that

A2 Ag2
//

A0

A2

f2

��

A0 A1
f1 // A1

A

g1

��

commutes, which well may be empty for all A. In that case, taking π0 of the above pullback gives

1 1//

0

1
��

0 1// 1

1
��

showing that A(g1,−) is π0-surjective but its pullback is not.
Nevertheless, it will be useful for us in Section 5 where we will be particularly interested in

transformations defined on sums of representables. We record here the following facts for use
later.

A natural transformation

t : ∑
j∈J

A(C j,−) // ∑
i∈I

A(Ai,−)

is determined by a function on the indices α : J // I and a J-family of functions ⟨ f j⟩,
f j : Aα( j)

//C j .



10 Multivariate functorial difference

Write t =∑
α

A( f j,−).

Proposition 2.4. With t, α , fi as above we have

(1) t is a complemented mono if and only if α is one-to-one and the f j are isomorphims.
(2) t is π0-surjective if and only if α is onto.
(3) For a general t given by (α, ⟨ f j⟩) we get its Boolean factorization by factoring α

J

K

σ
��

J Iα // I

K

DD

µ
2�

and then taking

∑
j∈J

A(C j,−)
∑σ A( fk,−) // ∑

k∈K
A(Ak,−)

∑µ A(1Ai ,−) // ∑
i∈I

A, (Ai,−) .

It’s implicit in (1), but may be worth mentioning explicitly, that the complemented subobjects
of ∑i∈I A(Ai,−) are the subsums, i.e. of the form ∑k∈K A(Ak,−) for K ⊆ I. It is also clear from the
fact that each hom functor A(Ai,−) is connected and complemented, so is one of the components
of ∑i∈I A(Ai,−), and any complemented subfunctor is a union of components.

The following is well-known (see Borceaux (1994a), Example 7.2.4).

Proposition 2.5. Every subobject in SetA is complemented (SetA is boolean) if and only if A is a
groupoid.

We end this subsection with the following, which says that limits and confluent colimits of
complemented subobjects are again complemented.

Proposition 2.6. Let Γ : I // SetA be a diagram in SetA and Γ0 // // Γ a subdiagram such that
for every I, Γ0(I) ↪→ Γ(I) is complemented, then

(1) lim←− Γ0 // lim←− Γ is a complemented subobject.

If I is confluent we also have that

(2) lim−→ Γ0 // lim−→ Γ is a complemented subobject.

Proof. (1) Γ0(I) ↪→ Γ(I) is complemented iff for every f : A // A′,

Γ0(I)(A′) Γ(I)(A′)// //

Γ0(I)(A)

Γ0(I)(A′)

Γ0(I)( f )

��

Γ0(I)(A) Γ(I)(A)// // Γ(I)(A)

Γ(I)(A′)

Γ(I)( f )

��

is a pullback (2.2 (1)). Limits of pullback diagrams are pullbacks, and the result follows.
(2) Recall from Paré (2024) that a category I is confluent if any span can be completed to a

commutative square, and that confluent colimits commute with inverse image diagrams in Set.
This gives (2) immediately.



Robert Paré 11

Corollary 2.1. The intersection of an arbitrary family of complemented subobjects in a presheaf
category is again complemented. The same for union.

Proof. Let Ψi ↪→Φ be a family of complemented subobjects. Without loss of generality we can
assume that the total subobject Φ ↪→Φ is contained in it so that the indexing poset I is connected.
Then by the previous proposition

lim←−Ψi // lim←−Φ

is a complemented mono. Because I is connected the limit of the constant diagram lim←−Φ∼= Φ, and
the lim←−Ψi is ∩Ψi ↪→Φ. The lattice of complemented subobjects of Φ is self-dual which implies
the result for unions.

Note that this result does not hold in an arbitrary Grothendieck topos.

2.2 Tense functors
As mentioned above, the functors P⊗ ( ) : SetA // SetB arising from profunctors are not gen-
erally taut. In fact they don’t even preserve monos in general. This may not be surprising if we
consider the tensor product of modules but one might have hoped that things would be better in
the simpler Set case.

Example 2.1. For any epimorphism e : A // A′ in A, the natural transformation
A(e,−) : A(A′,−) //A(A,−) is a monomorphism. If, for a profunctor P : A • // B,
P⊗ ( ) : SetA // SetB were to preserve monos, we would need that P⊗A(e,−) be a mono, but
P⊗A(e,−) is

P(e,−) : P(A′,−) // P(A,−) .

So P(e, B) : P(A′, B) // P(A, B) would have to be one-to-one for all B, but that’s hardly always
the case. The simplest example is when A = 2 and B = 1. Then P(e, 0) is an arbitrary function in
Set (e is the unique morphism 0 // 1, which is of course epi).

Now, the functors P⊗ ( ) are “linear functors” and any theory of functorial differences that
doesn’t apply to them is seriously flawed. This leads to the main definition of the section.

Definition 2.3. A functor F : SetA // SetB is tense if it preserves

(1) complemented subobjects, and

(2) inverse images (pullbacks) of complemented subobjects.

A natural transformation is tense if the naturality squares corresponding to complemented
subobjects are pullbacks.

Tense functors are closely related to, though incomparable with, taut functors. For this reason
we chose the word “tense” as an approximate synonym and homonym of “taut”.

Any functor preserving binary coproducts is tense, in particular P⊗ ( ), which preserves all
colimits, is tense. So Example 2.1 shows that tense does not imply taut. On the other hand the
functor

Set // Set2

A 7−→ (A // 1)



12 Multivariate functorial difference

is taut (a right adjoint, so preserves all limits) but not tense: any proper subset A ⊊ B gives a
non-complemented subobject

1 1 .

A

1
��

A B// // B

1 .
��

The following is obvious but worth stating explicitly.

Proposition 2.7. Identities are tense and compositions of tense functors are tense. Horizontal and
vertical composition of tense natural transformations are again tense, giving a sub-2-category
Tense of the 2-category Cat of categories.

Proposition 2.8. For any functor F : SetA // SetB we have

(1) If SetA is Boolean then tense implies taut
(2) If SetB is Boolean then taut implies tense
(3) If F is taut then it is tense if and only if F applied to the first injection j : 1 // 1 + 1 is

complemented.

Proof. (1) and (2) are obvious as is the “only if” part of (3), so assume F is taut and F( j) com-
plemented. If Ψ ↪→Φ is complemented, its characteristic morphism factors through 1 + 1 // //Ω
giving a pullback

1 1 + 1 ,� �

j
//

Ψ

1
��

Ψ Φ
� � // Φ

1 + 1 ,
��

Pb

F of which is also a pullback, so F(Ψ) �
� // F(Φ) is complemented.

Evaluation functors preserve tenseness but, contrary to tautness, they don’t jointly create it.
However if we consider “evaluating at a morphism” they do.

Proposition 2.9. A functor F : SetA // SetB is tense if and only if

(1) for every B in B, evBF : SetA // Set is tense, and
(2) for every g : B // B′, evgF : evBF // evB′F is a tense transformation.

Furthermore, a natural transformation t : F //G is tense if and only if evBt is tense for every
B.

Proof. evB : SetB // Set preserves coproducts so is tense and thus evBF will be tense if F is. To
say that evg : evB // evB′ is tense is to say that for every complemented subobject Ψ

� � //Φ we



Robert Paré 13

have a pullback

ΨB′ ΦB′� � //

ΨB

ΨB′

Ψg

��

ΨB ΦB� � // ΦB

ΦB′

Φg

��

Pb

which Proposition 2.2 (1) says is indeed the case. So evgF will be tense when F is.
In fact, this says that being complemented is equivalent to every g giving a pullback as above.

So our condition (2) implies that F preserves complemented subobjects. And the evaluation
functors evB jointly create pullbacks. So (1) and (2) together imply that F is tense.

The second part is clear as the functors evB jointly create pullbacks and tenseness of natural
transformations is a purely pullback condition.

Corollary 2.2. The following are equivalent.

(1) F : SetA // SetB is tense.
(2)(a) For every complemented subobject Ψ ↪→Φ and every morphism g : B // B′,

F(Ψ)(B′) F(Φ)(B′)//

F(Ψ)(B)

F(Ψ)(B′)
��

F(Ψ)(B) F(Φ)(B)// F(Φ)(B)

F(Φ)(B′)
��

is a pullback diagram, and
(b) For every pullback diagram of complemented subobjects

Ψ Φ
� � //

Ψ′

Ψ

��

Ψ′ Φ′� � // Φ′

Φ

��
Pb

and every B in B,

F(Ψ)(B) F(Φ)(B)//

F(Ψ′)(B)

F(Ψ)(B)
��

F(Ψ′)(B) F(Φ′)(B)// F(Φ′)(B)

F(Φ)(B)
��

is a pullback.
(3) For every pullback diagram of complemented subobjects

Ψ Φ
� � //

Ψ′

Ψ

��

Ψ′ Φ′� � // Φ′

Φ

��
Pb



14 Multivariate functorial difference

and every g : B // B′,

F(Ψ)(B′) F(Φ)(B′)//

F(Ψ′)(B)

F(Ψ)(B′)
��

F(Ψ′)(B) F(Φ′)(B)// F(Φ′)(B)

F(Φ)(B′)
��

is a pullback.

Furthermore, t : F // G is tense if and only if for every complemented subobject Ψ ↪→Φ and
every object B in B,

G(Ψ)(B′) G(Φ)(B)//

F(Ψ)(B)

G(Ψ)(B′)

t(Ψ)(B)

��

F(Ψ)(B) F(Φ)(B)// F(Φ)(B)

G(Φ)(B)

t(Φ)(B)

��

is a pullback.

Proof. That (1) is equivalent to (2) follows immediately from the previous proposition, the
definition of tense, and Proposition 2.2, as does the statement about tense transformations.

(2) (a) and (b) are special cases of (3) and the pullback in (3) can be factored into two pullbacks
of type (a) and (b).

2.3 Limits and colimits of tense functors
Proposition 2.10. Let Γ : I //Cat(SetA, SetB) be a diagram such that for every I in I, Γ(I) is
tense. Then
(1) lim←− Γ is tense.

If t : Γ //Θ is a natural transformation such that for every I in I, tI : ΓI //ΘI is tense, then
(2) the induced transformation

lim←− t : lim←− Γ // lim←−Θ

is tense.
If I is confluent, then under the same conditions as above we have

(3) lim−→ Γ is tense, and
(4) lim−→ t is tense.

Proof. (1) and (3). The preservation of complemented subobjects follows immediately from
Proposition 2.6. The preservation of pullbacks of complemented subobjects follows from the fact
that limits commute with limits for (1) and that confluent colimits commute with inverse images
for (3).

Tenseness of natural transformations is also a pullback condition, so (2) and (4) follow for the
same reasons.

This is a result about limits and colimits of tense functors taken in Cat(SetA, SetB). It is not
assumed that the transition transformations Γ(I) // Γ(J) are tense, and unsurprisingly we don’t
get a universal property for tense cones or cocones. Given a tense cone or cocone, the uniquely



Robert Paré 15

induced natural transformation is tense but this doesn’t establish the required bijection because
neither the projections in the limit case nor the injections in the colimit case are tense.

It’s more natural to consider diagrams where the transitions are tense,
i.e. Γ : I //Tense(SetA, SetB). For such diagrams, things are better. We lose products as
the projections are not tense but that’s the only obstruction. Limits of connected tense diagrams
are created by the inclusion

Tense(SetA, SetB) // // Cat(SetA, SetB)

as are all colimits, not just confluent ones.
First we analyze diagrams Γ : I //Tense(SetA, SetB).

Proposition 2.11. The bicategory Tense is Cat-cotensored. The cotensor of SetB by I is SetB×I,
i.e.

(1) diagrams Γ : I //Tense(SetA, SetB) are in bijection with tense functors
Γ : SetA // SetB×I, and

(2) natural transformations t : Γ // Θ are in bijection with tense natural transformations
t : Γ //Θ.

Proof. Functors Γ : I //Cat(SetA, SetB) correspond bijectively to functors Γ : SetA // SetB×I

by exponential adjointness:

Γ(Φ)(B, I) = Γ(I)(Φ)(B) .

If Γ factors through Tense(SetA, SetB) then we want to show that Γ is tense.
First of all Γ(Ψ) // Γ(Φ) must be a complemented subobject for Ψ

� � //Φ complemented, i.e.

Γ(Ψ)(B′, I′) Γ(Φ)(B′, I′)//

Γ(Ψ)(B, I)

Γ(Ψ)(B′, I′)

Γ(Ψ)(g,α)

��

Γ(Ψ)(B, I) Γ(Φ)(B, I)// Γ(Φ)(B, I)

Γ(Φ)(B′, I′)

Γ(Φ)(g,α)

��

for g : B // B′ and α : I // I′, should be a pullback of monos. If we rewrite this in terms of Γ

and use functoriality on the vertical arrows we see that it is

Γ(I′)(Ψ)(B′) Γ(I′)(Φ)(B′)// //

Γ(I)(Ψ)(B′)

Γ(I′)(Ψ)(B′)

Γ(α)(Ψ)(B′)

��

Γ(I)(Ψ)(B′) Γ(I)(Φ)(B′)// // Γ(I)(Φ)(B′)

Γ(I′)(Φ)(B′)

Γ(α)(Φ)(B′)

��

(1)

Γ(I)(Ψ)(B′) Γ(I)(Φ)(B′)// //

Γ(I)(Ψ)(B)

Γ(I)(Ψ)(B′)

Γ(I)(Ψ)(g)

��

Γ(I)(Ψ)(B) Γ(I)(Φ)(B)// // Γ(I)(Φ)(B)

Γ(I)(Φ)(B′)

Γ(I)(Φ)(g)

��

(2)

(1) is a pullback of monos because Γ(I) is tense, and (2) is a pullback of monos because Γ(α) is
a tense transformation (the mono part because Γ(I′) is tense).

This shows that if Γ(I) preserves complemented subobjects and Γ(α) is tense, then Γ preserves
complemented subobjects. The converse is also true as can be seen by taking α = idI for Γ(I) and
g = 1B for Γ(α).

Preservation of inverse images by Γ is equivalent to that of Γ(I) as can be seen immediately
upon writing it down. Likewise for the tenseness of t.



16 Multivariate functorial difference

Theorem 2.1. The inclusion Tense(SetA, SetB) // // Cat(SetA, SetB) creates colimits and
connected limits.

Proof. Given a diagram Γ : I //Tense(SetA, SetB), its colimit is given by the composite

SetA Γ // SetB×I
lim−→I // SetB

lim−→I is left adjoint to the diagonal functor D : SetB // SetB×I, so it preserves coproducts and a
fortiori is tense. And Γ is tense by the previous proposition, so lim−→I

Γ(I) is tense.
D itself preserves coproducts being left adjoint to lim←−, the limit functor. So D is tense. Natural

transformations between coproduct preserving functors are automatically tense, so the adjunc-
tion lim−→I ⊣D is an adjunction in the bicategory Tense, and this gives the universal property of
lim−→I

Γ(I):

Tense(SetA, SetB)I ∼= //Tense(SetA, SetB×I)
Tense(SetA, lim−→)

//Tense(SetA, SetB)

is left adjoint to

Tense(SetA, SetB)
Tense(SetA, D) //Tense(SetA, SetB×I)

∼= //Tense(SetA, SetB)I

which is itself the diagonal functor.
If I is non-empty and connected, then lim←−I : SetB×I // SetB preserves coproducts, so the same

argument as above shows that I-limits are created in this case.

2.4 Internal homs
Part of the motivation for introducing tense functors was that the functors P⊗ ( ), thought of as
linear, were not in general taut but preserved coproducts, so were tense. The other side of the story
is that the right adjoint to P⊗ ( ), namely P ; ( ), is taut but not always tense. As Example 1.1
suggests P ; ( ) is a functorial version of a monomial with the P acting as the powers, and perhaps
we shouldn’t expect them to be nice for all P. After all, even for real valued functions, fractional
powers can be problematic, and for rings the powers are taken to be integers, not elements of the
ring.

Proposition 2.12. For a profunctor P : A • // B the internal hom functor
P ; ( ) : SetB // SetA is tense if and only if for every f : A // A′, the function

π0P(A′,−) // π0P(A,−)

is onto.

Proof. P ; ( ) preserves limits and so is taut. Thus by Proposition 2.8 (3) it is only necessary to
check that

1∼= P ; 1 // P ; (1 + 1)



Robert Paré 17

is complemented, and it’s also sufficient. This is equivalent to the condition, that for every
f : A // A′

1 SetB(P(A′,−), 1 + 1)//

1

1
��

1 SetB(P(A,−), 1 + 1)// SetB(P(A,−), 1 + 1)

SetB(P(A′,−), 1 + 1)
��

be a pullback. This says that every natural transformation t for which (the outside of)

P(A′,−) 1//

P(A,−)

P(A′,−)

OO

P( f ,−)

P(A,−) 1 + 1t // 1 + 1

1

OO

j

P(A,−)

1

∃

""

commutes, factors through the injection j. This is in SetB. Using the adjunction π0 ⊣
Const : Set // SetB, we have, equivalently, that every function t for which

π0P(A′,−) 1//

π0P(A,−)

π0P(A′,−)

OO
π0P(A,−) 1 + 1t // 1 + 1

1

OO

j

π0P(A,−)

1
""

commutes, factors through j (in Set). This is equivalent to

π0P(A′,−) // π0P(A,−)

being onto.

The condition on P making P ; ( ) tense is a kind of lifting condition. For every element of
P, p : A • // B and morphism f : A // A′ there exist a B′ and a P-element p′ : A′ • // B′ for
which p′ f is connected to P by a path of P-elements

B′ B1 B2 B3 · · · B

A′ A A A · · · A

oo // oo // //

oo f

•p′

��
• p1

��
• p2

��
• p3

��
• p

��
.



18 Multivariate functorial difference

Or more fancifully and more memorably, it’s a kind of homotopy pushout condition: for every
f and p as below there exist a lifting to a p′ with a fill in “fan”

B

Bn
...

B2

B1

B′
A

A′

��

��

@@

f

??

•
p

!!

•
p′

!!

•

''

•
++

• ..

2.5 Multivariable analytic functors
Following Fiore et al. (2008) we define analytic functors of several variables F : SetA // SetB

as follows. First, for a category A, its exponential !A (from linear logic) is the free symmetric
strict monoidal category generated by A. In concrete terms, !A is the category with objects finite
sequences ⟨A1 . . . An⟩ of objects of A and morphisms finite sequences of morphisms of A con-
trolled by a permutation. There are no morphisms between sequences unless they have the same
length and then

⟨A1 . . . An⟩ // ⟨A′1 . . . , A′n⟩

is a permutation of the indices, σ ∈ Sn and a sequence of morphisms

fi : Aσ i // A′i .

Composition is as expected

(τ, ⟨gi⟩)(σ , ⟨ fi⟩) = (στ, ⟨gi fτi⟩).

An A-B symmetric sequence is a profunctor P : !A • // B, which for us is a functor (!A)op ×
B // Set. (Warning: Our definition of profunctor is the opposite of theirs.) P encodes what are to
be the coefficients of a B-family of multivariable power series.

The analytic functor determined by P

P̃ : SetA // SetB

is given by

P̃(Φ)(B) =
∫ ⟨A1...An⟩∈ !A

P(A1 . . . An; B)×ΦA1 ×ΦA2 × · · · ×ΦAn .

We’ll show that P̃ is tense. Define a profunctor Q : !A • // A by

Q(A1, . . . , An; A) = A(A1, A) + A(A2, A) + · · ·+ A(An, A)



Robert Paré 19

with the obvious definition on morphisms. We may consider Q as a functor (!A)op // SetA and
P̃ is the left Kan extension of P, considered as a functor (!A)op // SetB, along Q

(!A)op

SetB .

P
��

(!A)op SetAQ // SetA

SetB .

P̃=LanQP
��

+3

For our purposes a different description of P̃ will be useful.

Proposition 2.13. 1. P̃ is the composite P⊗ (Q ; ( ))

SetA Q;( ) // Set!A P⊗( ) // SetB .

2. Q satisfies the condition of Proposition 2.12.

Proof. (1) Let Φ∈ SetA. An element of (Q ; Φ)(A1, . . . , An) is a natural transformation

A(A1,−) + · · ·+ A(An,−) //Φ

which by the universal property of coproduct and the Yoneda lemma corresponds to an element of

ΦA1 ×ΦA2 × · · · ×ΦAn .

Now the result follows by the definition of P⊗ ( ) and P̃.
(2) Q(A1, . . . , An;−) = A(A1,−) + · · ·+ A(An,−) a sum of representables each of which is
connected. So

π0Q(A1, . . . , An;−)∼= n

and, as !A has only morphisms between sequences of the same length, we get

π0Q(A1, . . . , An;−)∼= π0Q(A′1, . . . , A′n;−) .

Corollary 2.3. P̃ is tense.

Corollary 2.4. For P : !A • // B an A-B symmetric sequence and R : B • // C a profunctor,
we have

R̃⊗ P∼= R⊗ P̃ .

Proof.

R̃⊗ P ∼= (R⊗ P)⊗ (Q ; ( ))

∼= R⊗ (P⊗ (Q ; ( ))

∼= R⊗ P̃ .

3. Partial difference operators
We want to think of a functor F : SetA // SetB as a B-family of Set-valued functors in A-
variables and study its change under small perturbations of the variables. The context is that of



20 Multivariate functorial difference

tense functors and for these we get a theory that parallels the usual calculus of differences for real-
valued functions of several variables, much as our theory for taut functors did for single variables
(Paré, 2024).

3.1 Partial difference
A functor Φ∈ SetA is a multisorted algebra, the sorts being the objects of A, with unary operations
corresponding to the morphisms of A. Freely adding a single element of sort A gives

Φ⇝Φ + A(A,−) .

Definition 3.1. The A-shift functor, for an object A in A is

SA : SetA // SetA

SA(Φ) = Φ + A(A,−) .

SA is clearly tense, in fact a tense monad. Although we won’t use it here, it may be of interest
to note that an Eilenberg-Moore algebra for SA consists of a functor Φ∈ SetA together with an
element x∈ΦA. A Kleisli morphism Φ • // Ψ is a partial natural transformation

Φ Ψ

Φ0

Φ

}}

}}

Φ0

Ψ
!!

defined on a complemented subobject Φ0 together with a transformation on the complement
Φ′0

//A(A,−), perhaps quantifying the degree of undefinedness.
These monads commute with each other

SA1 ◦ SA2
∼= SA2 ◦ SA1

and for every f : A // A′ there is a monad morphism SA // SA′ which is tense.
The main definition of the paper is the following.

Definition 3.2. The partial difference with respect to A, or the A-partial difference, ∆A[F ], of a
tense functor F : SetA // SetB is given by

∆A[F ] : SetA // SetB

∆A[F ](Φ) = F(Φ + A(A,−)) \ F(Φ) ,

the complement of F(Φ) ↪→ F(Φ + A(A,−)).

Proposition 3.1. For a tense functor F : SetA // SetB, ∆A[F ] is also a tense functor. A tense
natural transformation t : F //G restricts to one, ∆A[t] : ∆A[F ] // ∆A[G], making ∆A a functor

∆A : Tense(SetA, SetB) //Tense(SetA, SetB) .

Proof. Let φ : Ψ //Φ be a natural transformation. We have the following pullbacks

Φ Φ + A(A,−)� � //

Ψ

Φ

φ

��

Ψ Ψ + A(A,−)� � // Ψ + A(A,−)

Φ + A(A,−)

φ+A(A,−)

��

Pb

FΦ F(Φ + A(A,−)) .� � //

FΨ

FΦ

Fφ

��

FΨ F(Ψ + A(A,−))� � // F(Ψ + A(A,−))

F(Φ + A(A,−)) .

F(φ+A(A,−))

��

Pb



Robert Paré 21

From the second one we get that F(φ + A(A,−)) restricts to the complements and gives another
pullback

∆A[F ](Φ) F(Φ + A(A,−))� � //

∆A[F ](Ψ)

∆A[F ](Φ)

∆A[F ](φ)

��

∆A[F ](Ψ) F(Ψ + A(A,−))� � // F(Ψ + A(A,−))

F(Φ + A(A,−))

F(φ+A(A,−))

��

Pb

which gives functoriality and tenseness.
Suppose t : F //G is a tense transformation. Then we get a pullback for any Φ

G(Φ) G(Φ + A(A,−))� � //

F(Φ)

G(Φ)

t(Φ)

��

F(Φ) F(Φ + A(A,−))� � // F(Φ + A(A,−))

G(Φ + A(A,−))

t(Φ+A(A,−))

��

Pb

so t(Φ + A(A,−)) restricts to the complements, giving another pullback

∆A[G](Φ) G(Φ + A(A,−)) .� � //

∆A[F ](Φ)

∆A[G](Φ)

∆A[t](Φ)

��

∆A[F ](Φ) F(Φ + A(A,−))� � // F(Φ + A(A,−))

G(Φ + A(A,−)) .

t(Φ+A(A,−))

��

Pb

It follows immediately that ∆A[t] is natural. Tenseness follows by comparing the following
diagrams that we get for any complemented subobject Ψ

� � //Φ.

∆A[G](Ψ) ∆A[G](Φ)� � //

∆A[F ](Ψ)

∆A[G](Ψ)

∆A[t](Ψ)

��

∆A[F ](Ψ) ∆A[F ](Φ)� � // ∆A[F ](Φ)

∆A[G](Φ)

∆A[t](Φ)

��

(1)

∆A[G](Φ) G(Φ + A(A,−))� � //

∆A[F ](Φ)

∆A[G](Φ)

∆A[F ](Φ) F(Φ + A(A,−))� � // F(Φ + A(A,−))

G(Φ + A(A,−))

t(Φ+A(A,−))

��

(2)

∆A[G](Ψ) G(Ψ + A(A,−))� � //

∆A[F ](Ψ)

∆A[G](Ψ)

∆A[t](Ψ)

��

∆A[F ](Ψ) F(Ψ + A(A,−))� � // F(Ψ + A(A,−))

G(Ψ + A(A,−))

t(Ψ+A(A,−))

��

(3)

G(Ψ + A(A,−)) G(Φ + A(A,−)) .� � //

F(Ψ + A(A,−))

G(Ψ + A(A,−))

F(Ψ + A(A,−)) F(Φ + A(A,−))� � // F(Φ + A(A,−))

G(Φ + A(A,−)) .

t(Φ+A(A,−))

��

(4)

The pasted rectangles are equal, and (2), (3) and (4) are pullbacks, so (1) is too.

Corollary 3.1. ∆A[F ] is a complemented subobject of the shifted F

∆A[F ] �
� // F ◦ SA

F + ∆A[F ]
∼= // F ◦ SA

where the first component is F of the unit ηA : id // SA.



22 Multivariate functorial difference

3.2 Limit and colimit rules
∆A satisfies all the same commutation properties with respect to limits and colimits as the ∆ of Paré
(2024). This may be proved directly with virtually the same proofs as in loc. cit. However, just as
the usual properties of partial derivatives follow from their single variable versions by fixing all
the variables but one, those of ∆A follow from their ∆ counterparts.

Proposition 3.2. Objects A in A and Φ in SetA give an affine functor Set // SetA

AffA,Φ(X) = A(A,−) · X + Φ .

For any tense functor F : SetA // SetB and object B in B, the translated functor

FB
A,Φ = (Set

AffA,Φ // SetA F // SetB evB // Set)

is taut and

∆A[F ](Φ)(B)∼= ∆[FB
A,Φ](0) .

Proof. The evaluation functors are tense as is AffA,Φ so the composite evB ◦ F ◦ AffA,Φ is too, so
taut.

∆[FB
A,Φ](0) = FB

A,Φ(1) \ FB
A,Φ(0)

= F(A(A,−) · 1 + Φ)(B) \ F(A(A,−) · 0 + Φ)(B)
∼= F(Φ + A(A,−))(B) \ F(Φ)(B)

= ∆A[F ](B) .

Precomposing by any functor, in particular AffA,Φ, preserves all limits and colimits (of the
F’s), and precomposing by a functor that preserves complemented subobjects preserves tense
transformations. The same holds for postcomposing by evB. Furthermore, the evB jointly create
limits and colimits. These considerations give the following results.

Theorem 3.1. (1) If I is confluent and Γ : I //Tense(SetA, SetB) a diagram of tense functors
(and tense transformations), then

∆A[lim−→
I

Γ(I)]∼= lim−→
I

∆A[Γ(I)] .

(2) If I is non-empty and connected and Γ : I //Tense(SetA, SetB), then

∆A[lim←−
I

Γ(I)]∼= lim←−
I

∆A[Γ(I)] .

(3) For any set I and tense functors Fi (i∈ I) we have

∆A

[
∏
i∈I

Fi

]
∼= ∑

J⫋I

(
∏
j∈J

Fj

)
×
(
∏
k/∈J

∆A[Fk]
)

.

Corollary 3.2. (1) ∆A[F + G]∼= ∆A[F ] + ∆A[G]
(2) ∆A[C · F ]∼=C∆A[F ] (C a constant set)
(3) ∆A[F ×G]∼= (∆A[F ]×G) + (F × ∆A[G]) + (∆A[F ]× ∆A[G]) .

We now look at a few special cases.



Robert Paré 23

Proposition 3.3. A profunctor P : A • // B gives a tense P⊗ ( ) : SetA // SetB and ∆A[P⊗
( )]∼= P(A,−).

Proof. P⊗ ( ) is cocontinuous so preserves binary coproducts

P⊗ (Φ + A(A,−)) ∼= P⊗Φ + P⊗A(A,−)
∼= P⊗Φ + P(A,−) .

Corollary 3.3. ∆A[idSetA ] = A(A,−).

All that was used in 3.3 was that P⊗ ( ) preserved binary coproducts, so we can improve it.

Proposition 3.4. If F : SetA // SetB preserves binary coproducts, then

∆A[F ](Φ) = F(A(A,−)) .

Note that ∆A[F ] is independent of Φ, so ∆A[F ] is the constant functor SetA // SetB with value
F(A(A,−)).

We can do better than (2) in the corollary 3.2.

Proposition 3.5. Let F : SetA // SetB be tense and P : B • // C a profunctor. Then

∆A[P⊗ F ]∼= P⊗ ∆A[F ] .

Proof. We have a coproduct diagram preserved by P⊗ ( )

F(Φ + A(A,−1))

∆A[F ](Φ)

::

, �

F(Φ)

F(Φ + A(A,−1))

� r

$$

F(Φ)

∆A[F ](Φ)

7−→ P⊗ F(Φ + A(A,−1))

P⊗ (∆A[F ](Φ)

::

, �

P⊗ F(Φ)

P⊗ F(Φ + A(A,−1))

� r

$$

P⊗ F(Φ)

P⊗ (∆A[F ](Φ)

from which the result follows.

The notation P⊗ F may need some explanation as it doesn’t type check. It is componentwise
tensor, (P⊗ F)(Φ) = P⊗B F(Φ). We can interpret 3.5 as saying that multiplying F by a matrix of
constants is preserved by differences. But we can generalize this result to the following, although
the interpretation of “pulling constants out” may be lost.

Proposition 3.6. If F : SetA // SetB is tense and G : SetB // SetC preserves binary coproducts,
then

∆A[GF ] = G∆A[F ] .

3.3 Analytic functors
In this section we prove that the generalized analytic functors of Fiore et al. (2008) are closed
under taking differences and, in fact, derive an explicit formula for the symmetric sequences so
obtained.



24 Multivariate functorial difference

We start with an addition formula for analytic functors which may look obvious but is frustrat-
ingly hard to make precise. The integral notation for coends conveniently hides the functoriality
of the arguments, which in the case at hand is not trivial, involving permutations as it does.

We introduce some notation, without which we run the risk of drowning in a sea of subscripts,
subsubscripts, ellipses, and so on.

In what follows A⃗ represents an arbitrary object of !A, ⟨A1, . . . , An⟩ of length n. Recall
that a morphism (σ , ⟨ f1, . . . , fn⟩) : ⟨A1, . . . , An⟩ // ⟨A′1, . . . , A′n⟩ is a permutation σ ∈ Sn and
a sequence of morphisms

fi : Aσ i // A′i .

We will denote that by (σ , f⃗ ) : A⃗ // A⃗′. We also use objects X⃗ = ⟨X1, . . . , Xk⟩ and Y⃗ =
⟨Y1, . . . ,Yl⟩ whose lengths are k and l respectively. By construction, !A is a monoidal category
whose tensor is concatenation

X⃗ ⊗ Y⃗ = ⟨X1, . . . , Xk , Y1, . . . ,Yl⟩
a notation which we use extensively. Of course, it also applies to morphisms

(τ, g⃗ )⊗ (g, h⃗ ) = (τ + ρ, g⃗⊗ h⃗ )

where τ + ρ : k + l // k + l is the ordinal sum, and g⃗⊗ h⃗ is concatenation.
We also use the notation, and obvious variants,

∏ ΦA⃗ : = ΦA1 × · · · ×ΦAn

for Φ in SetA. An element ⟨a1, . . . , an⟩ of ∏ ΦA⃗ is denoted a⃗∈∏ ΦA⃗.
The addition formula alluded to above is given in the following statement.

Theorem 3.2. Let P : A • // B be an A-B symmetric sequence and P̃ : SetA // SetB the
analytic functor it defines. Then for Φ1 and Φ2 in SetA and B in B we have a natural isomorphism

P̃(Φ1 + Φ2)(B)∼=
∫ X⃗ ∫ Y⃗

P(X⃗ ⊗ Y⃗ ; B)×∏ Φ1X⃗ ×∏ Φ2⃗Y .

The idea of the proof is simple:

P̃(Φ1 + Φ2)(B) =
∫ A⃗

P(A⃗; B)×∏(Φ1A⃗ + Φ2A⃗ )

∼=
∫ A⃗

P(A⃗; B)× ∑
α : n // 2

∏ Φα A⃗

∼=
∫ X⃗ ,⃗Y

P(X⃗ ⊗ Y⃗ ; B)×∏ Φ1X⃗ ×∏ Φ2⃗Y

∼=
∫ X⃗ ∫ Y⃗

P(X⃗ ⊗ Y⃗ ; B)×∏ Φ1X⃗ ×∏ Φ2⃗Y .

The first line is just the definition of P̃, the second line is distributivity of ∏ over +, and the last
line is Fubini for coends. It’s in going from the second to the third line that everything happens.
The “reason” for the isomorphism is that for each summand with Φ1 and Φ2 interspersed “at
random” in the product, there is an isomorphism in !A which permutes them so that all the Φ1
come first followed by the Φ2. And, indeed that’s the reason. The devil is in the details, as they
say.

We step back and consider how we might show that two coends are isomorphic. Let Γ : Iop ×
I // Set be a functor which we might think of as a profunctor Γ : I • // I. The coend

∫ I
Γ(I, I)



Robert Paré 25

consists of equivalence classes of elements of Γ, [I •x // I], the equivalence relation generated by
identifying x : I • // I with x′ : I′ • // I′ when there are f : I // I′ and x̄ : I′ • // I such that
x = x̄ f and x′ = f x̄:

I I′ .
f

//

I

I

•x

��

I I′
f // I′

I′ .

• x′

��

I′

I

•x̄

��

So x is equivalent to x′ if there’s a zigzag of such diagrams joining them.
But in the case at hand the equivalence relation is simpler because both of the diagrams whose

coends we’re considering are separable into a product of a contravariant functor times a covariant
one.

Definition 3.3. A diagram Γ : Iop × I // Set is separable if for every f : I // I′,

Γ(I′, I′) Γ(I, I′)
Γ( f ,I′)

//

Γ(I′, I)

Γ(I′, I′)

Γ(I′, f )

��

Γ(I′, I) Γ(I, I)
Γ( f ,I) // Γ(I, I)

Γ(I, I′)

Γ(I, f )

��

is a pullback.

For example, if Γ(I, I′) = Γ0I × Γ1I′ for Γ0 : Iop // Set and Γ1 : I // Set, then Γ is separable.
Or, if I is a groupoid, every Γ is separable.

The point of this definition is that the equivalence relation is generated by identifying x with x′

when there is an f : I // I′ such that x′ f = f x:

I I′ .
f

//

I

I

•x

��

I I′
f // I′

I′ .

• x′

��

The x̄ is automatic. This is important because we can compose such squares.
Let us call an x∈ Γ(I, I) a Γ-algebra and an f as above a homomorphism. Then we get a

category Alg(Γ) and
∫ I

Γ(I, I) = π0Alg(Γ), the set of connected components of Alg(Γ).
Let Θ : Jop × J // Set be another bivariant diagram. A morphism (Ξ, ξ ) : Γ //Θ is a functor

Ξ : I // J and a natural transformation ξ : Γ //Θ(Ξ(−), Ξ(−))

Iop × I

Set

Γ

��

Iop × I Jop × JΞop×Ξ // Jop × J

Set

Φ

��

ξ +3

I JΞ //

I J .
Ξ

//

I

I

•Γ

��

I JΞ // J

J .

•Θ

��

ξ +3



26 Multivariate functorial difference

Such a morphism induces a functor

Alg(Ξ, ξ ) : Alg(Γ) //Alg(Θ)

I

I

•x

��

Ξ(I)

Ξ(I) .

•ξ (I,I)(x)

��

7−→

We are now ready to apply this to our addition formula. Let Γ : !A×!A • // !A×!A be given by

Γ(X⃗ , Y⃗ ; X⃗ ′, Y⃗ ′ ) = P(X⃗ ⊗ Y⃗ ; B)×∏ Φ1X⃗ ′ ×∏ Φ2⃗Y ′

and Θ : !A • // !A by

Θ(A⃗; A⃗′ ) = P(A⃗; B)× ∑
α : n // 2

∏ Φα A⃗′

with the obvious action on morphisms. Note that Γ and Θ are both products of a covariant part
(with the primes) and a contravariant part (without primes) so that they are separable. Thus we will
be able to compute the coends by taking connected components of their categories of elements.

Theorem 3.3. With the above notation, there is a morphism

!A×!A !A⊗
//

!A×!A

!A×!A

•Γ

��

!A×!A !A⊗ // !A

!A

•Θ

��

ξ +3

such that the induced functor

Alg(⊗, ξ ) : Alg(Γ) //Alg(Θ)

is an equivalence of categories.

Proof. Throughout, B is a fixed object of B.
An element of Γ(X⃗ , Y⃗ ; X⃗ ′, Y⃗ ′ ) is a triple

(p∈ P(X⃗ ⊗ Y⃗ ; B), x⃗∈∏ Φ1X⃗ ′, y⃗∈∏ Φ2⃗Y ′) ,

and an element of Θ(A⃗, A⃗′ ) is a triple

(p∈ P(A⃗; B), α : n // 2, a⃗∈∏ Φα A⃗′) ,

where ∏ Φα A⃗′ is ∏
n′
i=1 ΦαiA′i, as expected.

ξ : Γ(X⃗ , Y⃗ ; X⃗ ′, Y⃗ ′) //Θ(X⃗ ⊗ Y⃗ , X⃗ ′ ⊗ Y⃗ ′)

is given by

ξ (p, x⃗, y⃗) = (p∈ P(X⃗ ⊗ Y⃗ ; B), αk′,l′ : k′ + l′ // 2, ⟨⃗x, y⃗⟩ ∈∏ Φαk′,l′ (X⃗
′ ⊗ Y⃗ ′)) .

Here αk′,l′ is the indexing that consists of 1’s followed by 2’s,

αk′,l′(i) =

{
1 if l ≤ i≤ k′

2 if k′ < i≤ k′ + l′ ,



Robert Paré 27

and ⟨⃗x, y⃗⟩ is concatenation

⟨⃗x, y⃗⟩= ⟨x1, . . . , xk′ , y1, . . . , yl′⟩ ∈Φ1X ′1 × · · · ×Φ1X ′k′ ×Φ2Y ′1 × · · · ×Φ2Y ′l′ .

Naturality of ξ is a straightforward calculation.
The morphism (⊗, ξ ) induces a functor

Ξ : Alg(Γ) //Alg(Θ) .

Explicitly, a Γ-algebra is a 5-tuple

(X⃗ , Y⃗ , p∈ P(X⃗ ⊗ Y⃗ ; B), x⃗∈∏ Φ1X⃗ , y⃗∈∏ Φ2⃗Y )

and a Θ-algebra is a quadruple

(A⃗, p∈ P(A⃗; B), α : n // 2, a⃗∈∏ Φα A⃗ ) .

Ξ assigns to (X⃗ , Y⃗ , p, x⃗, y⃗ ) the algebra (X⃗ ⊗ Y⃗ , p, αk,l , ⟨⃗x, y⃗⟩).
A homomorphism (X⃗ , Y⃗ , p, x⃗, y⃗ ) // (X⃗ ′, Y⃗ ′, p′, x⃗′, y⃗ ′) is a pair of morphisms in !A,

(τ, g⃗) : X⃗ // X⃗ ′ and (ρ, h⃗ ) : Y⃗ // Y⃗ ′

preserving everything. It is sent to (τ, g⃗)⊗ (ρ, h⃗ ) by Ξ.
⊗ is faithful as it is just concatenation, so Ξ is also faithful.
If (σ , f⃗ ) is a homomorphism

(X⃗ ⊗ Y⃗ , p, αk,l , ⟨⃗x, y⃗ ⟩) // (X⃗ ′ ⊗ Y⃗ ′, p′, αk′,l′ , ⟨⃗x′, y⃗ ′⟩)

we have

2

k′ + l′

::

αk′,l′

k + l

2

αk,l

$$

k + l

k′ + l′

OO

σ

which implies that σ restricts to bijections τ : k′ // k and ρ : l′ // l (by taking inverse images
of {1} and {2}) so k′ = k and l′ = l and σ = τ + ρ . It follows that f⃗ consists of morphisms
(τ, g⃗) : X⃗ // X⃗ ′ and (ρ, h⃗) : Y⃗ // Y⃗ ′ and the preservation of ⟨⃗x, y⃗ ⟩ becomes preservation of x⃗
and y⃗ separately. I.e. (σ , f⃗ ) is Ξ((τ, g⃗), (ρ, h⃗)) and so Ξ is full.

For any Θ-algebra (A⃗, p, α, a⃗), there is a permutation of σ ∈ Sn such that

n σ // n α // 2

is order-preserving, i.e. all the 1’s come first and then the 2’s, so that ασ = αk,l where k is the
cardinality of α−1{1} and l that of α−1{2}. Associated to σ is an isomorphism

(σ , 1⃗ ) : A⃗ // A⃗σ

where A⃗σ is ⟨Aσ1, . . . , Aσn⟩ and 1⃗ = ⟨1Aσ1 , . . . , 1Aσn⟩. We can transport the Θ-algebra structure
on A⃗ to one on A⃗σ giving an algebra isomorphism

(σ , 1⃗ ) : (A⃗, p, α, a⃗) // (A⃗σ , p · (σ−1, 1⃗ ), αk,l , a⃗σ )

where p · (σ−1, 1⃗ ) = P((σ−1, 1⃗ ); B)(p) and a⃗σ = ⟨aσ1, . . . , aσn⟩ in ∏ Φασ A⃗σ . The Θ-algebras
with indexing of the form αk,l are precisely those in the image of Ξ. Indeed, the X⃗ are
the first k A’s, ⟨Aσ1, . . . , Aσk⟩ in this case and Y⃗ the last l of them ⟨Aσ(k+l), . . . , Aσ(n)⟩.



28 Multivariate functorial difference

Similarly x⃗ = ⟨aσ1, . . . , aσk⟩ and y⃗ = ⟨aσ(k+1), . . . aσn⟩. Then Ξ(X⃗ , Y⃗ , p · (σ−1, 1⃗ ), x⃗, y⃗ ) is
(A⃗σ , p · (σ−1, 1⃗ ), αk,l , a⃗), so Ξ is essentially surjective, which shows it’s an equivalence.

If we take connected components we get

π0Alg(Γ)∼= π0Alg(Θ)

so the coend of Γ is isomorphic to that of Θ.

Corollary 3.4.∫ X⃗ ,⃗Y
P(X⃗ ⊗ Y⃗ ; B)×∏ Φ1X⃗ ×∏ Φ2⃗Y ∼=

∫ A⃗
P(A⃗; B)× ∑

α : n // 2
∏ Φα A⃗ .

Our addition formula, Theorem 3.2, now follows by a simple application of the Fubini theorem
for coends, which is what we wanted, but Theorem 3.3 is a stronger result.

Our next step in the derivation of the formula for ∆A[P̃] is to specialize our addition formula to
the case Φ1 = Φ and Φ2 = A(A,−). This gives

P̃(Φ + A(A,−))(B) =
∫ X⃗ ∫ Y⃗

P(X⃗ ⊗ Y⃗ ; B)×∏ ΦX⃗ ×∏ A(A, Y⃗ )

in which the expression

∏ A(A, Y⃗ ) = A(A,Y1)× · · · ×A(A,Yl)

appears, not surprisingly, as it already appears in the definition of P̃. It defines a functor

∏ A(A,−) : !A // Set

closely related to the representable functor !A(A⊗n,−) where A⊗n = ⟨A, . . . , A⟩, the n-fold tensor
of A.

Proposition 3.7. With the above notation we have

∏ A(A,−)∼=
∞

∑
n=0

!A(A⊗n,−)/Sn .

Proof. If Y⃗ = ⟨Y1, . . . ,Yl⟩, then !A(A⊗n, Y⃗ ) is 0 unless l = n in which case an element of
!A(A⊗n, Y⃗ ) is a morphism

(σ , f⃗ ) : A⊗n // Y⃗

so that !A(A⊗n, Y⃗ )∼= Sn ×A(A1Y1)× · · · ×A(A,Yn) and if we quotient by Sn we get

!A(A⊗n, Y⃗ )/Sn ∼=∏ A(A, Y⃗ )

easily seen to be natural in Y⃗ . The result follows.

Lemma 3.1. Let W : !Aop // Set. Then∫ Y⃗
W (⃗Y )×∏ A(A, Y⃗ )∼=

∞

∑
n=0

W (A⊗n)/Sn .



Robert Paré 29

Proof. ∫ Y⃗
W (⃗Y )×∏ A(A, Y⃗ ) ∼=

∫ Y⃗
W (⃗Y )×

∞

∑
n=0

!A(A⊗n, Y⃗ )/Sn

∼=
∞

∑
n=0

∫ Y⃗
W (⃗Y )× (!A(A⊗n, Y⃗ )/Sn

∼=
∞

∑
n=0

(∫ Y⃗
W (⃗Y )×!A(A⊗n, Y⃗ )

)
/Sn

∼=
∞

∑
n=0

W (A⊗n)/Sn .

The second isomorphism is commutation of coends and coproducts, the third commutation of
coends with colimits (“modding out” by Sn is a colimit), the last isomorphism comes from the fact
that tensoring with a representable is substitution.

Corollary 3.5.

P̃(Φ + A(A,−))(B)∼=
∫ X⃗ ∞

∑
n=0

P(X⃗ ⊗ A⊗n; B)/({idk} × Sn)×∏ ΦX⃗

Proof.

P̃(Φ + A(A,−))(B)∼=
∫ X⃗ ∫ Y⃗

P(X⃗ ⊗ Y⃗ ; B)×∏ ΦX⃗ ×∏ A(A, Y⃗ ) .

If we fix X⃗ and consider the coend over Y⃗ , we can apply the previous lemma with

W (⃗Y ) = P(X⃗ ⊗ Y⃗ ; B)×∏ ΦX⃗

and the result follows immediately.

Corollary 3.6.

∆A[P̃](Φ)(B)∼=
∫ X⃗ ∞

∑
n=1

P(X⃗ ⊗ A⊗n; B)/({idk} × Sn)×∏ ΦX⃗ .

Proof. The inclusion P̃(Φ) ↪→ P̃(Φ + A(A,−)) corresponds to the n = 0 summand.

For any A-B symmetric sequence P : !A • // B and object A of A we define a new symmetric
sequence ∇AP : !A • // B by the formula

∇AP(X⃗ ; B) =
∞

∑
n=1

P(X⃗ ⊗ A⊗n; B)/({idk} × Sn) .

Now Corollary 3.6 can be stated in its final form, giving the main theorem of the section.

Theorem 3.4. Analytic functors SetA // SetB are closed under taking differences. If
P : !A • // B is a symmetric sequence, then

∆A[P̃]∼= ∇̃AP .

The definition of ∇AP as a coproduct of quotients is clear but for formal manipulations a more
abstract definition is useful. Let S+ be the category whose objects are positive finite cardinals,



30 Multivariate functorial difference

k > 0, and whose morphisms are bijections. So S+ is the coproduct

S+ =
∞

∑
k=1

Sk

where Sk is the symmetric group Sk considered as a one-object category.
Given an A-B symmetric sequence P : !A • // B and an object A of A we get an S+ family

of A-B symmetric sequences

PA : Sop
+

//Prof (!A, B)

PA(k)(A1 . . . An; B) = P(A1 . . . An, A, A, . . . , A; B)

where there are k A’s. Functoriality and naturality are obvious. Now ∇AP = lim−→k
PA(k).

Proposition 3.8. For P : !A • // B an A-B symmetric sequence and Q : B • // C a profunc-
tor, we have

∇A(Q⊗ P)∼= Q⊗∇AP .

Proof.

∇A(Q⊗ P)(A1 . . . An; C) ∼= lim−→
k

∫ B
Q(B,C)× P(A1 . . . An, A . . . A; B)

∼=
∫ B

Q(B,C)× lim−→
k

P(A1 . . . An, A . . . A; B)

∼=
∫ B

Q(B,C)×∇AP(A1 . . . An; B)

∼= (Q⊗∇AP)(A1 . . . An; C) .

Corollary 3.7. For any A-B symmetric sequence P we have

∇AP∼= P⊗∇A Id!A .

Proof.

∇AP∼= ∇A(P⊗ Id!A)∼= P⊗∇A Id!A .

∇A Id!A is easy to describe:

∇A Id!A : Set!A // Set!A

∇A Id!A(A1 . . . An; A′1 . . . A′m)∼=
∞

∑
k=1

!A(A1 . . . An, A . . . A; A′1 . . . A′m)/({idn} × Sk)

which is 0 if m≤ n and

!A(A1 . . . An, A, . . . , A; A′1 . . . A′m)/({idn} × Sm−n)

when m > n. There are m− n A’s and the action we’re modding out by is Sm−n acting on those
A’s.

There is also a generic difference formula.



Robert Paré 31

Corollary 3.8.
∆A[P̃]∼= P⊗ ∆A[Id!A] .

Proof.

∆AP̃ ∼= ∇̃AP (Thm. 3.4)
∼= (P⊗∇A Id!A)˜ (Cor. 3.7)
∼= P⊗ ∇̃A Id!A (Cor. 2.4)
∼= P⊗ ∆A[ Id!A ] (Thm. 3.4)

3.4 Higher differences
As ∆A[F ] is also tense, its difference can also be taken ∆A′ [∆A[F ]] = ∆A′,A[F ] and so on, iteratively.
For any sequence ⟨A1 . . . An⟩ of length n of objects of A we define

∆⟨Ai⟩[F ] =

{
F if n = 0

∆A1 [∆⟨A2...An⟩[F ]] if n≥ 1 .

Definition 3.4. We say that an element of F(Φ + A(A1,−) + · · ·+ A(An,−))(B) is new (for
⟨A1, · · · , An⟩)) if it is not in any F(Φ + A(Aα1,−) + · · ·+ A(Aαk,−))(B) for any proper mono
α : k // // n.

If an element is in F of a subsum, it’s in every bigger subsum, so it is sufficient to consider
only those subsums with one less term.Thus the new elements are those in the set difference

F(Φ +
n

∑
i=1

A(Ai,−))(B) \
n⋃

j=1

F(Φ + ∑
i̸= j

A(Ai,−))(B) .

Theorem 3.5. The higher difference ∆⟨Ai⟩[F ](Φ) consists of the new elements of F(Φ +
A(A1,−) + · · ·+ A(An,−)).

Proof. We prove this by induction on n. For n = 0, 1 the result holds by definition. Assume the
result holds for sequences of length n− 1 and take ⟨Ai⟩= ⟨A1, . . . , An⟩. Let ⟨Ai⟩+ = ⟨A2, . . . , An⟩.

An element of ∆⟨Ai⟩[F ](Φ)(B) is an element of ∆⟨Ai⟩+ [F ](Φ + A(A1,−))(B) which is not in
∆⟨AI⟩+ [F ](Φ)(B). An element of ∆⟨Ai⟩+ [F ](Φ + A(A1,−))(B) is, by the induction hypothesis, an
element of

F(Φ + A(A1,−) +
n

∑
i=2

A(Ai,−))(B)∼= F(Φ +
n

∑
i=1

A(Ai,−))(B) (1)

not in

F(Φ + A(A1,−) +
n

∑
i=2,i̸= j

A(Ai,−))(B)∼= F(Φ +
n

∑
i=1,i̸= j

A(Ai,−))(B) (2)

for any 2≤ j≤ n. From this we must exclude the elements of ∆⟨Ai⟩+ [F ](Φ)(B) and these, again
by the induction hypothesis, are elements of

F(Φ +
n

∑
i=2

A(Ai,−))(Φ)(B) (3)



32 Multivariate functorial difference

except for any in some

F(Φ +
n

∑
i=2,i ̸= j

A(Ai,−))(Φ)(B) (4)

for 2≤ j≤ n.
To summarize,

∆⟨Ai⟩[F ](Φ)(B) = ((1) \ (2)) \ ((3) \ (4)) ,

but (4)⊆ (2) so

∆⟨Ai⟩[F ](Φ)(B) = (1) \ ((2)∪ (3)) .

Now (2)∪ (3) is the union of

F(Φ + ∑
i=1,i̸= j

A(Ai,−))(B)

over all j, 1≤ j≤ n, and the result follows.

We see from this formula that ∆⟨Ai⟩[F ] is independent of the order of the differences, a version
of Clairaut’s theorem.

Corollary 3.9. Let ⟨Ai⟩ be a sequence of length n of objects of A and σ ∈ Sn a permutation, then

∆⟨Aσ i⟩[F ]∼= ∆⟨Ai⟩[F ] .

4. The discrete Jacobian
4.1 Definitions and functoriality
Let F : SetA // SetB be a tense functor and let f : A // A′ be a morphism of A. Then, as

Φ Φ + A(A,−)� � //

Φ

Φ

Φ Φ + A(A′,−)� � // Φ + A(A′,−)

Φ + A(A,−)

Φ+A( f ,−)

��

is a pullback of complemented objects, so is

FΦ F(Φ + A(A,−))� � //

FΦ

FΦ

FΦ F(Φ + A(A′,−))� � // F(Φ + A(A′,−))

F(Φ + A(A,−))

F(Φ+A( f ,−))

��

and it follows that F(Φ + A( f ,−)) restricts to complements giving another pullback

∆A[F ](Φ) F(Φ + A(A,−)) .� � //

∆A′ [F ](Φ)

∆A[F ](Φ)

∆ f [F ](Φ)

��

∆A′ [F ](Φ) F(Φ + A(A′,−))� � // F(Φ + A(A′,−))

F(Φ + A(A,−)) .

F(Φ+A( f ,−))

��

This proves the following:



Robert Paré 33

Proposition 4.1. For any Φ in SetA, ∆A[F ](Φ) is functorial in A, i.e. is the object part of a functor

∆[F ](Φ) : Aop // SetB .

By exponential adjointness we get a functor Aop ×B // Set, i.e. a profunctor A • // B.

Definition 4.1. The (discrete) Jacobian profunctor of F at Φ

∆[F ](Φ) : A • // B

is given by

∆[F ](Φ)(A, B) = ∆A[F ](Φ)(B) .

It’s more or less clear that ∆[F ](Φ) is functorial in Φ, which we express in the following
proposition.

Proposition 4.2. For any tense functor F : SetA // SetB, ∆[F ](Φ) is the object part of a tense
functor

∆[F ] : SetA // SetAop×B =Prof (A, B) .

Proof. For a natural transformation t : Φ //Ψ and object A in A,

Ψ Ψ + A(A,−)� � //

Φ

Ψ

t

��

Φ Φ + A(A,−)� � // Φ + A(A,−)

Ψ + A(A,−)

t+A(A,−)

��

is a pullback of a complemented subobject, so

FΨ F(Ψ + A(A,−))� � //

FΦ

FΨ

Ft

��

FΦ F(Φ + A(A,−))� � // F(Φ + A(A,−))

F(Ψ + A(A,−))

F(t+A(A,−))

��

is too. So F(t + A(A,−)) restricts to the complements, giving another pullback

∆[F ]Ψ F(Ψ + A(A,−)) ,� � //

∆[F ]Φ

∆[F ]Ψ

∆[F ]t

��

∆[F ]Φ F(Φ + A(A,−))� � // F(Φ + A(A,−))

F(Ψ + A(A,−)) ,

F(t+A(A,−))

��

(*)

hence functoriality.
We still must prove that it is tense.
Proposition 3.1 says that for a fixed A, ∆A[F ] : SetA // SetB is tense and ∆A[F ] is the composite

SetA ∆[F ] // SetAop×B evB // SetB .

The evB are the evaluation functors which preserve pullbacks and collectively reflect them, so
that ∆[F ] will preserve pullbacks of complemented subobjects. However, the evB don’t reflect
complemented subobjects, so we still must show that ∆[F ] preserves those.



34 Multivariate functorial difference

Let Φ0
� � //Φ be a complemented subobject. We want to show that ∆[F ](Φ0) // // ∆[F ](Φ) is

complemented, or equivalently, for every f : A′ // A and g : B // B′

∆[F ](Φ0)(A′, B′) ∆[F ](Φ)(A′, B′)� � //

∆[F ](Φ0)(A, B)

∆[F ](Φ0)(A′, B′)

∆[F ](Φ0)( f ,g)

��

∆[F ](Φ0)(A, B) ∆[F ](Φ)(A, B)� � // ∆[F ](Φ)(A, B)

∆[F ](Φ)(A′, B′)

∆[F ](Φ)( f ,g)

��

is a pullback. We can do this separately for f and g, fixing B and then A. We already know for
fixed A it’s a pullback. So let’s fix B.

Let f : A′ // A and consider

F(Φ + A(A,−))(B) F(Φ + A(A′,−))(B)

∆[F ](Φ)(A, B) ∆[F ](Φ)(A,′ B)

∆[F ](Φ0)(A, B) ∆[F ](Φ0)(A′, B)

F(Φ+A( f ,−))(B)
//

∆[F ](Φ)( f ,B)
//

∆[F ](Φ0)( f ,B) //

��

��

��

��

��

��

��

��

Pb

and

F(Φ + A(A,−))(B) F(Φ + A(A′,−))(B) .

F(Φ0 + A(A,−))(B) F(Φ0 + A(A′,−))(B)

∆[F ](Φ0)(A, B) ∆[F ](Φ)(A′, B)

F(Φ+A( f ,−))(B)
//

F(Φ0+A( f ,−))(B)
//

∆[F ](Φ0)( f ,B) //

��

��

��

��

��

��

��

��

Pb

Pb

The second and third squares are pullbacks by (∗) and the fourth because F is tense. As the
composite of the first and second squares is equal to the composite of the third and fourth, we get
that the first square is a pullback, which shows that ∆[F ](Φ0) // // ∆[F ](Φ) is complemented.

To complete the discussion of functoriality of ∆ note that ∆A[F ](Φ) is a subfunctor of F(Φ +
A(A,−)) which is not only functorial in Φ and A but by Proposition 3.1 also in F but only for tense
transformations. Proposition 2.9 says that the evaluation functors evB jointly reflect tenseness of
transformations, so that ∆A[t] itself will be tense. Thus we get a functor

∆ : Tense(SetA, SetB) //Tense(SetA, SetAop×B)

the (discrete) Jacobian functor.
There are various ways of reformulating the Jacobian which are of independent interest.
Given a tense functor F : SetA // SetB, we get another tense functor analogous to the

differential operator

D[F ] : SetA × SetA // SetB



Robert Paré 35

D[F ](Φ, Ψ) = ∆[F ](Φ)⊗A Ψ

where Ψ is considered as a profunctor 1 • // A.

Definition 4.2. D[F ] is called the difference operator.

In (Paré, 2024) we used the finite projection Set× Set // Set as a tangent bundle and saw that
this supported a definition of functorial differences where the lax chain-rule was actually a lax
functor. This generalizes to the multivariable setting. We define

SetA SetB
F

//

SetA × SetA

SetA

P1

��

SetA × SetA SetB × SetBT [F ] // SetB × SetB

SetB

P1

��

by T [F ](Φ, Ψ) = (FΦ, ∆[F ](Φ)⊗A Ψ). We see that T [F ] preserves colimits in the second
variable.

Definition 4.3. T [F ] is called the (discrete) tangent functor.

Profunctors A • // B are in bijection with profunctors Bop • // Aop:

P : Aop ×B // Set
P⊤ : (Bop)×Aop // Set

i.e. P⊤(B, A) = P(A, B), the transpose as matrices. This gives the reverse difference operator

∆
⊤[F ] : SetA //Prof (Bop, Aop).

Definition 4.4. ∆⊤[F ] is the reverse difference operator.

This suggests that we take as the cotangent bundle the first projection SetA × SetAop // SetA.
As the Yoneda embedding Y : Aop // // SetA is the cocompletion of A, the category of cocontinu-
ous functors

SetA // Set

is equivalent to the category of functors

Aop // Set

i.e. SetAop
. So SetAop

has a legitimate claim to be the (linear) dual of SetA. Now we can extend
the reverse difference to the cotangent bundle. Given a tense functor F : SetA // SetB, we first
pull back the cotangent bundle along F

SetA SetB
F

//

SetA × SetBop

SetA

P1

��

SetA × SetBop
SetB × SetBop⟨F,P2⟩ // SetB × SetBop

SetB

P1

��
Pb

and then take the functor coT[F ]

(Φ, Θ) � // (Φ, ∆
⊤[F ](Φ)⊗Θ)



36 Multivariate functorial difference

SetA × SetBop

SetA .

P1
��

SetA × SetBop
SetA × SetAop// SetA × SetAop

SetA .

P1
��

In this Θ in SetBop
is considered as a profunctor 1 • // Bop.

Definition 4.5. coT[F ] is the cotangent functor.

A differential form is a global section of the cotangent bundle, which in our case amounts to a
functor SetA // SetAop

.
For a tense F : SetA // SetB we get another tense functor ∆[F ] : SetA // SetAop×B which,

upon composing with the evaluation at B, evB : SetAop×B // SetAop
gives another tense functor

SetA // SetAop
. This way the difference ∆[F ] may be viewed as a B-family of differential forms

B //Tense(SetA, SetAop
) .

It is tempting to write Ω1(SetA) for Tense(SetA, SetAop
).

Definition 4.6. ∆[F ](−)(B) is the differential form of F at B.

4.2 Product and sum rules
The evaluation functors evA : SetAop×B // SetB jointly create limits and colimits, and as the
composites evA ◦ ∆[F ](Φ) are ∆A[F ](Φ), the limit rules of Section 3.2 lift to ∆[F ].

Theorem 3.1 gives the following.

Theorem 4.1. (1) If Γ : I //Tense(SetA, SetB) then ∆[lim−→I
ΓI]∼= lim−→I

∆[ΓI].
(2) If I is non-empty and connected and Γ : I //Tense(SetA, SetB), then ∆[lim←−I

ΓI]∼=
lim←−I

∆[ΓI].
(3) For any set I and tense functors Fi, i∈ I, we have

∆

[
∏
i∈I

Fi

]
∼= ∑

J⫋I

(
∏
j∈J

Fj

)
×∏

k/∈J
∆[Fk].

Corollary 4.1. (1) ∆[F + G]∼= ∆[F ] + ∆[G].

(2) ∆[C · F ]∼=C · ∆[F ] for any set C.

(3) ∆[F ×G]∼= (∆[F ]×G) + (F × ∆[G]) + (∆[F ]× ∆[G]).

Note that on the right hand side of (3) we have ∆[F ]×G for example. ∆[F ] is a functor
SetA // SetAop×B whereas G is a functor SetA // SetB. Looking at where this came from

∆A[F ×G]∼= (∆A[F ]×G) + (F × ∆A[G]) + (∆A[F ]× ∆A[G]) ,

we see that the G is the same for all A, which means the G in (3) should be interpreted, as is often
done, to be the functor

SetA G // SetB SetP2 // SetAop×B

for P2 : Aop ×B //B the second projection, i.e. G followed by the inclusion of SetB in SetAop×B

given by functors Aop ×B // Set constant in the first variable.



Robert Paré 37

Of course similar remarks go for the F in the second term of (3) and the Fi in (3) of Theorem 4.1.

Proposition 4.3. For a profunctor P : A • // B we have

∆[P⊗ ( )](Φ)∼= P .

This is just a restatement of Proposition 3.3.
We think of P⊗ ( ) as a linear functor with coefficients P, and its difference is the constant

functor

SetA // SetAop×B

with constant value P.

Corollary 4.2.

∆[idSetA ](Φ) = IdA

where idSetA : SetA // SetA is the identity functor and IdA : A • // A is the identity profunctor.

Like we did in Proposition 3.4, we can generalize 4.3 to the following:

Proposition 4.4. If F : SetA // SetB preserves binary coproducts, then

∆[F ](A, B) = F(A(A,−))(B)

i.e. ∆[F ] =Cor(F), the core of F (see Definition 1.2).

We can improve (2) in Corollary 4.1, replacing the set C by a profunctor P : B • // C. Given
a tense functor F : SetA // SetB, we can compose it with P⊗ ( ) to get another tense functor

SetA F // SetB P⊗( ) // SetC

which will be called P⊗ F as its value at Φ is P⊗ (F(Φ)) although it might be hard to parse.

Proposition 4.5.

∆[P⊗ F ]∼= P⊗ ∆[F ] .

Proof. The P⊗ F is the composite

SetA F // SetB P⊗( ) // SetC

so ∆[P⊗ F ] is the functor SetA // SetAop×C with values

∆[P⊗ F ](Φ)(A,C) = ∆A[P⊗ F ](Φ)(C) .

On the other hand P⊗ ∆[F ] is the composite

SetA ∆[F ] // SetAop×B P⊗B( ) // SetAop×C

so has values

(P⊗ ∆[F ])(Φ)(A,C) = (P⊗B (∆[F ](Φ)))(A,C) .

By the definition of composition of profunctors, this is



38 Multivariate functorial difference

∫ B P(B,C)× ∆[F ](Φ)(A, B)

=
∫ B P(B,C)× ∆A[F ](Φ)(B)

= (P⊗ ∆A[F ](Φ))(C)

and by Proposition 3.5 this is isomorphic to ∆A[P⊗ F ](Φ)(C).

4.3 A natural reformulation
It will be conceptually clearer to reformulate the definition of ∆ in more categorical terms,
that is, in terms of natural transformations, Yoneda style. This rids us of many of the element-
based proofs, eliminating, as it does, membership and especially non-membership. The results are
cleaner and clearer, especially in the next section where we see the chain rule reduced to compo-
sition. This is a vast improvement over the construction and proof of the one-variable chain rule
given in (Paré, 2024) which is far from transparent.

So why not just start with this as a definition? The basic intuition of finite differences would
be lost. It is hard to imagine why one would define a profunctor using (2) or (3) in the proposition
below, or formulate the product and sum rules or the chain rule.

Proposition 4.6. Let F : SetA // SetB be a tense functor and Φ an object of SetA. Then there is
a natural bijection between the following:
(1) Elements x∈ ∆[F ](Φ)(A, B)
(2) Natural transformations t : B(B,−) // F(Φ + A(A,−)) giving a pullback

0 F(Φ)//

B(B,−)

0

OO

?�

B(B,−) F(Φ + A(A,−))// F(Φ + A(A,−))

F(Φ)

OO

?�
Pb

(3) Natural transformations u : F(Φ) + B(B,−) // F(Φ + A(A,−)) giving a pullback

F(Φ) F(Φ) .

F(Φ) + B(B,−)

F(Φ)

OO

?�

F(Φ) + B(B,−) F(Φ + A(A,−))// F(Φ + A(A,−))

F(Φ) .

OO

?�
Pb

Proof. An element of ∆[F ](Φ)(A, B) is an element of F(Φ + A(A,−))(B) which is not in
F(Φ)(B). By Yoneda, this corresponds bijectively to a natural transformation

t : B(B,−) // F(Φ + A(A,−))



Robert Paré 39

for which t(B)(1B) /∈ F(Φ)(B). As F(Φ) �
� // F(Φ + A(A,−)) is complemented by tenseness,

that’s equivalent to none of the values of t being in F(Φ), which means that

0 F(Φ)//

B(B,−)

0

OO

?�

B(B,−) F(Φ + A(A,−))t // F(Φ + A(A,−))

F(Φ)

OO

?�

is a pullback. And this, in turn, is equivalent to

F(Φ) F(Φ) .

F(Φ) + B(B,−)

F(Φ)

OO

?�

F(Φ) + B(B,−) F(Φ + A(A,−))u // F(Φ + A(A,−))

F(Φ) .

OO

?�

being a pullback, where u is the inclusion on the first summand and t on the second.

As mentioned in 1.1 it is useful to think of the elements of a profunctor as some sort of mor-
phism but between objects of different categories (sometimes called heteromorphisms). Because
of the representables appearing in the natural transformations above, it’s not unreasonable to think
of them as morphisms from A to B, as a kind of Kleisli morphism although F is not a monad. If
F were the identity for example, t is equivalent to a natural transformation B(B,−) //A(A,−)
so to an actual morphism A // B. This is just another way of saying that ∆[1SetA ](Φ) = IdA, the
identity profunctor on A, i.e. the hom functor.

More generally, if F preserves binary coproducts, a t as above corresponds to a natural
transformation

B(B,−) // F(A(A,−)) ,

another way of viewing the identity

∆[F ](Φ) =Cor(F)

of Proposition 4.4.
With the natural transformation version of ∆ it is easy to see how ∆[F ](Φ)(A, B) is functorial

in A and B. Given a t as in (2) and morphisms f : A′ // A and g : B // B′ we get pullbacks

0 0 F(Φ) F(Φ) ,

B(B′,−) B(B,−) F(Φ + A(A,−)) F(Φ + A(A′,−))
B(g,−) // t // F(Φ+A( f ,−)) //

//

OO

?�

OO

?�

OO

?�

OO

?�
Pb Pb Pb

the third one because F is tense.
Similarly, functoriality in Φ is clear. For φ : Φ //Ψ we get pullbacks

0 F(Φ) F(Ψ)

B(B,−) F(Φ + A(A,−)) F(Ψ + A(A,−))

//
F(φ)

//

t // F(φ+A(A,−)) //
OO

?�

OO

?�

OO

?�
Pb Pb



40 Multivariate functorial difference

again using tenseness of F .
The same goes for the functoriality in F . If α : F //G is a tense transformation, we get

pullbacks

0 F(Φ) G(Φ) .

B(B,−) α(Φ + A(A,−)) G(Φ + A(A,−))

//
α(Φ)

//

t // α(Φ+A(A,−)) //
OO

?�

OO

?�

OO

?�
Pb Pb

Showing that ∆[F ] : SetA // SetAop×B is tense in this context is probably no easier than the
element-wise proof given for Proposition 4.2 but it may be more conceptual. It is a result we need
if we want to iterate ∆, as we do. So we reprove it.

The proof that ∆[F ] preserves the pullbacks of complemented subobjects is basically the same
as in 4.2 but we reproduce it here without reference to partical differences or evaluation functors.

Let

Ψ0 Ψ
� � //

Φ0

Ψ0

��

Φ0 Φ
� � // Φ

Ψ

φ

��

Pb

be a pullback of complemented subobjects in SetA and A an object of A. Consider the four squares
in SetB

F(Ψ0 + A(A,−)) F(Ψ + A(A,−))

F(Φ0 + A(A,−)) F(Φ + A(A,−))

∆[Φ0](A,−) ∆[Φ](A,−)

� � //

� � //

� � //

��

�� ��

��

(2)

(1)

F(Ψ0 + A(A,−)) F(Ψ + A(A,−)) .

∆[Ψ0](A,−) ∆[Ψ](A,−)

∆[Φ0](A,−) ∆[Φ](A,−)

� � //

� � //

� � //

��

�� ��

��

(3)

(4)

(1) and (4) are pullbacks by definition of ∆ and (2) because F is tense. As the pasted rectangle (1)
+ (2) is equal to (3) + (4), we get that (3) is also a pullback.

As ∆[F ] preserves pullbacks of complemented subobjects, it will take a complemented subob-
ject Φ0

� � //Φ to a mono, but we still have to prove that it’s complemented. We have to prove that
for any f : A′ // A and g : B // B′,

∆[Φ0](A′, B′) ∆[Φ](A′, B′)// //

∆[Φ0](A, B)

∆[Φ0](A′, B′)

∆[Φ0]( f ,g)

��

∆[Φ0](A, B) ∆[Φ](A, B)// // ∆[Φ](A, B)

∆[Φ](A′, B′)

∆[Φ]( f ,g)

��

is a pullback.
An element of ∆[Φ](A, B) is a natural transformation t : B(B,−) // F(Φ + A(A,−)). To be

in ∆[Φ0](A, B) means that it factors through F(Φ0 + A(A,−)) �
� // F(Φ + A(A,−)). Referring



Robert Paré 41

to the following diagram

B(B′,−)

FΦ0 + A(A,−)) F(Φ0 + A(A′,−))

B(B,−) F(Φ + A(A,−)) F(Φ + A(A′,−))

u

22
B(g,−)

OO

u′
99

u′′

$$

F(Φ0+A( f ,−))
//

t // F(Φ+A( f ,−)) //

?�

OO

?�

OO

Pb

∆[Φ]( f , g)(t) is the composite of the left arrow with the two top arrows, and to say that it is in
F(Φ0 + A(A′,−)) means that there is a u making the outside boundary commute. The square in
a pullback because F is tense so there exists a unique u′ as shown and as F(Φ0 + A(A,−)) is
complemented there exists a u′′ by Proposition 2.2. So t factors through F(Φ0 + A(A,−)) which
is what we wanted.

4.4 Lax chain rule
We saw in (Paré, 2024) that the chain rule for the single variable functorial difference was
expressed as a laxity morphism rather than an isomorphism, and the same applies in the mul-
tivariable case. For tense functors F : SetA // SetB and G : SetB // SetC we will construct a
comparison transformation

γ(Φ) : ∆[G](F(Φ))⊗B ∆[F ](Φ) // ∆[GF ](Φ)

and establish associativity and unit laws for it. In fact, considering ∆[F ](Φ) as a profunctor may
not mean much unless it composes like a profunctor. Otherwise it is just an object of SetAop×B.

The construction of γ in (Paré, 2024) is perhaps a bit opaque and the profunctor interpretation
clarifies this. We’ll see that it is, in a sense, just composition as it should be.

In the previous section we described the functoriality of ∆ in terms of the characterization (2)
of Proposition 4.6, but for the chain rule the characterization (3) is better, so we reformulate the
functorialities in this context. As we will refer to it a lot, let us call a natural transformation t such
that

F(Φ) F(Φ)

F(Φ) + B(B,−)

F(Φ)

OO

?�

F(Φ) + B(B,−) F(Φ + A(A,−))t // F(Φ + A(A,−))

F(Φ)

OO

?�

is a pullback, a PPI transformation (for pullback preserves injections).
Functoriality of ∆[F ](Φ)(A, B), considered as a set of PPI transformations, is easy. It’s just

composition with F(Φ + A( f ,−)) and F(Φ) + B(g,−) respectively.
Functoriality in Φ and F are a bit more complicated as the Φ and F appear in both the domain

and codomain of t. The following characterization will be useful, although it is nothing but a
reformulation.

Proposition 4.7. Let t : F(Φ) + B(B,−) // F(Φ + A(A,−)) be a PPI transformation.



42 Multivariate functorial difference

(1) If φ : Φ //Ψ is a natural transformation, then ∆[F ](φ)(A, B)(t) is the unique PPI transfor-
mation t ′ such that

F(Ψ) + B(B,−) F(Ψ + A(A,−)) .
t ′
//

F(Φ) + B(B,−)

F(Ψ) + B(B,−)

F(φ)+B(B,−)

��

F(Φ) + B(B,−) F(Φ + A(A,−))t // F(Φ + A(A,−))

F(Ψ + A(A,−)) .

F(φ+A(A,−))

��

(2) If α : F //G is a tense transformation, then ∆[α](Φ)(A, B)(t) is the unique PPI transforma-
tion t ′′ such that

F(Ψ) + B(B,−) F(Ψ + A(A,−)) .
t ′′
//

F(Φ) + B(B,−)

F(Ψ) + B(B,−)

F(α)+B(B,−)

��

F(Φ) + B(B,−) F(Φ + A(A,−))t // F(Φ + A(A,−))

F(Ψ + A(A,−)) .

F(α+A(A,−))

��

Theorem 4.2. For tense functors F : SetA // SetB and G : SetB // SetC there is a natural
transformation

γ : (∆[G] ◦ F)⊗ ∆[F ] // ∆[GF ]

which is:

(1) natural in F and G
(2) associative
(3) normal (invertible unitors)

Proof. γ is to be understood pointwise, i.e. as a profunctor morphism

γ(Φ) : ∆[G](F(Φ))⊗B ∆[F ](Φ) // ∆[GF ](Φ)

A C•
∆[FG](Φ)

//

B

A

??

•
∆[F ](Φ)

B

C

•
∆[G](F(Φ))

��
γ(Φ)��

for each Φ∈ SetA, and furthermore natural in that Φ.
Let A∈A and C ∈C. An element of(

∆[G](F(Φ))⊗B ∆[F ](Φ)
)
(A,C)

is an equivalence class

u⊗B t = [A •t // B •u //C]



Robert Paré 43

where u and t are PPI transformations. Let γ(Φ)(A,C)(u⊗B t) = Gt · u which is indeed PPI:

GF(Φ) GF(Φ) GF(Φ) .

GF(Φ) + C(C,−) G(F(Φ) + B(B,−)) GF(Φ + A(A,−))
OO

?�

OO

?�

OO

?�

u // Gt //

Pb Pb

We must show that γ(Φ)(A,C) is well-defined. Suppose we have another pair of transformation
related by a single morphism

A B′•
t ′

//

A

A

A B•t // B

B′

g

��
B′ C .•

u′
//

B

B′

B C•u // C

C .

This means that we have commutative squares

GF(Φ) + C(C,−) G(F(Φ) + B(B′,−))
u′
//

GF(Φ) + C(C,−)

GF(Φ) + C(C,−)

GF(Φ) + C(C,−) G(F(Φ) + B(B,−))u // G(F(Φ) + B(B,−))

G(F(Φ) + B(B′,−))

OO

G(F(Φ)+B(g,−))

F(Φ) + B(B′,−) F(Φ + A(A,−)) .
t ′
//

F(Φ) + B(B,−)

F(Φ) + B(B′,−)

OO

F(Φ)+B(g,−)

F(Φ) + B(B,−) F(Φ + A(A,−))t // F(Φ + A(A,−))

F(Φ + A(A,−)) .

If we apply G to the second and paste it to the first we get a commutative diagram which shows
that Gt · u = Gt ′ · u′. It follows that γ(Φ)(A,C) is well-defined.

Naturality in A and C is clear as it is just composition with F(Φ + A( f ,−)) and F(Φ) +
C(h,−) respectively and has nothing to do with the equivalence relation, which is localized at B.
So we get a profunctor morphism γ(Φ).

To show that γ is natural in Φ, let φ : Φ //Ψ be a natural transformation and consider

∆[G](F(Ψ))⊗B ∆[F ](Ψ)(A,C) ∆[GF ](Ψ)(A,C)
γ(Ψ)

//

∆[G](F(Φ))⊗B ∆[F ](Φ)(A,C)

∆[G](F(Ψ))⊗B ∆[F ](Ψ)(A,C)
��

∆[G](F(Φ))⊗B ∆[F ](Φ)(A,C) ∆[GF ](Φ)(A,C)
γ(Φ) // ∆[GF ](Φ)(A,C)

∆[GF ](Ψ)(A,C)
��

where the vertical arrows are induced by φ . If we chase an element u⊗B t in the domain, first
around the left-bottom we get u′ ⊗B t ′ and then Gt ′ · u′ where u′ and t ′ are the unique PPI’s such
that

GF(Ψ) + C(C,−) G(F(Ψ) + B(B,−))
u′
//

GF(Φ) + C(C,−)

GF(Ψ) + C(C,−)

GF(φ)+C(C,−)

��

GF(Φ) + C(C,−) G(F(Φ) + B(B,−))u // G(F(Φ) + B(B,−))

G(F(Ψ) + B(B,−))

G(F(φ)+B(B,−))

��



44 Multivariate functorial difference

F(Ψ) + B(B,−) F(Ψ + A(A,−)) .
t ′
//

F(Φ) + B(B,−)

F(Ψ) + B(B,−)

F(φ)+B(B,−)

��

F(Φ) + B(B,−) F(Φ + A(A,−))t // F(Φ + A(A,−))

F(Ψ + A(A,−)) .

F(φ+A(A,−))

��

On the other hand, going around the top-right we get Gt · u and then v′ the unique PPI such that

GF(Ψ) + C(C,−) GF(Ψ + A(A,−)) .
v′
//

GF(Φ) + C(C,−)

GF(Ψ) + C(C,−)

GF(φ)+C(C,−)

��

GF(Φ) + C(C,−) GF(Φ + A(A,−))Gt·u // GF(Φ + A(A,−))

GF(Ψ + A(A,−)) .

GF(φ+A(A,−))

��

If we apply G to the diagram for t ′ above and paste it to the one for u′, we see that Gt ′ · u′ is such
a v′, and so v′ = Gt ′ · u′. This gives naturality in Φ.

We can check naturality in F and G separately. First, let α : F // F ′ be a tense natural
transformation. We wish to show that

∆[G](F ′(Φ))⊗B ∆[F ′](Φ)(A,C) ∆[GF ′](Φ)(A,C)
γ(Φ)

//

∆[G](F(Φ))⊗B ∆[F ](Φ)(A,C)

∆[G](F ′(Φ))⊗B ∆[F ′](Φ)(A,C)
��

∆[G](F(Φ))⊗B ∆[F ](Φ)(A,C) ∆[GF ](Φ)(A,C)
γ(Φ) // ∆[GF ](Φ)(A,C)

∆[GF ′](Φ)(A,C)
��

commutes. α acting on an element u⊗B t of the domain gives u′ ⊗B t ′ which gets sent to Gt ′ · u′,
where

GF ′(Φ) + C(C,−) G(F ′(Φ) + B(B,−))
u′
//

GF(Φ) + C(C,−)

GF ′(Φ) + C(C,−)

GF(α)+C(C,−)

��

GF(Φ) + C(C,−) G(F(Φ) + B(B,−))u // G(F(Φ) + B(B,−))

G(F ′(Φ) + B(B,−))

G(α(Φ)+B(B,−))

��

F ′(Φ) + B(B,−) F ′(Φ + A(A,−)) .
t ′
//

F(Φ) + B(B,−)

F ′(Φ) + B(B,−)

α(Φ)+B(B,−)

��

F(Φ) + B(B,−) F(Φ + A(A,−))t // F(Φ + A(A,−))

F ′(Φ + A(A,−)) .

F(α+A(A,−))

��

On the other hand we first get Gt · u and then v′ such that

GF ′(Φ) + C(C,−) GF(Φ + A(A,−)) .
v′
//

GF(Φ) + C(C,−)

GF ′(Φ) + C(C,−)

Gα(Φ)+C(C,−)

��

GF(Φ) + C(C,−) GF(Φ + A(A,−))Gt·u // GF(Φ + A(A,−))

GF(Φ + A(A,−)) .

GF(α+A(A,−))

��



Robert Paré 45

Again, applying G to the square for t ′ and pasting to the one for u′, we see that v′ = Gu′ · t ′,
i.e. naturality in F .

For naturality in G, let β : G //G′ be a tense natural transformation. We’ll show that

∆[G′](F(Φ))⊗B ∆[F ](Φ)(A,C) ∆[G′F ](Φ)(A,C)
γ(Φ)

//

∆[G](F(Φ))⊗B ∆[F ](Φ)(A,C)

∆[G′](F(Φ))⊗B ∆[F ](Φ)(A,C)
��

∆[G](F(Φ))⊗B ∆[F ](Φ)(A,C) ∆[GF ](Φ)(A,C)
γ(Φ) // ∆[GF ](Φ)(A,C)

∆[G′F ](Φ)(A,C)
��

commutes. An element u⊗ t of the domain, goes down to u′ ⊗ t and then G′u′ · t for u′ such that

G′F(Φ) + C(C,−) G′(F(Φ) + B(B,−)) .
u′
//

GF(Φ) + C(C,−)

G′F(Φ) + C(C,−)

βF(Φ)+C(C,−)

��

GF(Φ) + C(C,−) G(F(Φ) + B(B,−))u // G(F(Φ) + B(B,−))

G′(F(Φ) + B(B,−)) .

β (F(Φ)+B(B,−))

��

u⊗ t goes across to Gt · u and then down to v′ such that

G′F(Φ) + C(C,−) G′F(Φ + A(A,−)) .
v′

//

GF(Φ) + C(C,−)

G′F(Φ) + C(C,−)

βF(Φ)+C(C,−)

��

GF(Φ) + C(C,−) GF(Φ + A(A,−))Gt·u // GF(Φ + A(A,−))

G′F(Φ + A(A,−)) .

β (F(Φ)+A(A,−))

��

If we paste the diagram for u′ with the naturality square

G′(F(Φ) + B(B,−)) G′F(Φ + A(A,−))
G′t

//

G(F(Φ) + B(B,−))

G′(F(Φ) + B(B,−))

β (FΦ+B(B,−))

��

G(F(Φ) + B(B,−)) GF(Φ + A(A,−))Gt // GF(Φ + A(A,−))

G′F(Φ + A(A,−))

βF(Φ+A(A,−))

��

and compare with the diagram for v′ we see that v′ = G′t · u′, which gives naturality in G.
Let

SetA F // SetB G // SetC H // SetD

be tense functors. Associativity involves taking an element v⊗ u⊗ t of

∆[H](GF(Φ))⊗B ∆[G](FΦ)⊗C ∆[F ](Φ)

at (A, D) and applying γ in two different ways to reduce it to elements of ∆[HGF ](Φ), and seeing
that they are equal. This is for any PPI transformations

t : F(Φ) + B(B,−) // F(Φ + A(A,−))
u : GF(Φ) + C(C,−) //G(F(Φ) + B(B,−))

v : HGF(Φ) + D(D,−) //H(GF(Φ) + C(C,−)) .



46 Multivariate functorial difference

And indeed, we get

(Hu · v)⊗ t HGt ·Hu · v .� //

v⊗ u⊗ t

(Hu · v)⊗ t

_

��

v⊗ u⊗ t v⊗ (Gt · u)� // v⊗ (Gt · u)

HGt ·Hu · v .

v⊗ (Gt · u)

H(Gt · u) · v

_

��

For the unit laws, first assume that B = A and that F = idSetA . Then γ(Φ) takes the form

γ(Φ) : ∆[G]⊗A ∆[idSetA ](Φ) // ∆[G](Φ)

and an element of the domain is an equivalence class u⊗ t for PPI’s

Φ + A(A′,−) t //Φ + A(A,−) G(Φ) + C(C,−) u //G(Φ + A(A′,−)) .

For t to be a PPI it must be of the form

Φ + A(A′,−)
Φ+A( f ,−) //Φ + A(A,−)

and every equivalence class has a unique representative where f is 1A. Then γ(Φ)(u⊗ 1) = u
gives our bijective right unitor.

For the left unitor, let B = C and G = idSetC . Then γ takes the form

γ(Φ) : ∆[idSetC ](F(Φ)⊗ ∆[F ](Φ)) // ∆[F ](Φ)

and an element of its domain is an equivalence class u⊗ t with PPI’s

F(Φ) + C(C′,−) t // F(Φ + A(A,−)) F(Φ) + C(C,−) u // F(Φ) + C(C′,−)

For u to be a PPI it must be of the form F(Φ) + C(g,−). Again every equivalence class contains
a unique representative with g = 1C. Then

γ(Φ)(1⊗ t) = t

gives the bijective unitor.

As stated, the lax chain rule is called lax just because what might have been hoped to be an
isomorphism is merely a comparison morphism reducing a more complicated expression to a
simpler one. But, if we reformulate it in terms of the tangent bundle of Section 4.1, we get an
actual lax normal functor.

Recall that the tangent functor T [F ]

SetA SetA
F

//

SetA × SetA

SetA

P1

��

SetA × SetA SetB × SetBT [F ] // SetB × SetB

SetA

P1

��

is given by

T [F ](Φ, Ψ) = (F(Φ), ∆[F ](Φ)⊗A Ψ) .

If G : SetB // SetC is another tense functor, then the composite

T [G] ◦ T [F ] = (GF(Φ), ∆[G](F(Φ))⊗B ∆[F ](Φ)⊗A Φ)



Robert Paré 47

and

(1GF(Φ), γ(Φ)⊗A Ψ) : T [G] ◦ T [F ] // T [GF ]

makes T : Tense //Tense into a lax normal functor. We omit the details which only involve the
rearrangement of the facts proved in Theorem 4.2.

5. Newton series
5.1 Multivariable Newton series
The Newton series of a function of a real variable f : R //R is a discrete version of Taylor
series. Its aim is to recover f from its iterated differences, or to approximate f by polynomials.
The formula is well-known

∞

∑
n=0

∆n[ f ](0)
n!

x↓n

=
∞

∑
n=0

∆
n[ f ](0)

(
x
n

)
when x↓n is the falling power x(x− 1) . . . (x− n + 1) and

(x
n

)
is the “binomial coefficient”

x(x−1)...(x−n+1)
n! .

Although not so well-known, a recursive argument produces a multivariable version: for
f : Rn //R we have

∞

∑
k1,k2,...,kn=0

∆
k1
x1∆

k2
x2 · · · ∆kn

xn [ f ](0, . . . , 0)
k1!k2! · · · kn!

x↓k1
1 x↓k2

2 · · · x
↓kn
n

=
∞

∑
k1,k2,...,kn=0

∆
k1
x1

∆
k2
x2
· · · ∆kn

xn [ f ](0, . . . , 0)
(

x1

k1

)(
x2

k2

)
· · ·

(
xn

kn

)
.

In (Paré, 2024) we gave a categorified version for taut endofunctors of Set and showed that
for analytic functors their Newton series converge to them. In fact this holds for a larger class
of taut functors, which we call soft analytic. Not only that, the approximation alluded to above
manifests itself as a categorical adjointness. In this section we develop multivariable versions of
these results.

5.2 Soft multivariable analytic functors
In order to categorify multivariable Newton series we must modify the notion of A-B symmetric
sequence to take into account the extra structure that the iterated differences have. We replace
the category !A of (Fiore et al., 2008) by the larger category ↓A with the same objects, finite
sequences ⟨A1, . . . , An⟩ of objects of A, but where the morphisms

⟨A1, . . . , An⟩ // ⟨C1, . . .Cm⟩

are pairs (σ , ⟨ f j⟩) such that σ : m // n is a surjection and ⟨ f j⟩ is a family of morphisms indexed
by m

f j : Aσ j //C j .

Composition is formally the same as for !A

(τ, ⟨gk⟩)(σ , ⟨ f j⟩) = (στ, ⟨gk fτk⟩) .



48 Multivariate functorial difference

Whereas !A is the free symmetric strict monoidal category generated by A, ↓A is the free
symmetric monoidal category in which every object has a canonical cocommutative coassociative
comultiplication.

Definition 5.1. A soft A-B-symmetric sequence is a profunctor P : ↓A • // B.

Given a soft A-B-symmetric sequence P : ↓A • // B we define the functor P̃ : SetA // SetB

by the formula

P̃(Φ)(B) =
∫ ⟨A1...An⟩∈↓A

P(A1, . . . , An; B)×ΦA1 × . . .×ΦAn .

Of course, for this to make sense ΦA1 × . . .×ΦAn must come from a functor ↓A // Set, which
is indeed the case. For a morphism

(σ , ⟨ f1 . . . fm⟩) : ⟨A1, . . . , An⟩ // ⟨C1, . . . ,Cm⟩
we have a unique morphism making

ΦAσ j ΦC j
Φ f j

//

ΦA1 × . . .×ΦAn

ΦAσ j

projσ j

��

ΦA1 × . . .×ΦAn ΦC1 × . . .×ΦCm// ΦC1 × . . .×ΦCm

ΦC j

proj j

��

commute for all j ∈m.
A more conceptual description of P̃ is in terms of Kan extensions. Let Q : (↓A)op // SetA be

the functor defined by

Q⟨A1. . .An⟩= A(A1,−) + . . .+ A(An,−) .

It is indeed a functor, its value on a morphism

(σ , ⟨ f1, . . ., fm⟩) : ⟨A1, . . ., An⟩ // ⟨C1, . . .,Cm⟩
being the unique morphism making all the squares

A(C1,−) + . . .+ A(Cm,−) A(A1,−) + . . .+ A(An,−)//

A(C j,−)

A(C1,−) + . . .+ A(Cm,−)

inj j

��

A(C j,−) A(Aσ j,−)
A( f j ,−) // A(Aσ j,−)

A(A1,−) + . . .+ A(An,−)

injσ j

��

commute. A profunctor P : ↓A • // B is a functor P : (↓A)op ×B // Set which may be alter-
nately described as a functor (↓A)op // SetB (which we denote by the same letter). Then P̃ is the
left Kan extension of P along Q:

(↓A)op

SetB .

P
��

(↓A)op SetAQ // SetA

SetB .

LanQP=P̃
��

η +3

Indeed,

LanQP(Φ) =
∫ A1...An

P(A1. . .An;−)× SetA(Q⟨A1, . . ., An⟩, Φ)



Robert Paré 49

(see Mac Lane (1971), p. 236) and SetA(Q⟨A1. . .An⟩, Φ)∼= ΦA1 × . . .×ΦAn.
Q may be considered as a profunctor ↓A • // A and we have the following “softening” of

Proposition 2.13.

Proposition 5.1. 1. P̃ is the composite P⊗ (Q ; ( ))

SetA Q;( ) // Set↓A
P⊗( ) // SetB .

2. Q satisfies the condition of 2.4.1.

Proof. (1) Same as in 2.13.
(2) Again π0Q(A1, . . ., An;−) = n for the same reason (sum of n representables), but now for

a morphism (σ , ⟨ f1, . . ., fm⟩) : ⟨A1, . . ., An⟩ // ⟨C1, . . .,Cm⟩ the morphism

π0Q(C1, . . .,Cm;−) // π0Q(A1, . . ., An;−)

is σ : m // n, which is onto.

Corollary 5.1. P̃ is tense.

A more elementary understanding of P̃ will be useful. From the coend formula for Kan
extension we see that an element of P̃(Φ)(B) is an equivalence class of pairs (p, φ)[

p : ⟨A1, . . ., An⟩ • // B, φ : ∑ A(Ai,−) //Φ
]

where p∈ P(A1, . . ., An; B) and ∑ A(Ai,−) is short for ∑
n
i=1 A(Ai,−). The equivalence

relation is generated by identifying (p, φ) and (q, ψ) when there is a morphism
(σ , ⟨ f j⟩) : ⟨A1, . . ., An⟩ // ⟨C1, . . .,Cm⟩ in ↓A such that

B

⟨C1, . . .,Cm⟩

88

• q

⟨A1, . . ., An⟩

B

• p

&&

⟨A1, . . ., An⟩

⟨C1, . . .,Cm⟩

(σ ,⟨ f j⟩)

��

Φ

∑ A(C j,−)

88

ψ

∑ A(Ai,−)

Φ

φ

&&

∑ A(Ai,−)

∑ A(C j,−)

OO

∑σ A( f j ,−)

where ∑σ A( f j,−) represents the natural transformation taking g : C j // A to

Aσ( j)
f j //C j

g // A.
Functoriality of P̃ in B and Φ is by composition: for b : B // B′

P̃(Φ)(b) : (p, φ) 7−→ (bp, φ)

and for θ : Φ //Ψ

P̃(θ)(B) : (p, φ) 7−→ (p, θφ) .

The universal property of Kan extensions says that for any functor F : SetA // SetB we have
a natural bijection

P̃ t // F

P u // FQ .



50 Multivariate functorial difference

The correspondence between t and u is the following. t : P̃ // F is given by a family of natural
transformations

⟨P̃(Φ) // F(Φ)⟩Φ
natural in Φ∈ SetA, which further breaks down into a doubly indexed family of functions

⟨P̃(Φ)(B) // F(Φ)(B)⟩Φ,B

natural in both Φ and B. So for every equivalence class

[p : ⟨A1, . . ., An⟩ • // B, φ : ∑ A(Ai,−) //Φ]

we get an element t[p, φ ]∈ F(Φ)(B).
On the other hand u : P // FQ is a doubly indexed family of functions

⟨P(A1, . . ., An; B) // F(∑ A(Ai,−))(B)⟩

natural in ⟨A1, . . ., An⟩ ∈ ↓A and B in B.
Given t we get u by restricting to the case Φ = ∑ A(Ai,−) and φ the identity

u(p) = t[p, id∑ A(Ai,−)] .

Given u we get t by

t[p, φ ] = F(φ)(u(p)) .

There is nothing to check, such as naturality or well-definedness, as it all follows by the general
theory of Kan extensions. We will use these formulas in the proof of Theorem 5.1.

Another result that will be useful is the following fact which, although trivial, is interesting in
its own right and worth pointing out.

Lemma 5.1. For a pair (p : ⟨Ai, . . ., An⟩ • // B, φ : ∑ A(Ai,−) //Φ), the Boolean image of
φ

∑ A(Ai,−) //Bim(φ) �
� //Φ

is an invariant of the equivalence class [p, φ ].

Proof. Suppose (p, φ) and (q, ψ) are related by a single morphism (σ , ⟨ f j⟩) of ↓A, i.e.

B

⟨C1, . . .,Cm⟩

88

• q

⟨A1, . . ., An⟩

B

• p

&&

⟨A1, . . ., An⟩

⟨C1, . . .,Cm⟩

(σ ,⟨ f j⟩)

��

Φ

∑ A(C j,−)

88

ψ

∑ A(Ai,−)

Φ

φ

&&

∑ A(Ai,−)

∑ A(C j,−)

OO

∑σ A( f j ,−)

commute. Because (σ , ⟨ fJ⟩) is in ↓A, ∑σ A( f j,−) is π0-surjective, so Bim(φ) = Bim(ψ).

Definition 5.2. A functor of the form P̃ : SetA // SetB for P : ↓A • // B will be called soft
analytic.

It will become clear below that P is uniquely determined by P̃ (see 5.2).

Proposition 5.2. Analytic functors are soft analytic.



Robert Paré 51

Proof. The category !A of Section 2.5 is a subcategory of ↓A, and the Q of 2.5, the restriction
of the one just introduced. For an A-B symmetric sequence P : !A • // B, P̃ is the left Kan
extension

(!A)op (↓A)op// //(!A)op

SetB

P
""

(↓A)op

SetB

P′

��

+3

(↓A)op SetAQ //(↓A)op

SetB

SetA

SetB

P̃
||

+3

which can be taken in stages giving, first a soft A-B symmetric sequence P′ and then the analytic
functor P̃ which is isomorphic to P̃′.

We can describe P′ explicitly. It’s the left Kan extension of P along the inclusion
(!A)op // // (↓A)op so

P′(A1 . . . An; B)∼=
∫ ⟨C1...Cm⟩∈!A

P(C1 . . .Cm; B)× ↓A(A1 . . . An; C1 . . .Cm) .

An element of P′(A1, . . . , An; B) is thus an equivalence class

[⟨A1 . . . An⟩
(σ ,⟨ f1... fn⟩) // ⟨C1 . . .Cm⟩ •

p // B]

where σ : m // // n is onto, f j : Aσ j //C j and p∈ P(C1 . . .Cm; B). The equivalence relation is
generated by identifying (σ , ⟨ f j⟩, p) with (ρ, ⟨g j⟩, q) is there exists a morphism (τ, ⟨h j⟩) in !A
such that

⟨A1, . . . , An⟩ ⟨D1, . . . , Dm⟩
(ρ,⟨g1...gm⟩)

//

⟨A1, . . . , An⟩

⟨A1, . . . , An⟩

⟨A1, . . . , An⟩ ⟨C1, . . . ,Cm⟩•
(σ ,⟨ fi... fn⟩) // ⟨C1, . . . ,Cm⟩

⟨D1, . . . , Dm⟩

OO

(τ,⟨h1...hm⟩)

⟨D1, . . . , Dm⟩ B•
q

//

⟨C1, . . . ,Cm⟩

⟨D1, . . . , Dm⟩

⟨C1, . . . ,Cm⟩ B•
p // B

B

i.e.

n

m

gggg

ρ

m

n

σ

wwww

m

m

τ

��
Aρτ j Dτ jgτ j

//

Aσ j

Aρτ j

Aσ j C j
f j // C j

Dτ j

OO

h j B

⟨D1 . . . Dm⟩

66
• q

⟨C1 . . .Cm⟩

B
• p

((

⟨C1 . . .Cm⟩

⟨D1 . . . Dm⟩

(τ,⟨h1,...hm⟩)

��
.

In every equivalence class there are representatives of the form

⟨A1, . . . , An⟩
(σ ,⟨1Aσ j ⟩) // ⟨Aσ1, Aσ2, . . . , Aσm⟩ •

p // B

and, after some calculation, we see that two such are equivalent if and only if there is a τ ∈ Sm
such that

n

m

gggg

ρ

m

n

σ

wwww

m

m

τ

��

B

⟨Aρ1, . . . , Aρm⟩

66
• q

⟨Aσ1, . . . , Aσm⟩

B
• p

((

⟨Aσ1, . . . , Aσm⟩

⟨Aρ1, . . . , Aρm⟩

OO

(τ,⟨idAσm ⟩)



52 Multivariate functorial difference

We can further nail down the equivalence class by choosing canonical surjections m // // n, the
order preserving ones, and these are determined by their fibres mi which are positive integers. This
gives a relatively simple description of P′

P′(A1, . . . An; B)∼= ∑
m1,...mn>0

P(A⊗m1
1 , . . . , A⊗mn

n ; B)/Sm1 × . . .× Smn

where A⊗mi
i = ⟨Ai, Ai, . . . , Ai⟩ ∈Ami and the action is by permuting those entries.

5.3 The Newton series comonad
In this section we show that taking iterated differences is right adjoint to summation of a multi-
variable symmetric series. We first combine all the iterated differences into one soft symmetric
sequence.

Proposition 5.3. Let F : SetA // SetB be tense. Then taking the iterated symmetric differences
of F evaluated at Φ gives an A-B symmetric sequence

∆∗[F ](Φ) : ↓A • // B

∆∗[F ](Φ)(A1, . . . , An; B) = ∆A1 . . . ∆An [F ](Φ)(B) .

Proof. ∆A1 . . . ∆An [F ](Φ)(B) = ∆⟨Ai⟩[F ](Φ)(B) consists of the new elements of

F(Φ + A(A1,−) + . . .+ A(An,−))(B) ,

i.e. those elements not in F(Φ + A(Aα1,−) + . . .+ A(Aαk,−)) for any proper subsequence
⟨Aα1, . . . , Aαk⟩, α : k // // // n a proper mono. We’ll show that ∆∗[F ] is a subfunctor of F(Φ + Q).
Let (σ , ⟨ f1, . . . , fm⟩)) : ⟨A1, . . . , An⟩ // ⟨C1, . . . ,Cm⟩ be a morphism in ↓A, and let x be an
element of

∆C1 . . . ∆Cm [F ](Φ)(B)⊆ F(Φ + A(C1,−) + . . .+ A(Cm,−))(B) .

Then y = F(σ , ⟨ f1, . . . , fm⟩)(B)(x) is an element of F(Φ + A(A1,−) + . . .+ A(An,−)(B)
and suppose it’s not new. There is a proper monomorphism α : k // // // n such that y∈
F(ΦA(Aα1,−) + . . .+ A(Aαk,−))(B).

The pullback of a proper mono along an epi is again proper so we get

k n// //
α

//

l

k

ρ

����

l m// // β // m

n

σ

����

Pb

which, in turn, gives a pullback of complemented subobjects in SetA

A(Aα1,−) + . . .+ A(Aαk,−) A(A1,−) + . . .+ A(An,−) .� � //

A(Cβ1,−) + . . .+ A(Cβ l ,−)

A(Aα1,−) + . . .+ A(Aαk,−)

(ρ,⟨ fβ1,..., fβn⟩)

��

A(Cβ1,−) + . . .+ A(Cβ l ,−) A(C1,−) + . . .+ A(Cm,−)� � // A(C1,−) + . . .+ A(Cm,−)

A(A1,−) + . . .+ A(An,−) .

(σ ,⟨ f1,..., fm⟩)

��

Pb



Robert Paré 53

Adding Φ produces another such pullback and F , being tense, will preserve it

F(Φ + A(Aα1,−) + . . .+ A(Aαk,−)) F(Φ + A(A1,−) + . . .+ A(An,−)) .� � //

F(Φ + A(Cβ1,−) + . . .+ A(Cβ l ,−))

F(Φ + A(Aα1,−) + . . .+ A(Aαk,−))
��

F(Φ + A(Cβ1,−) + . . .+ A(Cβ l ,−)) F(Φ + A(C1,−) + . . .+ A(Cm,−))� � // F(Φ + A(C1,−) + . . .+ A(Cm,−))

F(Φ + A(A1,−) + . . .+ A(An,−)) .
��

Pb

Then x in the upper right corner gets sent to y which is in the lower left corner, so x itself is in the
upper left corner, i.e. x wasn’t new after all. Thus ∆∗[F ](Φ) is a subfunctor of F(Φ + Q).

∆∗[F ](Φ) is functorial in F . Indeed, applying Proposition 3.1 recursively, we see that any tense
transformation t : F //G restricts to

∆A1 . . . ∆An [G](Φ) G(Φ + A(A1,−) + . . .+ A(An,−))� � //

∆A1 . . . ∆An [F ](Φ)

∆A1 . . . ∆An [G](Φ)
��

∆A1 . . . ∆An [F ](Φ) F(Φ + A(A1,−) + . . .+ A(An,−))� � // F(Φ + A(A1,−) + . . .+ A(An,−))

G(Φ + A(A1,−) + . . .+ A(An,−))

t(Φ+A(A1,−)+...+A(An,−))

��

which will be natural and functorial automatically. Thus for each Φ in SetA we get a functor

∆[ ](Φ) : Tense(SetA, SetB) //Prof (↓A, B) ,

i.e. ∆∗[F ](Φ) is an A-B soft symmetric sequence.
The main result of this section is the following:

Theorem 5.1.

∆∗[ ](0) is right adjoint to ˜( ) .

Proof. P̃ is the left Kan extension of P along Q

(↓A)op

SetB

P
��

(↓A)op SetAQ // SetA

SetB

LanQP=P̃
��

+3

so for any functor F : SetA // SetB we have a bijection

P̃ t // F
P u

// FQ

as discussed above. Now ∆∗[F ](0) is a subfunctor of FQ. Indeed

∆∗[F ](0)⟨A1, . . . , An⟩(B) = ∆A1 . . . ∆An [F ](0)(B)

consists of the new elements of

F(Q⟨A1, . . . , An⟩)(B) = F(A(A1,−) + . . .+ A(An,−))(B) .

We’ll show that t : P̃ // F is tense if and only if u factors through ∆∗[F ](0) �
� // FQ which

will establish the theorem.
First assume t is tense. Let p be in P(A1, . . . , An; B) so u(p) is in F(A(A1,−) + . . .+

A(An,−))(B) and assume u(p) is in F of some subsum F(A(Aα1,−) + . . .+ A(Aαk,−))(B)



54 Multivariate functorial difference

for a subset α : k // // n of the indices. Tenseness of t applied to the complemented subsum
µ : ∑ A(Aαi,−) �

� // ∑ A(Ai,−) gives a pullback

∫ ⟨C j⟩∈↓A P(⟨C j⟩; B)× SetA(∑ A(C j,−), ∑ A(Aαi,−))(B) F(∑ A(Aαi,−))(B) .//

∫ ⟨C j⟩∈↓A P(⟨C j⟩; B)× SetA(∑ A(C j,−), ∑ A(Ai,−))(B)

∫ ⟨C j⟩∈↓A P(⟨C j⟩; B)× SetA(∑ A(C j,−), ∑ A(Aαi,−))(B)

OO

?�

∫ ⟨C j⟩∈↓A P(⟨C j⟩; B)× SetA(∑ A(C j,−), ∑ A(Ai,−))(B) F(∑ A(Ai,−))(B)// F(∑ A(Ai,−))(B)

F(∑ A(Aαi,−))(B) .

OO

?�
Pb

Then u(p) = T [p, id∑ A(Ai,−)] is in F(∑ A(Aαi,−))(B) so [p, id] is in the lower left corner
which means there are q : ⟨C1, . . . ,Cm⟩ • // B and ψ : ∑ A(Ci,−) // ∑ A(Aαi,−) such that
[q, µψ] = [p, id]. Thus by Lemma 5.1 we see that Bim(µψ) = Bim(id) = ∑ A(Ai,−). It follows
that µ is the identity, so u(p) is not contained in F of any proper subsum, i.e. is new. This gives
our factorization of u through ∆∗[F ](0).

Conversely, assume that u factors through ∆∗[F ](0). We’ll show that t is tense. Let Ψ
� � //Φ be

a complemented subobject. We must show that

P̃(Ψ) F(Ψ)
t(Ψ)

//

P̃(Φ)

P̃(Ψ)

OO

?�

P̃(Φ) F(Φ)
t(Φ) // F(Φ)

F(Ψ)

OO

?�
(*)

is a pullback. Take an element [p : ⟨A1, . . . , An⟩ • // B, φ : ∑ A(Ai,−)Φ] of P̃(Φ)(B) and
assume t(Φ)[p, φ ] = F(φ)(p) is in F(Ψ). Form the pullback

∑ A(Aα j,−) Ψ .
ψ
//

∑ A(Ai,−)

∑ A(Aα j,−)

OO

?�

∑ A(Ai,−) Φ
φ // Φ

Ψ .

OO

?�
Pb

It is induced by a monomorphism α : m // // n because a complemented subobject of a sum of
representables is a subsum. We get a new pullback now by tenseness of F

F(∑ A(Aα j,−)) FΨ .
F(ψ)

//

F(∑ A(Ai,−))

F(∑ A(Aα j,−))

OO

?�

F(∑ A(Ai,−)) FΦ
F(φ) // FΦ

FΨ .

OO

?�
Pb

F(φ) takes u(p) to an element of F(Ψ) so u(p)∈ F(∑ A(Aα j,−)). But u(p) was supposed to be
a new element of F(∑ A(Ai,−)) so α is not a proper subsum which means that

∑ A(Ai,−) Φ
φ //∑ A(Ai,−)

Ψ .
ψ

$$

Φ

Ψ .

OO

?�



Robert Paré 55

Thus [p, φ ] is in P̃(Ψ). This shows that our square (∗) is indeed a pullback.

The adjoint pair ˜( ) ⊣ ∆∗[ ](0) induces a comonad on Tense(SetA, SetB) which we call the
Newton series comonad.

5.4 Convergence
In this section we show that the Newton series for a soft analytic functor “converges to it”.

Theorem 5.2. For every A-B soft symmetric sequence P : ↓A • // B, the unit for the adjunction
of 5.1

P // ∆∗[P̃](0)

is an isomorphism.

Proof. An element of ∆∗[P̃](0) at ⟨A1, . . . , An⟩, B is a new element of P̃(∑ A(Ai,−))(B), i.e. of∫C1,...,Cm∈↓A P(C1, . . . ,Cm; B)× SetA(∑ A(C j,−), ∑ A(Ai,−))

which is an equivalence class[
p : ⟨C1, . . . ,Cm⟩ • // B, φ : ∑ A(C j,−) // ∑ A(Ai,−)

]
(satisfying the newness condition, of course).

The unit P // ∆∗[P̃](0) takes p : ⟨A1, . . . , An⟩ • // B to the equivalence class[
p : ⟨A1, . . . , An⟩ • // B, id : ∑ A(Ai,−) // ∑ A(Ai,−)

]
.

A φ as above is, as explained in the discussion around Proposition 2.4, of the form ∑α A( f j,−)
for α : m // n and f j : Aα j //C j and we can take its Boolean factorization by factoring α (in
Set)

m

k
σ !! !!

m nα // n

k

==

µ==

and taking

∑
j∈m

A(C j,−)
∑σ A( f j ,−) // ∑

i∈k
A(Aµi,−) �

� ∑µ A(1µi,−) // ∑
i∈n

A(Ai,−) .

If µ were a proper mono, [p, φ ] wouldn’t be new as it would be in P̃(∑i∈k A(Aµi,−)), so µ = idn
and α = σ , a surjection. Thus (σ , ⟨ f1⟩) is a morphism of ↓A and we have

B

⟨A1, . . . , An⟩

99

•
p′

⟨C1, . . . ,Cm⟩

B

• p

%%

⟨C1, . . . ,Cm⟩

⟨A1, . . . , An⟩

OO

(σ ,⟨ f j⟩)
∑ A(Ai,−)

∑ A(Ai,−)

88

id

∑ A(C j,−)

∑ A(Ai,−)

φ

&&

∑ A(C j,−)

∑ A(Ai,−)

∑α A( f j ,−)

��

so [p, φ ] = [p′, id], which shows that the unit

P // ∆∗[P̃](0)



56 Multivariate functorial difference

p 7−→ [p, id]

is onto.
To show that the unit is one-one we must show that if [p, id] = [q, id] then p = q. [p, id] = [q, id]

means there’s a zigzag path of

B

⟨D1, . . . , Dr⟩

99

• q̄

⟨C1, . . . ,Cm⟩

B

• p̄

%%

⟨C1, . . . ,Cm⟩

⟨D1, . . . , Dr⟩

OO

(ρ,⟨h j⟩)
∑ A(Ai,−)

∑ A(Ds,−)

88

ψ

∑ A(C j,−)

∑ A(Ai,−)

φ

&&

∑ A(C j,−)

∑ A(Ds,−)

∑ρ A(h j ,−)

��

with (ρ, ⟨h j⟩) in ↓A joining [p, id] to [q, id]. The Boolean image of φi (and ψi) is an invariant of
the equivalence class (5.1) and as Bim(id) = ∑ A(Ai,−), all the φ and ψ also have ∑ A(Ai,−) as
their images. That means that the morphisms (σ , ⟨ f j⟩) and (τ, ⟨gs⟩) corresponding to φ and ψ are
actually morphisms in ↓A, i.e. σ : m // n and τ : r // n are surjections. Now we have

⟨Ai, . . . , An⟩

⟨D1, . . . , Dr⟩
(τ,⟨gs⟩) ##

⟨C1, . . . ,Cm⟩

⟨Ai, . . . , An⟩

;;
(σ ,⟨ f j⟩)

⟨C1, . . . ,Cm⟩

⟨D1, . . . , Dr⟩

OO

(ρ,⟨h j⟩) B

⟨D1, . . . , Dr⟩

;;

• q̄

⟨C1, . . . ,Cm⟩

B

• p̄

##

⟨C1, . . . ,Cm⟩

⟨D1, . . . , Dr⟩

OO

commuting p̄(σ , ⟨ f j⟩) = q̄(τ, ⟨gs⟩) at every stage of the path joining (p, id) to (q, id), and for
these endpoints we get p and q respectively, i.e. p = q.

This shows that the Newton series comonad is idempotent.

Corollary 5.2. If F : SetA // SetB is soft analytic (in particular analytic) then its Newton series
converges to it, i.e. the counit

˜∆∗[F ](0) // F

is an isomorphism.

5.5 Concluding remark

In the previous sections, we touted the functor taking F to F̄ = ˜∆∗[F ](0) as a categorical version
of the Newton summation formulas at the beginning of 5.1, but in fact it looks nothing like them.

Let’s consider the first one

f̄ (x1, . . . , xn) = ∑
k1,...,kn

∆
k1
x1 . . .∆

kn
xn [ f ](0, . . . , 0)

k1! . . . kn!
x↓k1

1 . . . x↓kn
n

where f is a function Rn //R and the sum is taken over all n-tuples of natural numbers. We’ve
replaced f by a (tense) functor SetA // SetB and the difference operators by our functorial ones,
but it’s not clear how to interpret the rest of the formula. Let’s look at it more carefully.

The first thing to note is that, while the xi in ∆xi and in x↓ki
i refer to the same thing, they play

different roles. The xi in ∆xi is merely a subscript indicating which difference operator is used,



Robert Paré 57

and we could well have written ∆i instead, although ∆xi is more descriptive. The xi in x↓ki
i , on the

other hand, represents a variable which can take values, ci. So we have

f̄ (c1, . . . , cn) = ∑
k1,...,kn

∆
k1
x1 . . .∆

kn
xn [ f ](0, . . . , 0)

k1! . . . kn!
c↓k1

1 . . . c↓kn
n .

Here all the like ∆’s have been grouped together which is fine as we have finitely many variables
and they’re totally ordered. It would be more natural to sum over all finite sequences of variables
⟨xα(1) . . . xα(m)⟩ and group the terms together by the length m. Of course we get more terms:
∆

k1
x1 . . . ∆kn

xn gets counted

(
k1 + . . .+ kn

k1, . . . , kn

)
=

(k1 + . . .+ kn)!
k1! . . . kn!

=
m!

k1! . . . kn!

times, so now we have

f̄ (c1, . . . , cn) = ∑
α : m // n

∆α(1) . . . ∆α(m)[ f ](0, 0)
m!

c↓k1
1 . . . c↓kn

n .

In fact this takes care of the finiteness and total ordering of the variables, as far as the ∆ part of
the formula is concerned. We take a set of variables Var and consider the free monoid on it Var∗,
over which the sum is to be taken. The ci are a choice of value for each variable φ : Var //R but
we still have to deal with the ki in this setup.

The k’s count the number of occurrences of a given variable y in a sequence ⟨x1, . . . , xn⟩. Let

δ : Var×Var //N

be the Kronecker delta, i.e. δ (x, y) = 1 if x = y and 0 otherwise. For each y, extend δ (−, y) to a
function δ (−, y) : Var∗ //N using the additive structure of N, so

δ (x1, . . . , xn; y) =
m

∑
i=1

δ (xi, y)

is exactly the number of y’s in ⟨x1, . . . , xn⟩. Thus we end up with the Newton series in the form
we want

f̄ (φ) = ∑
⟨x1,...,xn⟩∈Var∗

∆x1 . . . ∆xm [ f ](0)
m! ∏

y∈Var
φ(y)↓δ (x1,...xn;y)

which, admittedly, looks more complicated than the original but it’s the closest we can get to the
categorical version.

Now the Newton series comonad of Section 5.3

˜∆∗[F ](0) =
∫ ⟨A1,...,Am⟩∈↓A

∆A1 . . . ∆Am [F ](0)× SetA(A(A1,−) + . . .+ A(Am,−), Φ)



58 Multivariate functorial difference

looks similar to the above, with the following correspondences:

f : Rn //R↔ F : SetA // SetB

variables x↔ objects A of A

Var↔ A

Var∗ ↔ ↓A
φ : Var //R↔ Φ : A // Set

δ (x, y)↔ A(A′, A)

δ (x1, . . . , xn, y)↔ A(A1, A) + . . .+ A(Am, A)

∏ φ(y)↓δ (x1...xn;y) ↔ SetA(A(A1,−) + . . .+ A(Am,−), Φ)

The correspondence is not perfect, of course. Var∗ might rightly be said to correspond to !A rather
than ↓A. Then the m! in the sum is incroporated in the coend via the symmetric groups.

Also ∏ φ(y)↓δ (x1,...,xm,y) should correspond to monomorphisms

A(A1,−) + . . .+ A(Am,−) //Φ

rather than arbitrary natural transformations. That’s what the extra morphisms in ↓A (involving
surjections σ ) take care of. We need a bit more theory to explain this.

Definition 5.3. Let Φ : A // Set and x∈ΦA. An ancestor of x is a y∈ΦA′ for which there is
a morphism f : A′ // A such that Φ( f )(y) = x. Two elements x1 ∈ΦA1 and x2 ∈ΦA2 are rel-
atives if they have a common ancestor. A sequence ⟨x1 ∈ΦA1, . . . , xn ∈ΦAn⟩ is called diverse
if no two elements are relatives. A natural transformation φ : ∑ A(Ai,−) //Φ is diverse if the
corresponding sequence of elements ⟨φ(Ai)(1Ai)⟩ is.

All the elements of a diverse sequence are different and more, but not enough more to make
the corresponding transformation monic. One could have i ̸= j and f : Ai // A, g : A j // A with
Φ( f )(xi) = Φ(g)(x j). But if A is a groupoid, then φ is monic if and only if it is diverse. The
variables x1, . . . , xn in the formula we’re abstracting from form a finite discrete set so diverse
restricts to one-one in that case.

Proposition 5.4. (1) φ as below is diverse if and only if for every factorization of Φ

Φ

∑ A(C j,−)

;;

ψ

∑ A(Ai,−)

Φ

φ

##

∑ A(Ai,−)

∑ A(C j,−)

∑σ A( fi,−)

��

with (σ , ⟨ fi⟩) : ⟨C1, . . . ,Cm⟩ // ⟨A1, . . . , An⟩ in ↓A, we have that σ is a bijection,
i.e. (σ , ⟨ fi⟩)∈!A.

(2) Every φ factors as ψ ∑σ A( fi,−) with (σ , ⟨ fi⟩)∈ ↓A and ψ diverse.

Proof. (1) φ and ψ as in the statement correspond to an n-tuple x1 ∈ A1, . . . , xn ∈ΦAn and an
m-tuple y1 ∈ΦC1, . . . , ym ∈ΦCm, respectively. The x’s and y’s are related by

xi = Φ( fi)(yσ i) .



Robert Paré 59

If σ is not one-to-one, say σ(i1) = σ(i2), then xi1 and xi2 are relatives as they have the common
ancestor yσ(i1) = yσ(i2). So the xi are not diverse nor is φ .

Conversely, if the xi are not diverse, then there are two x’s that are relatives. Assume, for
simplicity of notation, that they are xn−1 and xn. So we have f : C // An−1, g : C // An and
y∈ΦC such that Φ( f )(y) = xn−1 and Φ(g)(y) = xn. Then we get a morphism

(σ , ⟨ fi⟩) : ⟨A1, . . . , An−2,C⟩ // ⟨A1, . . . , An⟩

σ(i) =

{
i if i < n

n− 1 if i = n ,

⟨ fi⟩= ⟨1A1 , . . . , 1An−2 , f , g⟩ .

Let ⟨y1, . . . , yn−1⟩= ⟨x1, . . . , xn−2, y⟩. Then

xi = Φ( fi)(yσ i)

so the y determine a ψ giving a factorization as above, and σ is not a bijection.
This proves (1).
(2) If φ is not diverse, there exists a factorization as in (1) with σ onto but not one-to-one, so

∑ A(C j,−) has fewer terms than ∑ A(Ai,−). If we take, among all factorizations, one with the
minimal number of terms, the ψ must be diverse, otherwise we could factor it again and get a
smaller one.

Corollary 5.3. Every equivalence class[
x∈ F(∑ A(Ai,−))(B), φ : ∑ A(Ai,−) //Φ

]
in ∫ ⟨A1,...,A⟩∈↓A

∆A1 . . . ∆A[F ](0)(B)× SetA(
∑ A(Ai,−), Φ

)
has a representative in which φ is diverse.

Proof. Factor φ as in 5.4 (2) above. Then

y ∈ F(∑ A(C j,−))(B)

x ∈ F(∑ A(Ai,−))(B)_

��

F(σ ,⟨ fi⟩)

��
∑ A(C j,−) Φ

ψ
//

∑ A(Ai,−)

∑ A(C j,−)

∑σ A( fi,−)

��

∑ A(Ai,−) Φ
φ // Φ

Φ

so [x, φ ] = [y, ψ] and ψ is diverse.

The diverse transformations are our categorified set injections so

Diverse (∑ A(Ai,−), Φ)

is our version of falling power. Note, however, that it is not functorial, and we need all
transformations to make it so.



60 Multivariate functorial difference

References
Alvarez-Picallo, M. and Pacaud Lemay, J. S. 2021. Cartesian difference categories. Logical Methods in Computer Science,

17(3):23:1–23:48.
Borceaux, F. 1994a. Handbook of categorical algebra 3, volume 53 of Encyclopedia of mathematics and its applications.

Cambridge University Press.
Borceaux, F. 1994b. Handbook of categorical algebra I, volume 50 of Encyclopedia of mathematics and its applications.

Cambridge University Press.
Fiore, M., Gambino, N., Hyland, M., and Winskel, G. 2008. The cartesian closed bicategory of generalised species of

structures. Journal of the London Mathematical Society, 77(1):203–220.
Mac Lane, S. 1971. Categories for the Working Mathematician. Number 5 in Graduate Texts in Mathematics. Springer.
Paré, R. 2024. Taut functors and the difference operator. arXiv:2407.21129.


	Profunctors
	Tense functors
	Partial difference operators
	The discrete Jacobian
	Newton series

