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ROBERT PARÉ

Abstract.

We establish a calculus of differences for taut endofunctors of the category of sets,
analogous to the classical calculus of finite differences for real valued functions. We study
how the difference operator interacts with limits and colimits as categorical versions, of
the usual product and sum rules. The first main result is a lax chain rule which has no
counterpart for mere functions. We also show that many important classes of functors
(polynomials, analytic functors, reduced powers, ...) are taut, and calculate explicit
formulas for their differences. Covariant Dirichlet series are introduced and studied.
The second main result is a Newton summation formula expressed as an adjoint to the
difference operator.
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Introduction

The category of endofunctors of Set, the category of sets, contains many interesting sub-
categories. Consider, for example, the recent work on polynomial functors, spearheaded
by Spivak (see [14] and the references there), building on previous work of Kock chronicled
in his arXiv paper [10] (see also [8] which deals with polynomial monads). Before that
there were the analytic functors of Joyal [9] stemming from his categorical treatment of
combinatorics, and developed extensively since then (see [7] and its extensive bibliogra-
phy). But the study of endofunctors of Set goes back to the early days of category theory.
Questions of rank for monads arose, showing the necessity of looking more deeply into
the structure of these endofunctors.

This suggests that the study of Set endofunctors goes to the very foundation of set
theory. For example, a non-principal ultrafilter, whose existence is well-known to require
some form of the axiom of choice, produces an interesting endofunctor, the ultra-power
functor. It is left exact and preserves finite coproducts, and so it is isomorphic to the
identity on finite sets but not infinite ones. In [19] Trnková, and independently Blass
[4, 5] showed that the existence of a non-trivial exact endofunctor of Set is equivalent to
the existence of a measurable cardinal. Also see [16] in this connection.

These considerations, among others, indicate that a systematic study of the structure
of endofunctors of Set might be desirable. And indeed, such a study was initiated in
[18, 19] by Trnková, where she made an exhaustive study of their preservation properties.

The present work revisits this project from a different perspective taking into account
the many developments of the last century. We develop a difference calculus for a rather
large class of functors which parallels the classical finite difference calculus for real valued
functions. The class of functors we consider are the taut functors introduced by Manes
[12], who was motivated by theoretical computer science considerations. (Taut functors
were also considered in [18] under the name “preimage preserving functors”.)

Section 1 begins by recalling Manes’ definitions of taut functor and taut natural trans-
formation and recording some of their basic properties to be referred to later. Then follows
a detailed study of the stability of tautness under limits and colimits. The main result
here is a characterization of those colimits that preserve tautness, Theorem 1.3.2, which
to our knowledge, has never appeared in print.

In Section 2 we consider some known classes of endofunctors: polynomials, divided
power series, analytic functors, reduced powers, all of which are taut. We also consider
taut monads. We introduce covariant Dirichlet functors, and what we call sequential
Dirichlet functors, which are taut too.

It is in Section 3 that we introduce the difference operator. We study its functorial
properties and then how it interacts with limits and colimits. As a special case we get a
product (Leibniz) rule. Half of the section is taken up by the proof of one of the main
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results of the paper, the lax chain rule and its properties.
In Section 4 we return to the special classes considered in Section 2 and obtain explicit

formulas for the differences.
We round out the paper with a version of the Newton summation formula, a discrete

version of Taylor series. This is meant to recover nice taut functors, analytic say, from
their iterated differences at 0. It is given by a left adjoint to the difference functor whose
unit is an isomorphism for analytic functors.

Except for a few comments in passing, we mostly ignore questions of size. The “cat-
egory” of endofunctors is an illegitimate one. Its homs may be proper classes. None of
our results depends on this, but the purist will have no difficulty legitimizing things using
standard techniques – Grothendieck universes or Gödel-Bernays set theory (with classes),
for example.

We would like to thank Andreas Blass, Aaron Fairbanks, Theo Johnson-Freyd, Deni
Salja and Peter Selinger for helpful comments.

1. Taut functors

The notions of taut functor and natural transformation were introduced by Manes [12].
These are precisely what we need to develop our difference calculus of functors.

Everything that follows centres around pullbacks in which one leg is a monomorphism.
Following Manes, we call them inverse image diagrams.

1.1. Definitions and functorial properties.

1.1.1. Definition. [Manes [12]]
A functor is taut if it preserves inverse image diagrams. A natural transformation is

taut if the naturality squares corresponding to monomorphisms are pullbacks.

We record some of the general properties of tautness.

1.1.2. Proposition.

(1) Taut functors preserve monos.

(2) The composite of taut functors is taut.

(3) If t : F //G is taut and H is taut, then so is Ht : HF //HG.

(4) If t : F //G is taut and K preserves monos, then tK : FK //GK is taut.

(5) If t : F // G and u : G // L are taut, then the vertical composite ut : F // L is
taut.

(6) If t : F //G is taut and G is taut, then so is F .



4 ROBERT PARÉ

Proof. Perhaps the only part that is not completely straightforward is (6). Let

C D//
n

//

A

C

f

��

A B// m // B

D

g

��

be an inverse image diagram. Then we have

GC GD//
Gn

//

FC

GC

tC

��

FC FDFD

GD

tD

��

(2)

FC FD
Fn

//

FA

FC

Ff

��

FA FB
Fm // FB

FD

Fg

��

(1)

=

GC GD//
Gn

//

GA

GC

Gf

��

GA GBGB

GD

Gg

��

(4)

GA GB//
Gm

//

FA

GA

tA

��

FA FB
Fm // FB

GB

tB

��

(3)

where (2), (3), (4) are pullbacks, so (1) is too.

1.1.3. Corollary. Categories with inverse images, taut functors and taut natural trans-
formations give a sub-2-category Taut of Cat, the 2-category of categories.

1.2. Limits of taut functors. Limits of taut functors are again taut. This is just a
case of limits commuting with limits but some attention must be paid as to where the dia-
grams and limits are taken. If A and B are categories with inverse images, we have the Cat
functor category Cat(A,B) of all functors from A to B and all natural transformations,
and the subcategory Taut(A,B) of all taut functors and taut natural transformations.
And, we also have the full image of Taut(A,B) in Cat(A,B), Tautfull(A,B), of taut
functors and all natural transformations.

1.2.1. Proposition. Assume that B has I-limits. Then Tautfull(A,B) is closed under
I-limits in Cat(A,B). If t : Φ //Ψ: I // Tautfull(A,B), and tI is taut for every I, then
lim←−I t(I) : lim←−I Φ(I) // lim←−I Ψ(I) is also taut.

Proof. We use the fact that limits commute with limits, applied to the inverse image
diagrams

Φ(I)(A0) Φ(I)(A)// //

Φ(I)(B0)

Φ(I)(A0)
��

Φ(I)(B0) Φ(I)(B)// // Φ(I)(B)

Φ(I)(A)
��

Pb and

Ψ(I)(A0) Ψ(I)(A)// //

Φ(I)(A0)

Ψ(I)(A0)

t(I)(A0)

��

Φ(I)(A0) Φ(I)(A)// // Φ(I)(A)

Ψ(I)(A)

t(I)(A)

��

Pb
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respectively, for the inverse image diagram

A0 A .// //

B0

A0

��

B0 B// // B

A .
��

Pb

1.2.2. Corollary. If B has pullbacks, then the pullback of a taut transformation along
any natural transformation is again taut.

Proof. Consider the pullback of taut functors

H Gu
//

H ×G F

H

p1

��

H ×G F F
p2 // F

G

t

��

Pb

with t taut. Apply the previous proposition to the morphism of diagrams

H G

H G

F

G

id &&

u
//

id

##
u
//

t
��

t

%%

id

��

to get that

H ×G F
id×idt //H ×G G

is taut. But id×id t is p1 followed by an iso.

We emphasize that we are not assuming that the transformations Γ(i) : Γ(I) // Γ(J)
are taut, but even if we did we still would not get limits in Taut(A,B). The projections
are not taut. For example, if B has finite products, then the product of two taut functors
is taut but the projection

F ×G // F

is not. For a mono m : A0
// // A, the naturality square

F (A0) F (A)//
Fm

//

F (A0)×G(A0)

F (A0)

p1

��

F (A0)×G(A0) F (A)×G(A)//Fm×Gm // F (A)×G(A)

F (A)

p1

��
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is not usually a pullback; the pullback is F (A0)×G(A).
A simpler example is that the unique map F // 1 is not taut. However this is the

only obstruction as we see below (1.2.7).

1.2.3. Remark. We assumed that B had all I-limits but the proposition holds for any
limits that exist in Cat(A,B) as long as they are pointwise, i.e. calculated in B.

1.2.4. Remark. We can’t help pointing out that what we are dealing with are double
limits, taken in the double category Taut(A,B) whose objects are taut functors, horizon-
tal arrows arbitrary natural transformations, vertical arrows taut transformations, and
commutative squares as cells. This may be worth pursuing but here is not the place.

1.2.5. Proposition. Let I be a non-empty category, Φ: I // Tautfull(A,B) a diagram
of taut functors, F : A // B a taut functor, and γ : F // Φ a cone on Φ with each
γI : F // ΦI a taut transformation. Then the induced transformation

⟨γI⟩ : F // lim←−
I

ΦI

is also taut.

Proof. γ is a natural transformation from the constant diagram with value F to Φ, and
by Proposition 1.2.1 we get that

lim←−
I

γI : lim←−
I

F // lim←−
I

ΦI

is taut. Now, lim←−I F = F π0(I), the product of F ’s, one for each component of I, and ⟨γI⟩
is the composite

F ∆ // F π0(I)
lim←−I

γI
// lim←−
I

ΦI .

So we only have to show that ∆ is taut.
Let J be a non-empty set and m : A0

// // A a mono in A. Let b and ⟨b0j⟩ make

B

(FA0)
J

FA0 FA

(FA)J

⟨b0j⟩

##

∆FA0

��

$$

b

$$
// //

//
(Fm)J

//

∆FA

��

commute, i.e. F (m)b0j = b for every j. Choose any j ∈ J . Then b0j : B // FA0 (dotted
arrow) makes the top triangle commute. But the left triangle also commutes because
(Fm)J is monic. Thus the square is a pullback and ∆ is taut.
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1.2.6. Remark. Note that ∆ is taut but not cartesian. For example, the pullback of
Ff × Ff along ∆ is the kernel pair K of Ff

FA0 × FA0 FA× FA
Ff×Ff

//

K

FA0 × FA0

��

��

K FA// FA

FA× FA

��

��

Pb

which will be FA0 only if Ff is monic.

So every cone in Taut(A,B) gives a unique taut transformation into the limit but
this still doesn’t make it into a limit in Taut(A,B), because, as we said, the projections
are not necessarily taut. But for non-empty connected limits, pullbacks or equalizers for
example, it does.

1.2.7. Proposition. Suppose B has I-limits and that I is non-empty and connected,
then Taut(A,B) is closed under I-limits in Cat(A,B).

Proof. Let Φ: I // Taut(A,B) be an I-diagram and I0 ∈ I. We want to show that the
projection

p0 : lim←−Φ // ΦI0

is taut. To this end, let m : A0
// // A be a mono in A and consider the commutative

diagram in B

(ΦI0)(A0) (ΦI0)(A)

(lim←−Φ)(A0) (lim←−Φ)(A)

B

// //

// //

p0A0

��

p0A

��

b0

""

?

��

⟨bI⟩

$$

where ⟨bI⟩ is the morphism induced by a cone for Φ, and which we wish to show fac-
tors through (lim←−Φ)(A0). This will happen if each bI : B // Φ(I)(A) factors through
Φ(I)(A0) // // Φ(I)(A). Let J ⊆ I be the full subcategory of I determined by those J for
which we have b′J such that

Φ(J)(A0) (ΦJ)(A) .//
Φ(J)(m)

//

B

Φ(J)(A0)

b′J

��

B

(ΦJ)(A) .

bJ

''
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If J ∈ J and j : J //K then K is in J because

Φ(K)(A0) Φ(K)(A)

Φ(J)(A0) Φ(J)(A)

B

//
Φ(K)(m)

//

//
Φ(J)(m)

//

Φ(j)(A0)

��

Φ(j)(A)

��

b′J

��

bJ

''

commutes and the composite on the right is bK , so b′K = Φ(j)(A0) · b′J . Conversely, as
Φ(j) is taut, the above square is a pullback, so if we have a b′K , then there exists a unique
b′J . This means that if j : J //K and K ∈ J then so is J . We’re given that I0 ∈ J and
as anything connected to it will also be in J, we have J = I.

1.3. Colimits of taut functors. We will only be concerned with Set valued taut
functors, and for these, there are special colimit commutations. The main concept is the
following.

1.3.1. Definition. A category I is confluent if for every pair of arrows with the same
domain, αi : I // Ii (i = 1, 2) there exist βi : Ii // J making β1α1 = β2α2

I2

I

I1

J
α2 $$

α1
:: β1

$$

β2

::

.

1.3.2. Theorem. I-colimits commute with inverse images in Set iff I is confluent.

Some preliminaries before we prove this. Recall that for a diagram Γ: I //Set, lim−→Γ
can be computed as the set of equivalence class of pairs (I, x ∈ ΓI) where the equivalence
relation is generated by

(I, x) ∼ (I ′,Γ(α)(x))

for α : I // I ′. So (I, x) ∼ (I ′, x′) iff there exists a zigzag path

I = I0
α1 // I1 oo

α2 I2
α3 // · · · oo α2n I2n = I ′

and xi ∈ ΓIi such that
x0 = x, x2n = x′

Γ(α2i−1)(x2i−2) = x2i−1 = Γ(α2i)(x2i) i = 1, · · · , n

ΓI ΓI0 ΓI1 ΓI2 ΓI2n ΓI ′ .

1 1 1 1 1 1

x
��

x0
��

x1
��

x2
��

x2n
��

x′

��

Γα1

// oo
Γα2 Γα3

// ... oo
Γα2n

...
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1.3.3. Lemma. If I is confluent, then n can be taken to be 1 in the above description,
i.e. (I, x) ∼ (I ′, x′) iff there exist β : I // J and β′ : I ′ // J with

Γ(β)(x) = Γ(β′)(x′) .

Proof. The “if” part is obvious.
On the other hand, if the shortest path joining (I, x) to (I ′, x) had n > 1, then we

could take β, β′ s.t. βα2 = β′α3

J

I1 I3

I2

β ##

α2

{{

α3

##

β′
{{

and replace I0
α1 // I1 oo

α2
I2

α3 // I3 oo
α4

I4 by

I0
βα1 // J oo

β′α4
I4 .

Then a simple calculation shows that Γ(βα1)(x0) = Γ(β′α4)(x2), so we take y ∈ ΓJ to be
that common value and we get a shorter path.

1.3.4. Lemma. Let I be confluent and Γ0 a subdiagram of Γ, Γ0 ⊆ Γ: I //Set. Then limit
lim−→Γ0 is isomorphic to the set of elements [I, x] in lim−→Γ such that there exists β : I // J
with Γ(β)(x) ∈ Γ0J .

Proof. An element of lim−→Γ0 is an equivalence class of pairs (I, x) with x ∈ Γ0I, which
for now we denote [I, x]0. To it there is a well-defined element [I, x] of lim−→Γ, whether I is
confluent or not, but if I is confluent the equivalence relations as described in Lemma 1.3.3
are the same for Γ and Γ0 (crucial point!), so the function [I, x]0 7→ [I, x] is one-to-one. The
classes are not the same – [I, x] may contain more elements – but we can identify lim−→Γ0

with those elements of lim−→Γ that have a representative in Γ0. So [I, x] is in the image of
lim−→Γ0 iff there exist x′ ∈ Γ0I

′, β : I // J , β′ : I ′ // J with Γ(β)(x) = Γ(β′)(x′) ∈ Γ0J .
Then, if x is in the image of Γ0, there does exist a β with Γ(β)(x) ∈ Γ0J , and conversely,
if there is such a β we can always take β′ = 1J .

From now on, we will identify lim−→Γ0 with its image in lim−→Γ.

Proof of theorem. First of all, let I be confluent and

Γ0 Γ// //

Φ0

Γ0

t0

��

Φ0 Φ// // Φ

Γ

t

��
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be an inverse image diagram in SetI, i.e. Φ0(I) = t(I)−1Γ0(I), and take the colimits

lim−→Γ0 lim−→Γ .// //

lim−→Φ0

lim−→Γ0

lim−→ t0

��

lim−→Φ0 lim−→Φ// // lim−→Φ

lim−→Γ .

lim−→ t

��

So lim−→Φ0 is contained in the inverse image of lim−→Γ0. An element in that inverse image
is [x, I] ∈ lim−→Φ such that [t(I)(x), I] is in lim−→Γ0, i.e. there is β : I // J such that
Γ(β)t(I)(x) ∈ Γ0J . But Γ(β)t(I)(x) = t(J)Φ(β)(x) and as it is in Γ0J , Φ(β)(x) ∈ Φ0J ,
which implies [x, I] ∈ lim−→Φ0. Thus the inverse image of lim−→Γ0 is equal to lim−→Φ0, and
confluent colimits commute with inverse images in Set.

Let I be any small category and

I

I2
α2 $$

I1

I

::
α1

I1

I2

be arrows in I. Consider the following inverse image diagram

I(I2,−) Γ0
// // Γ0 I(I,−) .// //

Φ0

Γ0

��

Φ0 I(I1,−)// // I(I1,−)

I(I,−) .

I(α1,−)

��

Here Γ0 is the image of the natural transformation I(α2,−) and Φ0 the inverse image of
Γ0 under I(α1,−). The colimit of a representable is always 1, so taking colimits we get

1 lim−→Γ0
// // lim−→Γ0 1 .//

lim−→Φ0

lim−→Γ0

��

lim−→Φ0 1// 1

1 .
��

Then lim−→Γ0 must be 1 also, and if I-colimits commute with inverse images, lim−→Φ0 also
has to be 1. Now, Φ0(J) is the set of all morphisms β1 : I1 // J such that there exists
β2 : I2 // J with β1α1 = β2α2,

I

I2
α2 $$

I1

I

::
α1

I1

I2

J

I2

::

β2

I1

J

β1

$$

I1

I2 .
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So if lim−→Φ0 is to be 1 there has to exist at least one such pair (β1, β2). I.e. I is confluent.

1.3.5. Remark. Saying that I-colimits commute with inverse images means exactly that
the colimit functor

lim−→ : SetI // Set

is taut.

1.3.6. Proposition. Tautfull(A,Set) is closed under confluent colimits. If t is a natural
transformation of confluent diagrams in Tautfull(A,B), and all the values of t are taut,
then the induced morphism lim−→ t is also taut.

Proof. The proof of Proposition 1.2.1 carries over verbatim, only using that confluent
colimits commute with inverse images in Set.

Proposition 1.2.5 also “dualizes” to confluent colimits with some modifications.

1.3.7. Proposition. Let I be confluent and Φ: I // Tautfull(A,Set) a diagram of taut
functors, F : A // Set a taut functor, γ : Φ // F a cocone with each γI taut, then the
induced transformation

[γI] : lim−→
I

ΦI // F

is also taut.

Proof. By Proposition 1.3.6 we get that

lim−→
I

γI : lim−→
I

ΦI // lim−→
I

F

is taut, and lim−→I
F = π0I×F , the coproduct of π0I copies of F . So it will be sufficient to

show that the codiagonal ∇ : π0I× F // F is taut, which is now clear from the pullback
diagram

FA0 FA .// //

π0I× F (A0)

FA0

∇

��

π0I× F (A0) π0I× F (A)// // π0I× F (A)

FA .

∇

��

1.3.8. Proposition. Taut(A,Set) is closed under confluent colimits in Cat(A,Set).

Proof. In view of the previous proposition, we only have to show that the colimit injec-
tions

j = jI0 : Φ(I0) // lim−→
I

ΦI



12 ROBERT PARÉ

are taut. Let A0
// // A be a mono and consider the commutative square, which we want

to show is a pullback

lim−→I
Φ(I)(A0) lim−→I

Φ(I)(A) .// //

Φ(I0)(A0)

lim−→I
Φ(I)(A0)

jA0

��

Φ(I0)(A0) Φ(I0)(A)// // Φ(I0)(A)

lim−→I
Φ(I)(A) .

jA

��

The elements of lim−→I
Φ(I)(A) are equivalence classes [I, x ∈ Φ(I)(A)] and from Lemma 1.3.4

we can identify lim−→I
Φ(I)(A0) with those classes for which there exist J and β : I //J such

that Φ(β)(A)(x) ∈ Φ(J)(A0). Let x0 ∈ Φ(I0)(A) be such that j(A)(x0) ∈ lim−→I
Φ(I)(A0).

j(A)(x) = [I0, x0] so there exists β : I0 // J with Φ(β)(A)(x0) ∈ Φ(J)(A0). Φ(β) is taut
so the following is a pullback

Φ(J)(A0) Φ(J)(A) .// //

Φ(I0)(A0)

Φ(J)(A0)

Φ(β)(A0)

��

Φ(I0)(A0) Φ(I0)(A)// // Φ(I0)(A)

Φ(J)(A) .

Φ(β)(A)

��

So Φ(β)(A)(x0) ∈ Φ(J)(A0) implies x0 ∈ Φ(I0)(A0), which shows that our original square
is a pullback, completing the proof.

1.3.9. Corollary. Filtered colimits of taut functors into Set are taut.

1.3.10. Corollary. The quotient of a taut functor into Set by a group action is taut.

Coproducts of set-valued functors will play a central role in what follows so we end
the section on colimits with some results specifically about them.

1.3.11. Proposition. A coproduct of functors into Set is taut if and only if each sum-
mand is taut.

Proof. A discrete category is confluent so a coproduct of taut functors is taut, by Propo-
sition 1.3.8 e.g. This is also easy to see directly.

Conversely, if
∑

i∈I Fi is taut, then so is each Fi as it is a pullback of taut functors

1
∑

i∈I 1 .
ji

//

Fi

1
��

Fi
∑

i∈I Fi
//
∑

i∈I Fi

∑
i∈I 1 .
��

Pb
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It is well-known that for a small category A, every functor F : A //Set is a coproduct
of indecomposable functors indexed by a set π0F called the connected components of F
(see e.g. [2]). π0 is left adjoint to the diagonal functor D : Set // SetA, i.e. it is the
colimit functor. F is connected if π0F = 1. Here we are concerned with the case where
A = Set, which is, of course, not small. If A is a large category, then π0F may well be a
proper class, and things fall apart. We don’t get the adjointness to D for example. But,
if A has a terminal object, everything is much nicer.

1.3.12. Proposition. Let A be a category with terminal object 1. Then for a functor
F : A // Set,

(1) π0F ∼= F1

(2) F is connected (indecomposable) if and only if F1 = 1

(3) Every F is a coproduct of connected functors.

Proof. The unique morphism τX : X // 1 for every X gives a natural transformation
from the identity on Set to the constant functor 1, τ : idSet

// 1. If we apply F to it we
get a natural transformation Fτ : F // F1, which is easily seen to be a colimit cocone,
which gives (1). (2) is a trivial consequence of (1). Finally, F1 =

∑
i∈F1 1 which gives

a decomposition of F into a coproduct F ∼=
∑

i∈F1 Fi where Fi is the pullback along
i : 1 // F1

1
∑

i∈F1 1 .
i
//

Fi

1
��

Fi F// F

∑
i∈F1 1 .
��

Pb

As colimits are stable under pullback, we get lim−→Fi ∼= 1. This is the decomposition
claimed in (3).

1.3.13. Corollary. If A has a terminal object, then every taut functor from A to Set
is a coproduct of connected taut functors.

There is a cancellation property for functors into Set which will be used in the following
sections. It is not deep but a little delicate and best stated explicitly. Coproduct of
functors into Set is not cancellative

F +G ∼= F +H ̸⇒ G ∼= H .

If we take A = 1, we have N + 1 ∼= N + 2 but 1 ̸∼= 2, and we can promote this to
endofunctors of Set, which is where we will be using it, by taking constant functors with
values N, 1, 2. However it is cancellative if we take injections into account.
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1.3.14. Proposition. Let F,G,H : A // Set be functors and assume we have an iso-
morphism ϕ commuting with injections

F +G

F

[[

j

F +G F +H
ϕ // F +H

F

CC

j

,

then ϕ restricts to an isomorphism ψ : G //H.

Proof. For any A, if x ∈ GA then ϕ(A)(x) is in H(A) for if it weren’t it would be in FA
(on the right) and so x = ϕ−1(A)ϕ(A) would be in FA on the left which it is not. So ϕ
restricts to

F +G F +H .
ϕ
//

G

F +G

��

j′

��

G H
ψ // H

F +H .

��

j′

��

The same argument applied to ϕ−1 gives ψ−1.

The proof uses that ϕ is invertible. Clearly an arbitrary natural transformation would
not restrict. It is also specific to functors into Set. It is false for Setop for example.

2. Some special classes of taut functors

The class of taut functors is quite large as the following examples will show.

2.1. Polynomials. Classically a polynomial is an expression of the form

P (X) = C0 + C1X + C2X
2 + · · ·+ CdX

d =
d∑

n=0

CnX
n (*)

which, if we want, can be interpreted in any category with finite sums and products,
and will produce a polynomial endofunctor on that category. Of course, the quality
of these functors will depend on whether the category in question has good properties,
e.g. products distribute over sums. We’re concerned with the category of sets which has
all the properties we want and more.

Given sets C0, C1, · · · , Cd, (*) defines a (finitary) polynomial functor

P : Set // Set

where for a set X, Xn is the set of n-tuples in X and CnX
n is the cartesian product

Cn × Xn, and + is coproduct (disjoint union). So X represents the identity functor
Id(X) = X and Xn is the product of n-copies of X. As Id is taut and products and sums
of taut functors are taut we get the following.
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2.1.1. Proposition. Any finitary polynomial functor is taut.

Unencumbered by questions of convergence we can define power series to be

P (X) =
∞∑
n=0

CnX
n (**)

giving rise to power series functors

P : Set // Set .

2.1.2. Proposition. Power series functors are taut.

While we’re at it, we may as well let the powers be any sets and the sum also indexed
by a set. This is indeed the natural notion if we’re thinking of Set as a categorified ring
with coproduct as addition and product as multiplication. Now it’s more natural not to
collect like powers and simply allow repetitions.

2.1.3. Definition. A polynomial is an expression of the form

P (X) =
∑
i∈ I

XAi

where I is an index set and ⟨Ai⟩i∈ I is a family of sets indexed by I. This determines a
polynomial functor

P : Set // Set

given by the above formula.

Again we have:

2.1.4. Proposition. Polynomial functors are taut.

There is an extensive body of work on polynomial functors. They have been around
for a long time in various settings and at different levels of abstraction and are still an
active area of research. It is beyond the scope of this paper, and our competence, to give
a comprehensive and accurate history of the subject. We mention only three names –
André Joyal, Joachim Kock, and David Spivak – and three references – [11, 8, 14], – with
apologies to all those not mentioned. The reader is referred to the historical comments
and references in these works.

A particular feature of polynomial functors is that they have morphisms in contrast
to polynomials over a field or ring. Morphisms of polynomial functors are simply natural
transformations. We’ve seen that the projection p1 : X2 // X is not taut so not all
morphisms are taut.

As a polynomial functor is a sum of powers and powers are just representable functors
it is easy to analyze morphisms in terms of the families of powers. If P (X) =

∑
i∈ I X

Ai

and Q(X) =
∑

j ∈ J X
Bj , we have the following bijections
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t : P //Q

t :
∑

i∈I X
Ai //

∑
j∈J X

Bj

⟨XAi //
∑

j∈J X
Bj⟩i∈I

α : I // J & ⟨XAi //XBα(i)⟩i∈I
α : I // J & ⟨fi : Bα(i)

// Ai⟩.

The third bijection is because XAi = Set(Ai,−) is freely generated by a single element,
1Ai

, so the transformation must factor through some injection, the α(i)th. The fourth
bijection is the Yoneda lemma.

Working back up the bijections we see that given (α, ⟨fi⟩) as above, the natural trans-
formation

t : P //G

is given as follows. An element of P (X) is a pair (i, ϕ) where ϕ : Ai //X. t then sends
(i, α) to (α(i), ϕfi) in Q(X).

In [14] a morphism (α, ⟨fi⟩) is called vertical if α is an isomorphism, and it is cartesian
if all fi are isomorphisms. Here we have something weaker than cartesian.

2.1.5. Proposition. A morphism (α, ⟨fi⟩) of polynomials is taut if and only if each of
the fi is an epimorphism.

Proof. Let t : P // Q be given by (α, ⟨fi⟩) as above and assume each of the fi is an
epimorphism. Let X0

// // X be a monomorphism and consider the commutative diagram

∑
j ∈ J X

Bj

0

∑
j ∈ J X

Bj .// //

∑
i∈ I X

Ai
0

∑
j ∈ J X

Bj

0

t(X0)

��

∑
i∈ I X

Ai
0

∑
i∈ I X

Ai// //
∑

i∈ I X
Ai

∑
j ∈ J X

Bj .

t(X)

��

Let (i, ϕ) ∈
∑

i∈ I X
Ai be such that t(X)(i, ϕ) ∈

∑
j ∈ J X

Bj

0 , i.e. ϕfi factors through X0,
giving ψ and a commutative square

X0 X .// //

Bα(1)

X0

ψ

��

Bα(1) Ai
fi // // Ai

X .

ϕ

��

Ai

X0

��

By the diagonal fill-in property of factorizations we have the dotted arrow above, i.e. (i, ϕ) ∈∑
i∈ I X

Ai
0 , showing that the original square is a pullback. Thus t is taut.

Conversely, if t is taut, then for every mono X0
// //X and ϕ, ψ as above we have the

fill-in, so by the orthogonality property of factorizations, the fi are epis.
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2.2. Divided powers. Divided power series are expressions of the form

∞∑
n=0

anx
[n]

where x[n] is to be thought of as x/n!. They form a ring with componentwise addition,
and multiplication given by the bilinear extension of

x[n]x[m] =

(
n+m

n

)
x[n+m]

as the intended meaning of x[n] would suggest. Over a field of characteristic 0, we get a
ring isomorphic to the ring of formal power series, but over a field of finite characteristic,
or a ring, we get something different which often has better properties.

In keeping with our program of extending ring theoretic concepts to Set we can define
the divided power X [n] as follows. The symmetric group Sn acts on the right on Xn,

(x1 . . . xn)σ = (xσ1, xσ2, . . . , xσn)

and we take the quotient by this action

X [n] = Xn/Sn .

If Sn is the symmetric group considered as a one object category, a right action corresponds
to a functor

Sopn // Set

and the quotient X [n] is its colimit. So by Proposition 1.3.8, F (X) = X [n] gives a taut
functor Set // Set.

A divided power series functor F : Set // Set is one given by

FX =
∞∑
n=0

CnX
[n] .

From the discussion above we get immediately the following.

2.2.1. Proposition. Any divided power series is taut.

Divided power series functors are not polynomial functors except in the affine case

C0 + C1X
[1] .

They don’t preserve pullbacks. E.g. FX = X [2] takes the pullback below to a commutative
diagram which is clearly not a pullback

2 1//

4

2
��

4 2// 2

1
��

Pb 7−→

3 1 .//

10

3
��

10 3// 3

1 .
��
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But they provide more examples of taut functors.
The analogy with real divided power series is nice but only goes so far. Note, for

example, that if X is a finite cardinal k then the cardinality of Xn is kn but the cardinality
of X [n] is not kn/n!, which is not even an integer in general. Instead, its cardinality is

k↑n

n!
=

k(k + 1) . . . (k + n− 1)

n!
(*)

which is, of course, an integer, a binomial coefficient in fact.
More importantly, they are not closed under binary products. We definitely don’t

have

X [n] ×X [n] ∼=
(
n+m
n

)
X [n+m]

which is obvious if we let X = 1. Even if we thought it might be a series

X [n] ×X [n] ∼=
∞∑
i=0

CiX
[i] ,

by letting X = 1 we see that all the Ci must be 0 except for one of them, Cl = 1, so that
we would have

X [n] ×X [n] ∼= X [l] .

This is impossible just on the grounds of cardinality: (*) is a polynomial in k with leading
term kn/n! so we would need

kn/n! · km/m! = kl/l!

for all k, which we can’t have.
What we do have is

Xn/Sn ×Xm/Sm ∼= Xn+m/Sn × Sm

where Sn × Sm acts on Xn+m ∼= Xn ×Xm in the obvious way, i.e. componentwise. This
leads to taking quotients of Xn by a subgroup G of Sn rather than the full Sn. Then G
acts on the left on Xn and we can take the quotient

Xn/G .

Now we can redefine our divided power series as follows.

2.2.2. Definition. An extended divided power series is an expression of the form

∞∑
n=0

(∑
i∈ In

Xn/Gi

)

where, for each n, ⟨Gi⟩i∈ In is a family of subgroups of Sn.
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2.2.3. Proposition. Extended divided power series define taut functors.

Dare we write
∑

i∈ In X
n/Gi as

∑
i∈ In (1/Gi)X

n and think of
∑

1/Gi as some kind
of rational number?

Note that power series are now special cases of extended divided power series, by
taking all of the Gi to be trivial.

We can replace finite powers by arbitrary ones. For a set A, SA is the group of
bijections A // A. SA acts on the right on XA and we take the quotient by that action
to get a taut functor

FX = XA/SA .

As before, no need to take the full symmetric group. We can restrict to a subgroup
G ≤ SA and get

FX = XA/G .

A bit more canonically, we can take any group G and A a left G-set. Then G will act on
the right on XA and we get again a taut functor.

A generalized divided power series functor is one of the form

FX =
∑
i∈ I

XAi/Gi

where I is a set, ⟨Gi⟩ a family of groups and ⟨Ai⟩ a family of left Gi-sets. F is taut.
If we take all the Gi to be trivial we get polynomial functors and if we take Sn, n ∈ N

we get the “classical” divided power series.

2.3. Analytic functors. Joyal’s original definition of analytic functor [9] was in the
context of his reformulation of combinatorics in categorical terms and was strictly finitary.
They have since been generalized in many directions (see [7] and references there).

In [9], a species (of structure) was defined as a functor F : Bij //Bij, where Bij is the
category of finite cardinals and bijections, but for general purposes there is no problem
in taking F : Bij // Set. So F is a sequence of left Sn-sets, Fn, one for each n ∈ N.

A species F determines an analytic functor F̃ as the left Kan extension of F along the
inclusion of Bij in Set

Bij SetF //Bij

Set

��

��

Set

Set

<<

F̃

�#

.

F̃ is given by the formula

F̃X =

∫ n∈N
Xn × Fn

which can be calculated as a colimit

F̃X = lim−→
a∈Fn

Xn



20 ROBERT PARÉ

taken over the category of elements of F , El(F ). As Bij is a groupoid, so is El(F ), and

therefore F̃ is taut.

2.3.1. Proposition. The classical analytic functors are taut.

Let’s reformulate this a bit in order to compare it with power series and divided power
series. Just like any colimit, a colimit over a groupoid is the coproduct of the individual
colimits over the connected components of the groupoid. If we choose a representative
object in each component, then these colimits are colimits taken over groups, the auto-
morphism groups of the chosen objects. So an analytic functor can be written as

∞∑
n=0

Xn ⊗Sn Cn

for a family of left Sn-sets Cn. The Cn are the Fn from above, the notation chosen meant
to suggest “coefficients”, and to agree more with the previous sections.

Just to be clear, Xn ⊗Sn Cn, which is the coend or colimit from above, is explicitly
described as the set of all equivalences classes [x1, . . . , xn; c] = ⟨xi⟩ ⊗ c for xi ∈ X and
c ∈ C. The equivalence relation is

(x1, . . . , xn; c) ∼ (y1, . . . , yn; d) iff ∃σ ∈ Sn(
∧
i

yi = xσi) ∧ (c = σd)

or put differently
⟨xi⟩ ⊗ σd = ⟨xσi⟩ ⊗ d .

Now, Xn ∼= Xn ⊗Sn Sn so power series are analytic, and X [n] ∼= Xn ⊗Sn 1 so divided
power series are also analytic. In fact, the extended divided power series are analytic
functors. For any subgroup G of Sn, the left cosets of G, S/G form a left Sn-set as usual,
and

Xn ⊗Sn Sn/G
∼= Xn/G .

Note in passing that

Xn/Sn ×Xm/Sm ∼= Xn+m/(Sn × Sm) ∼= Xn+m ⊗Sn+m (Sn+m/Sn × Sm)

which is the proper way of generalizing the equation

x[n]x[m] =

(
n+m

n

)
x[n+m] .

The cardinality of Sn+m/Sn × Sm is indeed
(
n+m
n

)
.

But analytic functors can also be presented as extended divided power series, so de-
termine the same class of taut functors just presented differently. Indeed, if C is a left
Sn-set, it is a sum of indecomposables and these are isomorphic to left cosets of some
subgroup of Sn. So

C =
∑
i∈ I

Sn/Gi
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and then
Xn ⊗Sn C

∼=
∑
i∈ I

Xn/Gi .

So our fanciful
∑

1/Gi from the previous section is just
∑
Sn/Gi in the language of

analytic functors.
We summarize the above discussion in the following.

2.3.2. Proposition. Extended divided power series and analytic functors determine the
same class of taut functors.

We can generalize analytic functors, as we did for divided powers, allowing arbitrary
powers not just finite ones.

2.3.3. Definition. A generalized analytic functor is given by

FX =
∑
i∈ I

XAi ⊗Gi
Ci

where ⟨Gi⟩i∈ I is a family of groups, and ⟨Ai⟩i∈ I and ⟨Ci⟩i∈ I are families of left Gi-sets.

As in the finitary case we have the following.

2.3.4. Proposition.

(1) Generalized analytic functors are taut.

(2) Polynomial functors are generalized analytic.

(3) Generalized divided power series give the same class of taut functors as generalized
analytic functors.

2.4. Reduced powers. So far all of our examples, interesting in their own right, have
been special cases of generalized symmetric power series functors, which brings us to
reduced powers, which will give a new class.

Reduced powers are a lot like symmetric powers in that they are (with one exception)
quotients of powers, i.e. can be defined as equivalence classes of functions from a fixed
exponent into a variable set, but in fact give us a completely new class of taut functors as
we will see below. The reader is referred to Blass’ paper [3], mentioned in the introduction,
where he proves, among other things, that every left exact endofunctor is a directed union
of reduced powers.

2.4.1. Definition. Let A be a set. A filter F on A is a set of subsets of A, F ⊆ 2A,
such that

(1) F is closed under finite intersections, i.e. A ∈ F (empty intersection) and A1, A2 ∈
F ⇒ A1 ∩ A2 ∈ F .

(2) F is up-closed A1 ∈ F & A1 ⊆ A2 ⇒ A2 ∈ F .

F is proper if ∅ /∈ F .
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2.4.2. Examples.

(1) The set of cofinite (finite complement) subsets of any infinite set, e.g. N.

(2) The set of subsets A ⊆ N such that there exists n0 ∈ A with k ≥ n0 ⇒ k ∈ A.

(3) If A0 ⊆ A is a non-empty subset, then the set of all A1 containing A0 is a principal
filter.

2.4.3. Definition. Let A be a set and F a filter on A. The reduced power XF is the
colimit

XF = lim−→
B∈F

XB.

As XF is a filtered colimit of representables we immediately get the following.

2.4.4. Proposition. For any filter F , the reduced power XF gives a left exact endo-
functor of Set, in particular it is taut.

Just from the definition as a colimit we see that XF consists of equivalence classes of
partial functions from A into X,

A X ,

B

A

��

��

B

X ,

f

��

with B ∈ F . The equivalence relation is generated by restriction

f ∼ g if A X

B

A

��

��

B

X

f

��
A

C

__

__

A XX

C

??

g

OO

OO

.

Because the colimit is filtered, the equivalence relation can be described as

f ∼ g ⇔ there exists A oo oo D h //X such that D ∈ F and

C

A D X

B

cc

g

;;
oo oo h //
{{

{{ f

##
OO

OO

��

��
.

An even more amenable description is that

f ∼ g ⇔ {a ∈ B ∩ C | fa = ga} ∈ F .
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The reduced power XF is often defined as follows:

XF = {f : A //X}/ ∼= XA/ ∼

where f ∼ g iff {a ∈ A | fa = ga} ∈ F . This is a lot easier to handle and justifies the
term “reduced power”. It is equivalent to the colimit definition except when F is trivial,
i.e. contains ∅, and so all subsets. In that case, the colimit definition gives

XF = 1

the constant functor with value 1, whereas the quotient of the representable gives

XA/ ∼ =

{
∅ if X = 0
1 otherwise.

This functor is not taut as, e.g.

1 2//
0
//

0

1

��

��

0 1// // 1

2

��

1

��
Pb 7−→

1 1 .//

0

1
��

0 1// 1

1 .
��

We don’t want to exclude the improper filter in our definition but we nevertheless
work with the reduced power definition, which we find easier, and check the degenerate
case separately.

If F is a principal filter generated by A0 ⊆ A, then it is easily seen that XF ∼= XA0 .
But we have:

2.4.5. Proposition. If F is a non-principal filter, then the reduced power functor XF

is not a generalized symmetric power series.

Proof. Suppose XF ∼=
∑

i∈ I X
Bi/Gi. If we let X = 1, we get 1 ∼= I, so there’s only one

term in the series XB/G where B is a left C-set, XF ∼= XB/G. Now, XF preserves finite
products, so XB/G will also. Consider the special case

(B ×B)B/G ∼= BB/G×BB/G.

An element on the left is an equivalence class of pairs [⟨ϕ, ψ⟩] for ϕ, ψ : B // B, and
two pairs are equivalent

⟨ϕ, ψ⟩ ∼ ⟨ϕ′, ψ′⟩ ⇔ ∃ σ ∈ G(σϕ = ϕ′ ∧ σψ = ψ′) . (1)

(Wlog we have assumed that G is a subgroup of SB.)
An element on the right is a pair of equivalence classes ⟨[ϕ], [ψ]⟩ with two being equal

⟨[ϕ], [ψ]⟩ = ⟨[ϕ′], [ψ]⟩ ⇔ ∃ σ, τ ∈ G(σϕ = ϕ′ ∧ τψ = ψ) . (2)
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Of course (1) ⇒ (2). That’s the canonical product comparison morphism. If (2) ⇒
(1) then for any σ ∈ G, we have ⟨[id], [id]⟩ = ⟨[σ], [id]⟩ so [⟨id, id⟩] = [⟨σ, id⟩] i.e. there is
σ′ ∈ G such that

σ′ · id = σ and σ′ · id = id

so σ = id, i.e. G is trivial.
So now we’re reduced to XF = XB, a representable. This means that XF preserves

all products, which implies that F is closed under arbitrary intersections and that means
F is principal, contrary to our assumption.

Non trivial reduced powers are quotients of representables which are projective, so if
F is a filter on A and G one on B, a natural transformation t : XF //XG lifts

XF XG
t
//

XA

XF
����

XA XBt̄ // XB

XG
����

which is equivalent to a function ϕ : B //A. Not every ϕ will give a natural transformation
which descends to the reduced powers, and two ϕ’s that do, may give the same reduced
transformation. For an element of XF , i.e. an equivalence class [f ] of functions f : A //X,
the induced t is given by

t(X)[f ] = [fϕ] .

Some basic set theoretical calculations lead to the following result, from [18] Proposi-
tion VI.3 (also contained in Theorem 3 of [3]).

2.4.6. Proposition. For filters F and G on A and B respectively, the natural transfor-
mations between the reduced power functors

t : XF //XG

are in bijection with equivalence classes of functions ϕ : B //A such that for each A0 ∈ F
we have ϕ−1A0 ∈ G. ϕ is equivalent to ψ : B // A if

{b ∈ B | ϕ(b) = ψ(b)} ∈ G .

We think of the elements of F (or G) as large subsets of A (resp. B). Then natural
transformations between the reduced powers correspond to equivalence classes of functions
which map large subsets of A to large subsets of B by inverse image, much like continuous
functions do for opens. We now characterize those classes [ϕ] for which the corresponding
transformation is taut as those that map large subsets of B to large subsets of A by direct
image, like open maps. First a lemma.
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2.4.7. Lemma. Let z : Y // // X be a monomorphism. An element [f ] of XF is in (the
image of) Y F if and only if there is an A0 ∈ F and a factorization

A0 Y .g
//

A

A0

OO

OO

A X
f // X

Y .

OO

z

OO

Proof. If Y = ∅ then Y F = ∅ and the result is trivial. Otherwise, if there are A0 and g
as above, we can extend g to ḡ : A //Y . Then zḡ and f agree on A0 so [f ] = [zḡ], i.e. [f ]
in Y F .

In the other direction, if [f ] is in Y F , i.e. [f ] = [zḡ] for some ḡ : A // Y , then f and
zḡ agree on some A0 ∈ F and we take g = ḡ|A0 .

2.4.8. Proposition. Let F and G be filters on A and B respectively, and ϕ : B // A
a function mapping elements of G to elements of F by inverse image. Then the induced
natural transformation

t : XF //XG

[f ] 7−→ [fϕ]

is taut if and only if
B0 ∈ G ⇒ ϕ(B0) ∈ F .

Proof. First assume t is taut and let B0 ⊆ B Then we get ϕ(B0) ⊆ A and a pullback
square, by tautness

ϕ(B0)
G AG .// //

ϕ(B0)
F

ϕ(B0)
G

t(ϕ(B0))

��

ϕ(B0)
F AF// // AF

AG .

tA

��

Pb

Consider the class [1A] ∈ AF . It gets sent to [ϕ] in AG by t(A) and [ϕ] is in ϕ(B0)
G (as ϕ

factors through ϕ(B0)). So [1A] is in ϕ(B0)
F and thus there are A0 ∈ F and a restriction

A0 ϕ(B0) .//

A

A0

OO

OO

A A
1A // A

ϕ(B0) .

OO

OO

So A0 ⊆ ϕ(B0) and we get ϕ(B0) ∈ F .
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Now assume that ϕ preserves large sets (i.e., elements of the filter) and consider a
mono Y // //X. We wish to show that

Y G XG// //

Y F

Y G

tY

��

Y F XF// // XF

XG

tX

��

is a pullback, so let [f ] ∈ XF be such that [fϕ] = tX[f ] ∈ Y G. By the lemma, there are
B0 ∈ G and a restriction g

B0 Yg
//

B

B0

OO

OO

B XX

Y

OO

OO

B A
ϕ // A X

f //

and g factors through the image ϕ(B0)

B0 ϕ(B0)// //

B

B0

OO

OO

B A
f // A

ϕ(B0)

OO

OO

ϕ(B0) Y .//

A

ϕ(B0)

A X
f // X

Y .

OO

OO

Because ϕ(B0) ∈ F we get [f ] ∈ Y F . This gives our pullback and t is taut.

There is a category of filters F introduced in [18] and further studied in [5], whose
objects are pairs (A,F) with A a set and F a filter on it and whose morphisms are
equivalences of functions as in Proposition 2.4.6. It is proved in [18] that the epimorphisms
in F are precisely the [ϕ] when ϕ satisfies the conditions of 2.4.8.

2.5. Monads. Another instance where endofunctors appear naturally in category theory
is in the theory of monads and, in fact, that’s what Manes was studying when he intro-
duced taut functors [12]. His interests lay in applications to computer science (collection
monads, e.g.) and categorical topology (T0 spaces, e.g.), so many of his examples centred
around lists, e.g. the free monoid monad, and around filters. Among his examples were
indeed the free monoid or semigroup monads and the filter monad F. F(X) is the set
of filters on X well-known to be a monad. He showed that not only is F taut (functor,
unit and multiplication are taut) but a monad T is taut iff it admits a taut morphism of
monads T // F [12]. He also showed that any submonad of F is taut (Theorem 3.12), so
that the ultrafilter monad β is taut. See loc. cit. for more examples.

As just mentioned the free monoid monad is taut. In fact it’s a polynomial monad

TX = 1 +X +X2 + . . .
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The free commutative monoid monad is also taut as it is a divided powers monad

TX = 1 +X +X2/S2 +X3/S3 + . . .

On the other hand the free group monad or the free Abelian group monad are not taut.
Consider, e.g., the free Abelian group monad and the following inverse image diagram in
Set

0 0� //

1 2// //

∅

1
��

∅ 2// // 2

2
��

0

1

_

��

1

1

_

��

.

If we apply T we get

n (n, 0)� //

Z Z⊕ Z// //

1

Z
��

1 Z⊕ Z// // Z⊕ Z

Z⊕ Z
��

(m,n)

(0,m+ n)

_

��

which is not a pullback. The pullback is {(m,n)|m + n = 0}. The difference between
monoids and groups is that in groups there are equations with different variables on either
side, e.g. xx−1 = 1.

In 1967, P lonka [15] studied universal algebras defined by what he termed regular
equations, equations that have the same variables on both sides. Szawiel and Zawadowski
[17] have shown that finitary monads are taut (which they call semi-analytic) iff they can
be presented by regular equations.

Other non-finitary monads considered by Manes are the covariant power-set monad
which is taut and the double dualization monad which is not.

We examine the tautness of the covariant power-set functor P as it comes up in the
next section. Consider the inverse image diagram in Set

B C .// //

f−1B

B
��

f−1B A// // A

C .

f

��
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The pullback of PB along Pf

PB PC// //

(Pf)−1(PB)

PB
��

(Pf)−1(PB) PA// // PA

PC

Pf

��

consists of the set of all subsets of A, A0 ⊆ A such that f(A0) ⊆ B which is equivalent to
A0 ⊆ f−1B, i.e. (Pf)−1(PB) = P (f−1B), which means that P is taut.

P doesn’t preserve all pullbacks though. Just by cardinality arguments we see that
for cardinals m,n > 2, the pullback

m 1//

mn

m
��

mn n// n

1
��

is not preserved: the cardinality of Pm×P1 Pn is less than the cardinality of Pm×Pn =
2m+n which itself is less than 2mn, the cardinality of P (mn).

2.6. Dirichlet series. Classically, Dirichlet series are series of the form

∞∑
n=1

cn
ns

which could be written as
∞∑
n=1

cn

(
1

n

)s
and generalize to Set ∑

i∈ I

CiL
X
i (*)

for sets I, Ci, Li, X. This is the definition given in [13], a coproduct of contravariant
representables. It would be nice to get an actual endofunctor of Set rather than a functor
Setop //Set. We already have an example of this, the covariant powerset functor PX =
2X . We can bootstrap this to get other examples, (2A)X ∼= 2A×X . We could also take 3X

whose elements are nested pairs of subsets to which direct image also applies. And so on.
What makes this work is that the base L is a complete lattice, a sup lattice to be

precise, and functoriality is given by left Kan extension.

2.6.1. Proposition. Let L be a sup complete lattice. Then left Kan extension makes
LX into a taut endofunctor of Set.
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Proof. Let f : A //B be a function, then

Lf : LA // LB

is given by

Lf (ϕ)(b) =
∨

f(a)=b

ϕ(a) ,

the left Kan extension of ϕ along f

A

L

ϕ
��

A B
f // B

L

Lf
(f)��

≤

.

It is well-known, and easily seen, that this makes L( ) into a functor Set // Set.
Consider the following inverse image diagram in Set

B0 B//
n

//

A0

B0

��

A0 A// m // A

B

f

��

Pb

A0 = f−1B0. First note that if ψ0 ∈ LB0 then its extension to B is given by

Ln(ψ0)(b) =
∨
ϕ(b0)=b

ψ0(b0)

=

{
b if b ∈ B0

⊥ o.w.

So we can identify LB0 with its image in LB, i.e.

{ψ : B // L|ψ(b) = ⊥ for all b /∈ B0}.
Now take the pullback

LB0 LB .// //

Pb

LB0

��

Pb LA// LA

LB .

Lf

��

Pb

An element of Pb is ϕ : A // L such that

Lf (ϕ) ∈ LB0

i.e. ∨
f(a)=b

ϕ(a) = ⊥

for all b /∈ B0. This means ϕ(a) = ⊥ for all a with f(a) /∈ B0, i.e. all a /∈ f−1B0 = A0.
Thus Pb is LA0 and LX is taut.
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Other than the few examples of monads mentioned in Section 2.5 all of our examples
had rank, i.e. were a small colimit of representables. The functors LX (and L[X] introduced
below) are of unbounded rank (i.e. have no rank), unless L = 1.

To see this, define the support of ϕ : A //L to be σ(ϕ) = {a|ϕ(a) ̸= ⊥}. If f : A //B
and ψ = LX(f)(ϕ), i.e.

ψ(b) =
∨

f(a)=b

ϕ(a)

then σ(ψ) is the image of σ(ϕ) under f as is easily seen. Thus the cardinality of σ(ψ) is
bounded by that of σ(ϕ). This means that no set of elements can generate LX because
any element with support bigger than the supports of all the supposed generators could
never be attained.

Examples of sup-complete lattices which may be of interest are the open sets of a
topological space, the subgroups of a group and of special interest to us here, are the
finite ordinals.

The functor LX is not connected. By Proposition 1.3.12, π0(L
X) = L1 = L, and LX

decomposes into a sum of connected functors, one for each l ∈ L,

LX ∼=
∑
l∈L

Fl .

The transformation LX // L is given by sup, so Fl = {f : X // L |
∨
f(x) = l} which

is the same as all functions into D(l) = {l′ ∈ L | l′ ≤ l}, the down-set of l, whose sup is
the top element of D(l), i.e. l itself. This leads to the following:

2.6.2. Definition. Let L be a sup lattice. The normalized exponential functor with base
L is

L[X] = {f : X // L |
∨

f(x) = ⊤}

where ⊤ is the top element of L.

2.6.3. Proposition.

(1) The normalized exponential is connected and taut.

(2) LX ∼=
∑

l∈LD(l)[X] .

(3) If L1, L2 are sup lattices, then

L
[X]
1 × L

[X]
2
∼= (L1 × L2)

[X] .

Proof. (1) and (2) are immediate by Corollary 1.3.13. (3) is simply that “sup” and
“top” are component-wise in L1 × L2.
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2.6.4. Example. Let n = {0, 1, . . . , n− 1} represent the nth cardinal number and n the
corresponding ordinal 0 < 1 < · · · < n− 1. n is a complete lattice and its down sets D(l)
from above are 1,2, . . . ,n so

nX ∼= 1[X] + 2[X] + · · ·+ n[X] .

The reason we are interested in connected functors is that it allows for a simple analysis
of natural transformations between sums of them. If ⟨Fi⟩i∈I and ⟨Gj⟩j∈J are families of
connected endofunctors of Set, then a natural transformation

t :
∑
i∈I

Fi //
∑
j∈J

Gj

is given by a function α : I // J and a family of natural transformations

⟨ti : Fi //Gα(i)⟩i∈I .

So, if t were an isomorphism then so would α and all the ti.
If we were to define Dirichlet series as a coproduct∑

i∈I

LXi

as suggested above, there could be different families ⟨Li⟩ giving isomorphic functors, which
is not desirable. For example, if ⟨ni⟩ is an unbounded sequence of natural numbers, then
the functor ∑

i∈N

nXi

will have infinitely many k[X] summads for each k and thus∑
i∈N

nXi
∼= N×

∑
k∈N

k[X].

So any two unbounded sequences give isomorphic functors.
This motivates the following.

2.6.5. Definition. A Dirichlet functor is a coproduct of normalized exponentials

FX =
∑
i∈ I

L
[X]
i .

So, in particular, by (2) above, LX defines a Dirichlet functor.
For future reference we record the following:



32 ROBERT PARÉ

2.6.6. Proposition. Dirichlet functors are taut.

Any natural transformation of Dirichlet functors

t :
∑
i∈I

L
[X]
i

//
∑
j∈J

M
[X]
j

must, because the L
[X]
i are connected, come from a function α : I // J and a family of

natural transformations
ti : L

[X]
i

//M
[X]
α(i) .

In particular if ∑
i∈I

L
[X]
i
∼=
∑
j∈J

M
[X]
j

then there is a bijection α : I // J and isomorphisms

L
[X]
i
∼= M

[X]
α(i) .

This raises the question of whether the lattices Li and Mα(i) are themselves isomorphic.
This is indeed the case but the proof is not that simple. In fact a similar statement for
the non-normalized powers LX is false.

2.6.7. Proposition. Any top preserving morphism of sup-lattices ϕ : L //M induces,
by composition, a natural transformation

tϕ : L[X] //M [X] .

tϕ is taut if and only if ϕ reflects “bottom”

ϕ(a) = ⊥ ⇒ a = ⊥ .

Proof. For λ : X // L in L[X], tϕ(λ) is ϕλ : X //M .∨
x∈X

ϕλ(x) = ϕ(
∨
x∈X

λ(x)) = ϕ(⊤) = ⊤ ,

so ϕλ is in M [X].
For naturality, let f : Y //X be any function. Then for λ ∈ L[Y ] and x ∈ X, going

across the top and then down in

M [Y ] M [X]

M [f ]
//

L[Y ]

M [Y ]

tϕ(Y )

��

L[Y ] L[X]L[f ]
// L[X]

M [X]

tϕ(X)

��
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gives

tϕ(X)L[f ](λ)(x) = ϕ(L[f ](λ)(x)) = ϕ(
∨
fy=x

λy)

and first going down and then over

M [f ]tϕ(Y )(λ)(x) = M [f ](ϕλ)(x) =
∨
fy=x

ϕλ(y)

which are equal because ϕ preserves sup.
Now assume that ϕ reflects ⊥ and let f be monic. We can identify L[Y ] with its image

in L[X], which consists of all λ : X //L such that λ(x) = ⊥ for x /∈ Y . And similarly for
M [Y ].

If λ ∈ L[X] is such that tϕ(X)(λ) is in M [Y ], then for x /∈ Y

ϕλ(x) = ⊥

so
λ(x) = 1

and thus λ is in L[Y ]. The square is a pullback and tϕ is taut.
Conversely, if tϕ is taut, consider the mono 0: 1 // // 2, giving a pullback

M [1] M [2] .// //

L[1]

M [1]

tϕ(1)

��

L[1] L[2]// // L[2]

M [2] .

tϕ(2)

��

Pb

The image of L[1] // // L[2] is the singleton (⊤,⊥) and similarly for M [1] // //M [2]. So if
ϕ(a) = ⊥, then tϕ(⊤, a) = (⊤,⊥) ∈M [1] and then (⊤, a) ∈ L[1], i.e. a = ⊥.

2.6.8. Theorem. Every natural transformation t : L[X] //M [X] is of the form tϕ for a
unique top preserving sup-map

ϕ : L //M .

Proof. Consider a natural transformation t : L[X] //M [X]. t(2) : L[2] //M [2] takes pairs
(a, b) such that a∨ b = ⊤ to pairs (f(a, b), f ′(a, b)) and naturality of t for the switch map
σ : 2 // 2 shows that f ′(a, b) = f(b, a). So

t(2)(a, b) = (f(a, b), f(b, a))

for some function f : L[2] //M with f(a, b) ∨ f(b, a) = ⊤.
We’ll show that ϕ = f(−,⊤) : L //M is a top preserving sup-map and that t = tϕ.
Consider t(X) : L[X] //M [X]. For x ∈ X, define αx : X // 2 by

αx(x) = 0

αx(y) = 1 for y ̸= x.



34 ROBERT PARÉ

Then L[αx] : L[X] //L[2] takes λ to (λx,
∨
y ̸=x λy) (same for M [αx]). Naturality with respect

to αx

L[2] M [2]

t(2)
//

L[X]

L[2]

L[αx]

��

L[X] M [X]t(X) //M [X]

M [2]

M [λx]

��

gives for λ ∈ L[X],

(t(X)(λ)(x),
∨
y ̸=x

t(X)(λ)(y)) = (f(λx,
∨
y ̸=x

λy), f(
∨
y ̸=x

λy, λx)) (1)

From which we get

t(X)(λ)(x) = f(λx,
∨
y ̸=x

λy) (2)

so that t is completely determined by f , which will be the uniqueness part of our bijection
once it’s established.

Let λ : X // L be an arbitrary function and let l ∈ L be such that l ∨
∨
x λx = ⊤ so

that [λ, l] : X + 1 // L is in L[X+1].
Equality of the second coordinates of (1), when applied to [λ, l] with y = 0, will give

f(
∨
x

λx, l) =
∨
x

t(X + 1)[λ, l](x)

and using (2), we get

f(
∨
x

λx, l) =
∨
x

f(λx, l ∨
∨
y ̸=x

λy) (3)

If we take l = ⊤, then we get

f(
∨
x

λx,⊤) =
∨
x

f(λx,⊤)

so ϕ = f(−,⊤) preserves
∨

. We also have ϕ(⊤) = ⊤ as

ϕ(⊤) = f(⊤,⊤) = f(⊤,⊤) ∨ f(⊤,⊤) = ⊤.

It remains only to show that tϕ = t. We have from (2)

t(X)(λ)(x) = f(λx,
∨
y ̸=x

λy)

and
tϕ(X)(λ)(x) = ϕλ(x) = f(λx,⊤).



TAUT FUNCTORS AND THE DIFFERENCE OPERATOR 35

A special case of (3) gives for a ∨ b ∨ c = ⊤

f(a ∨ b, c) = f(a, c ∨ b) ∨ f(b, c ∨ a).

If a ∨ c = ⊤, and b = a we get

f(a, c) = f(a ∨ a, c) = f(a, c ∨ a) ∨ f(a, c ∨ a)
= f(a,⊤) ∨ f(a,⊤) = f(a,⊤)

so that f(a, c) is independent of c and we do get t = tϕ.

2.6.9. Corollary. If L[X] ∼= M [X] then the lattices L and M are isomorphic.

Proof. The bijection ϕ←→ tϕ is functorial in ϕ.

Perhaps surprisingly, a similar result doesn’t hold for the full powers LX . LX can be
decomposed into a coproduct of reduced powers

LX ∼=
∑
l∈L

D(l)[X]

with D(l) = {a ∈ L | a ≤ l}. So a natural transformation

t : LX //MX

is given by an arbitrary function α : L //M and a family of natural transformations

tl : D(l)[X] //D(α(l))[X]

which correspond to top preserving sup-maps

ϕl : D(l) //D(α(l)).

Thus LX ∼= MX if and only if there is a bijection α : L //M such that the down sets
D(l) and D(αl) are isomorphic. In particular, L = D(⊤) ∼= D(α⊤) so L is isomorphic
to a sublattice of M and vice versa, and if L and M are finite then L ∼= M , but not in
general.

Let L be the closed subset of the unit interval [0, 1] given by

{1} ∪ [1/2, 1/3] ∪ {1/4} ∪ [1/5, 1/6] ∪ · · · ∪ {0}

and M given by
[1, 1/2] ∪ {1/3} ∪ [1/4, 1/5] ∪ · · · ∪ {0}.

L and M are sup complete because they are closed and bound subsets of [0, 1]. There
are in each case four types of down sets D(a).

(1) If a ̸= 0 comes from a singleton {a} in L or M , then D(a) ∼= L and there are
countably many in each case.
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(2) If a is an interval [c, d) in L or M , then D(a) ∼= M and there are the power of the
continuum of these for each of L and M .

(3) If a is the right end point of an interval [c, a], then D(a) ∼= L + {⊤} and there are
countably many of these for each of L and M .

(4) If a = 0 then D(a) = {0} in both cases.

We conclude that LX ∼= MX , but L is not isomorphic to M because in L the top
element, 1, is isolated but it’s not in M .

In a more speculative vein, suppose we want something resembling the familiar Dirich-
let series,

FX =
∞∑
n=1

Cn(1/n)[X]

we would need sup lattices n∗ to play the role of 1/n. We would like n∗ ×m∗ ∼= (nm)∗
so that our new Dirichlet functors multiply in the familiar way. We also want the nullary
version 1∗ ∼= 1. This means that n∗ is determined (up to isomorphism) by the prime
factors of n. In order for these new Dirichlet functors to be closed under the difference
operator ∆, to be introduced in the next section, we would like the down sets of n∗ to
be of the same form. This more or less (though perhaps not quite) forces the following
definition.

2.6.10. Definition.

(1) If p is a prime number, then p∗ is the totally ordered set

p∗ = {q ≤ p | q is prime},

including p0 = 1, the 0th prime.

(2) If n = pα1
1 p

α2
2 . . . pαk

k is the prime decomposition of n, then n∗ = (p1∗)
α1 × (p2∗)

α2 ×
· · · × (pk∗)

αk .

So 1∗ = {1}, 2∗ = {1, 2}, 3∗ = {1, 2, 3}, 5∗ = {1, 2, 3, 5}, 7∗ = {1, 2, 3, 5, 7}, . . .
that is, we allocate ordinals in order to each prime, so we have

1∗ ∼= 1, 2∗ ∼= 2, 3∗ ∼= 3, 5∗ ∼= 4, 7∗ ∼= 5, . . .

We then extend this to all n by cartesian product

4∗ = 2∗ × 2∗, 6∗ = 2∗ × 3∗, . . . 12∗ = 2∗ × 2∗ × 3∗ . . .

To be precise, we take the prime factors in increasing order, as illustrated above.
The lattices n∗ are all different, as one would hope.
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2.6.11. Proposition. Let n1, . . . ,nk and m1, . . . ,ml be finite ordinals > 1. If the lat-
tices

∏
ni and

∏
mj are isomorphic then k = l and there is a permutation of the subscripts

σ such that ni = mσi for all i.

Proof. Let ϕ :
∏

ni //
∏

mi be a lattice isomorphism. The atoms in
∏

ni are ei =
(0, . . . 0, 1, 0 . . . 0) with a 1 in the ith coordinate. Similarly for the atoms e′j in

∏
mj.

ϕ preserves (and reflects) atoms so we have a bijection σ on the subscripts such that
ϕ(ei) = e′σi. In particular, k = l.

For any i, the set

Ai = {a ∈
∏

ni | ej ≰ a for all j ̸= i}

is the set {(0, 0 . . . r . . . 0) | r ∈ ni} which is isomorphic to ni.
If Bj is the similarly defined set for

∏
mj, then ϕ restricts to an isomorphism

Ai
∼= //Bσ(i)

and so ni = mσi for all i.

With these n∗ we can define what we call, for lack of a better name, sequential Dirichlet
functors.

2.6.12. Definition. A sequential Dirichlet functor is one of the form

FX =
∞∑
n=1

Cnn
[X]
∗

for any arbitrary sequence of sets Cn, n ∈ N+.

2.6.13. Proposition. Let GX =
∑∞

n=1Dnn
[X]
∗ be another sequential Dirichlet functor.

Then F ×G is also a sequential Dirichlet functor. In fact we have

(F ×G)(X) ∼=
∞∑
n=1

∑
rs=n

(Cr ×Ds)n
[X]
∗ .

Proof. This follows simply using distributivity, the isomorphisms r
[X]
∗ × s[X]

∗ ∼= (rs)
[X]
∗ ,

and then collecting like terms.

We end this section with even more speculation.

2.6.14. Definition. The sequential Dirichlet series

Z(X) =
∞∑
n=1

n[X]
∗

is called the zeta functor.
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The Euler product formula is∑
n∈N

1

ns
=

∏
p prime

∑
k∈N

1

pks
.

We get a similar formula for the Zeta functor though we have to replace the infinite
product by the colimit of its finite factors.

Let P be a finite set of primes and P ∗ the set of all n whose prime factors lie in P .

2.6.15. Proposition.

(1) For P a finite set of primes, we have an isomorphism∑
n∈P ∗

n[X]
∗
∼=
∏
p∈P

∑
k∈N

pk[X]
∗

(2)

Z(X) ∼= lim−→
∏
p∈P

∑
k∈N

pk[X]
∗

where the colimit is taken over all finite sets of primes P .

Proof.

(1) An element on the left is an n =
∏

p∈P p
kp and a function

ϕ : X //
∏
p∈P

pkp∗

whose sup is the top element.

An element on the right is P -tuple of functions

ϕp : X // pkp∗

whose sup is the top element, which corresponds bijectively to the ϕ above.

(2) Take lim−→ of the isos in (1), and note that Z(X) is the colimit of the left sides.
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2.6.16. Remark. If we list the primes in increasing order p1, p2, . . . , as usual, we can
restrict the colimit to the final subset of initial segments and get

Z(X) ∼= lim−→
n

∏
p ≤ pn

pk[X]
∗

which some may prefer.

3. The difference operator

Given a functor F : Set // Set, we wish to study how it grows as the input set grows.
Given a set A, we want to perturb it a bit A⇝ A′ and measure the change FA⇝ FA′.
The smallest perturbing of A is simply adding a new element, and the perturbation is the
coproduct injection

j : A // A+ 1 .

We want to see what new elements F has acquired in passing from A to A + 1, i.e. the
elements in the set difference

F (A+ 1) \ ImF (j) .

If A ̸= 0 then j is a split mono so that F (j) is also a mono and we can write, by abuse of
notation,

F (A+ 1) \ FA .

One shouldn’t expect this to be functorial in A but, perhaps somewhat surprisingly, it is
for taut functors.

3.1. Definition and functorial properties. Let F : Set // Set be a functor. For
any set A define

∆[F ](A) = F (A+ 1) \ Im(j)

for j : A // A+ 1 the coproduct injection.
The \ is set difference, not something usually considered by category theorists as it is

not functorial. But it is more functorial than one might think. The following lemma will
be pivotal in our discussion.

3.1.1. Lemma. Let f : A // B be a function, A0 ⊆ A, B0 ⊆ B subsets, and assume f
restricts to f0 : A0

//B0

B0 B// //

A0

B0

f0

��

A0 A// // A

B

f

��

(*)
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Then f restricts to f \ f0 : A \ A0
//B \B0

B \B0 B// //

A \ A0

B \B0

f\f0

��

A \ A0 A// // A

B

f

��

(**)

iff (∗) is a pullback diagram, i.e. A0 = f−1B0. When this is the case, (∗∗) will also be a
pullback diagram.

Proof. It is a triviality, though perhaps worth mentioning, that a function f : A // B
restricts to A0

//B0 iff
a ∈ A0 ⇒ fa ∈ B0 ,

and the resulting square is a pullback iff

a ∈ A0 ⇔ fa ∈ B0 .

This is equivalent to
a /∈ A0 ⇔ fa /∈ B0

whence the lemma.

We will find it useful to have a name for the functor X 7−→ X + 1. Let’s call it S for
successor

SX = X + 1 .

S could also stand for shift as it will be used for precomposing, as in the proposition
below.

3.1.2. Proposition. If F : Set // Set is taut, then ∆[F ] is a taut subfunctor of FS.

Proof. Let f : A //B be any function. Then, by tautness of F

FB F (B + 1)//
FjB

//

FA

FB

Ff

��

FA F (A+ 1)// FjA // F (A+ 1)

F (B + 1)

F (f+1)

��

is a pullback, so by Lemma 3.1.1, F (f + 1) restricts to

F (B + 1) \ Im(FjB) F (B + 1)// //

F (A+ 1) \ Im(FjA)

F (B + 1) \ Im(FjB)
��

F (A+ 1) \ Im(FjA) F (A+ 1)// // F (A+ 1)

F (B + 1)

F (f+1)

��
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which makes ∆[F ] into a subfunctor of FS. Furthermore, this square is also a pullback
so the inclusion

∆[F ] // // FS

is taut, and by Proposition 1.1.2, part (6), ∆[F ] is also taut.

3.1.3. Corollary. For F taut, the transformation induced by Fj and the inclusion

F + ∆[F ] // FS

is an isomorphism.

3.1.4. Definition. ∆[F ] is called the difference functor of F .

Notation: Taut functors preserve monos so F (j) is monic, and we will identify FX with
its image in F (X + 1), so ∆[F ](X) = F (X + 1) \ FX.

3.1.5. Proposition. If t : F //G is a taut transformation, then tS : FS //GS restricts
to a taut transformation ∆t : ∆[F ] //∆[G]

∆[G] GS .// //

∆[F ]

∆[G]

∆[t]

��

∆[F ] FS// // FS

GS .

tS

��

Proof. t is taut so

GX G(X + 1)//
Gj

//

FX

GX

tX

��

FX F (X + 1)// Fj // F (X + 1)

G(X + 1)

t(X+1)

��

is a pullback, so by Lemma 3.1.1, t(X + 1) restricts to

G(X + 1) \GX G(X + 1)// //

F (X + 1) \ FX

G(X + 1) \GX
��

F (X + 1) \ FX F (X + 1)// // F (X + 1)

G(X + 1)

t(X+1)

��

giving ∆[t](X) and a pullback square. ∆[t] is automatically natural.
For any mono A // //B we have

∆[G]A ∆[G]B G(B + 1) ∆[G]A G(A+ 1) G(B + 1) .

∆[F ]A ∆[F ]B F (B + 1) ∆[F ]A F (A+ 1) F (B + 1)

// // // // // // // //

// // // // // // // //

∆[t]A

��

∆[t]B

��

t(B+1)

��

∆[t]A

��

t(A+1)

��

t(B+1)

��

=
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The second, third and fourth squares are pullbacks so the first square is also a pullback.
Thus ∆[t] is taut.

This defines the difference functor

∆: Taut //Taut

on the category of taut endofunctors of Set and taut natural transformations.

3.2. Commutation properties. We give functorial analogues of the usual properties
of finite differences.

3.2.1. Proposition. Let C : Set // Set be the constant functor with value C, then
∆[C] = 0.

3.2.2. Proposition. For FX = X, the identity functor Set // Set, the difference is
∆[X] = 1.

3.2.3. Remark. There is a (unique) natural transformation X //1 but if we take differ-
ences we get 1 and 0 and there is no transformation 1 // 0. This shows that the tautness
condition in Proposition 3.1.5 is necessary.

For any functor F : Set // Set we write CF for the product of the constant functor
C with F , which is isomorphic to the coproduct of C copies of F .

3.2.4. Proposition. ∆[CF ] ∼= C∆[F ].

3.2.5. Proposition. ∆[F +G] ∼= ∆[F ] + ∆[G].

The two previous propositions, easy to prove directly, are special cases of a much more
general result, namely that ∆ commutes confluent colimits of taut diagrams.

3.2.6. Theorem. Let I be a small confluent category and Γ: I // Taut, then we have
an isomorphism

lim−→
I

∆[ΓI] ∼= ∆
[
lim−→
I

Γ(I)
]
.

Proof. If α : I //J in I, then by assumption Γ(α) is a taut transformation Γ(I) //Γ(J)
and so Γ(α)S restricts to a taut natural transformation ∆[Γ(α)] : ∆[ΓI] //∆[ΓJ ]

∆[ΓJ ] Γ(J)S .// //

∆[ΓI]

∆[ΓJ ]

∆Γ(α)

��

∆[ΓI] Γ(I)S// // Γ(I)S

Γ(J)S .

Γ(α)S

��

This makes ∆Γ into another diagram I //Taut and we have a natural isomorphism

∆[ΓI] + Γ(I)
∼= // Γ(I) ◦ S .
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Colimits commute with coproducts, and precomposing with S, so

lim−→
I

∆[ΓI] + lim−→
I

Γ(I)
∼= //
(
lim−→
I

Γ
)
◦ S

which by Proposition 1.3.14 means that

lim−→
I

∆[ΓI] ∼= ∆
[
lim−→
I

Γ(I)
]

.

Proposition 3.2.4 is a special case with I a discrete category with C elements and
Γ: I //Taut the constant diagram with value F , and Proposition 3.2.5 with I = 2. Of
course, more generally

∆
[∑

i

Fi

]
∼=
∑
i

∆[F ]i .

There is a product rule for finite differences.

3.2.7. Theorem. If F,G : Set // Set are taut, then

∆[F ×G] ∼= (∆[F ]×G) + (F ×∆[G]) + (∆[F ]×∆[G]) .

Proof. If we take the product of the two isomorphisms

∆[F ] + F
∼= // FS and ∆[G] +G

∼= //GS

and use distributivity of product over sum we get

(∆[F ]×∆[G]) + (∆[F ]×G) + (F ×∆[G]) + (F ×G)
∼= // FS ×GS = (F ×G)S

and the result follows by Lemma 1.3.14.

This is purely a set theoretical result clearly illustrated by

∆[G]A

GA

FA ∆[F ]A

6

?

G(A+1)

� -F (A+1) .

The reader can easily write down, or just imagine, the seven terms for ∆[F ×G×H]
gotten by applying the theorem several times. In fact, easy set theoretical techniques will
reveal the formula for infinite products.
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3.2.8. Theorem. Given a set I and a family ⟨Fi⟩ of taut functors Set // Set, we have

∆
[∏
i∈ I

Fi

]
∼=
∑
J⊊I

(∏
j∈J

Fj

)
×
(∏
k/∈J

∆[Fk]
)
,

(the sum is taken over proper subsets J of I).

To complete the commutativity/distributivity properties of ∆ with limits, we have the
following.

3.2.9. Theorem. Let I be non-empty and connected, and Γ: I //Taut a taut diagram.
Then

∆
[
lim←−
I

Γ(I)
] ∼= lim←−

I

∆[ΓI] .

Proof. Because Γ takes its values in Taut, we get a diagram ∆Γ: I //Taut such that

∆[ΓI] + Γ(I)
∼= // Γ(I) ◦ S ,

just like in the proof of Theorem 3.2.6. In Set, non-empty connected limits commute
with coproducts, so

lim←−
I

∆[ΓI] + lim←−
I

Γ(I)
∼= // lim←−Γ(I) ◦ S

and the result follows by Proposition 1.3.14.

Although arbitrary limits of taut functors are taut, for the theorem it is necessary that
the transition morphisms Γ(α) : Γ(I) //Γ(J) be taut. One sees the problem immediately
when attempting to apply ∆ to the pullback

F 1 .//

F ×G

F
��

F ×G G// G

1 .
��

3.3. The lax chain rule. Generally speaking there is no good chain rule for finite
differences, notwithstanding the work of Alvarez-Picallo and Pacaud-Lemay [1], which
deals with a different situation. Ideally, we would have

∆[G ◦ F ] ∼= (∆[G] ◦ F )×∆[F ]

but this fails even for such simple functors as F (X) = G(X) = X2. Indeed, an easy
calculation shows that in this case

∆[G ◦ F ](X) ∼= 4X3 + 6X2 + 4X + 1

whereas
(∆[G] ◦ F (X))×∆[F ](X) ∼= 4X3 + 2X2 + 2X + 1 .
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However, for functors, there is a lot of extra room to maneuver and we get a comparison
morphism, which will be an isomorphism only in the simplest of cases as the above example
shows, but with good properties nonetheless.

We will sometimes write ◦ for composition of functors, where we think it makes things
clearer.

3.3.1. Theorem. For taut functors F,G : Set // Set we have a natural comparison

γ : (∆[G] ◦ F )×∆[F ] //∆[G ◦ F ]

the chain rule transformation. γ is taut and monic.

Proof. Let A be a set and take an element x ∈ ∆[F ](A). This gives a function

ϕx = [FjA, x] : FA+ 1 // F (A+ 1) ,

which is FjA on the first summand and x on the second. As x is not in the image of FjA,
ϕx is monic and

FA F (A+ 1)//
FjA

//

FA

FA

FA FA+ 1// jFA // FA+ 1

F (A+ 1)

��

ϕx

��

is a pullback. G is taut so

GFA GF (A+ 1)//
GF (jA)

//

GFA

GFA

GFA G(FA+ 1)//G(jFA) // G(FA+ 1)

GF (A+ 1)

��

G(ϕx)

��

is also a pullback, and by Lemma 3.1.1, G(ϕx) restricts to γx giving another pullback

∆[G ◦ F ](A) GF (A+ 1) .// //

∆[G](FA)

∆[G ◦ F ](A)

��

γx

��

∆[G](FA) G(FA+ 1)// // G(FA+ 1)

GF (A+ 1) .

��

G(ϕx)

��

If we put all these γx together by taking the coproduct of the top arrows we get our
γ = [γx]x and

∆[G ◦ F ](A) GF (A+ 1) ,// //

∆[G](FA)×∆[F ]A

∆[G ◦ F ](A)

[γx]x

��

∆[G](FA)×∆[F ]A G(FA+ 1)×∆[F ]A// // G(FA+ 1)×∆[F ]A

GF (A+ 1) ,

[G(ϕx)]x

��
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also a pullback.
We have one such γ for each A, so we should write γ(A) = [γx(A)]x. To check naturality

of γ it is sufficient to check the commutativity of the naturality square on each injection,
that is that the square labelled (?) below commutes for each x ∈ ∆[F ](A):

∆[G ◦ F ](A) ∆[G ◦ F ](B) GF (B + 1) ,

∆[G](FA) ∆[G](FB) G(FB + 1)

(?) (1)

∆[G◦F ](f)
// // //

∆[G](Ff) // // //

γx(A)

��

γy(B)

��

G(ϕy)

��

this for an arbitrary function f : A // B and y = F (f + 1)(x). Compare this with the
following diagram

∆[G ◦ F ](A) GF (A+ 1) GF (B + 1) .

∆[G](FA) G(FA+ 1) G(FB + 1)

(2) (3)

// //
GF (f+1)

//

// // G(Ff+1) //

γx(A)

��

G(ϕx)

��

G(ϕy)

��

The composites of the two top arrows of each diagram are equal by definition of the
functoriality of ∆[G], and the same holds for the bottom arrows but for ∆[G ◦ F ]. (1)
and (3) commute by definition of γx and γy respectively. As the bottom arrow of (1) is
monic, (?) will commute if (3) does.

(3) is G of the diagram

F (A+ 1) F (B + 1)
F (f+1)

//

FA+ 1

F (A+ 1)

ϕx

��

FA+ 1 FB + 1
Ff+1 // FB + 1

F (B + 1)

ϕy

��

(4)

which on injections is

F (A+ 1) F (B + 1)
F (B+1)

//

FA

F (A+ 1)

��

FjA

��

FA FB
Ff // FB

F (B + 1)

��

FjB

��

(5) and

F (A+ 1) F (B + 1)
F (f+1)

//

1

F (A+ 1)

x

��

1 11

F (B + 1)

y

��

(6)
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each of which commutes, the second by definition of y. So (?) commutes establishing
naturality of γ.

If f is monic so is F (f + 1) and then (6) is a pullback. (5) is always a pullback by
tautness so in this case (4) is a pullback, so (3) is too, and (1) and (2) are pullbacks by
definition of γx and γy, so (?) will be a pullback, showing that γ is taut.

To show that γ is monic, first recall that for each x, γx itself is monic (being the
restriction of G(ϕx)). So it is only necessary to show that the γx are pairwise disjoint.
Let x ̸= x′, then

FA+ 1 F (A+ 1)//
ϕx′

//

FA

FA+ 1

��

jFA

��

FA FA+ 1// jFA // FA+ 1

F (A+ 1)

��

ϕx

��

is a pullback and G of it is too. So we have the following pullbacks

∆[G](FA) G(FA+ 1) GF (A+ 1) .

0 GFA G(FA+ 1)

// // //
G(ϕx′ )

//

// // // G(jFA) //
��

��

��

G(jFA)

��

��

G(ϕx)

��

The bottom arrow can be written as γx′ followed by the inclusion, so if we pull back in
stages we get

∆[G](FA) ∆[G ◦ F ](A) GF (A+ 1)

0 ∆[G](FA) G(FA+ 1)

//
γx′

// // //

// // // //
��

��

��

γx

��

��

G(ϕx)

��

so γx and γx′ are disjoint, giving the desired result, that γ is monic.

For x ∈ ∆[F ]A and y ∈ ∆[G](FA), we have

γ(y, x) = G(ϕx)(y)

which in fact is defined for all x ∈ F (A + 1) and y ∈ G(FA + 1) giving an element of
GF (A + 1). This “full γ” is neither taut nor monic. The above proof shows, in part,
that if x /∈ FA and y /∈ GFA, then γ(y, x) /∈ GFA, and with these restrictions we do get
tautness and monicity.

The chain rule transformation is natural in F and G.
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3.3.2. Theorem. Let F, F ′, G,G′ be taut functors and t : F // F ′ u : G // G′ be taut
transformations, then the following diagram commutes

(∆[G′] ◦ F ′)×∆[F ′] ∆(G′ ◦ F ′) .γG′,F ′
//

(∆[G] ◦ F )×∆[F ]

(∆[G′] ◦ F ′)×∆[F ′]

(∆u)◦F×∆t

��

(∆[G] ◦ F )×∆[F ] ∆[G ◦ F ]
γG,F // ∆[G ◦ F ]

∆(G′ ◦ F ′) .

∆(u◦t)

��

Proof. In fact, for any A

G′(F ′A+ 1)× F ′(A+ 1) G′F ′(A+ 1)γG′,F ′
//

G(FA+ 1)× F (A+ 1)

G′(F ′A+ 1)× F ′(A+ 1)

u◦(tA+1)×t(A+1)

��

G(FA+ 1)× F (A+ 1) GF (A+ 1)
γG,F // GF (A+ 1)

G′F ′(A+ 1)

(u◦t)(A+1)

��

commutes, a fortiori its restriction to the diagram of the statement. The u◦ t on the right
is the horizontal composition of natural transformations and expands to the composite
on the right below. The u ◦ (tA+ 1) is also a horizontal composition and can be written
as on the left here:

G′(F ′A+ 1)× F ′(A+ 1) G′F ′(A+ 1) .

G′(FA+ 1)× F (A+ 1) G′F (A+ 1)

G(FA+ 1)× F (A+ 1) GF (A+ 1)

γG′,F ′
//

γG′,F
//

γG,F //

u(FA+1)×F (A+1)

��

G′(tA+1)×t(A+1)

��

uF (A+1)

��

G′t(A+1)

��

For x ∈ F (A+ 1), the restriction of the top square to the xth injection is

G′(FA+ 1) G′F (A+ 1)
G(ϕx)

//

G(FA+ 1)

G′(FA+ 1)

u(FA+1)

��

G(FA+ 1) GF (A+ 1)
G(ϕx) // GF (A+ 1)

G′F (A+ 1)

uF (A+1)

��

which commutes by naturality of u.
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The second diagram, restricted to the xth injection is

G′(F ′A+ 1) G′F ′(A+ 1)
G′(ϕx′ )

//

G′(FA+ 1)

G′(F ′A+ 1)

G′(tA+1)

��

G′(FA+ 1) G′F (A+ 1)
G′(ϕx) // G′F (A+ 1)

G′F ′(A+ 1)

G′t(A+1)

��

where x′ = t(A+ 1)(x). This diagram is G′ of

F ′A+ 1 F ′(A+ 1)
[F ′

jA
,x′]

//

FA+ 1

F ′A+ 1

tA+1

��

FA+ 1 F (A+ 1)
[FjA

,x]
// F (A+ 1)

F ′(A+ 1)

t(A+1)

��

which commutes, on the first summand by naturality of t and on the second by definition
of x′.

We also have the following associativity and unit laws for γ.

3.3.3. Theorem. For taut functors F,G,H we have the following commutativities:
(1)

(∆[H ◦G] ◦ F )×∆[F ] ∆[H ◦G ◦ F ] ,γH◦G,F

//

(∆[H] ◦G ◦ F )× (∆[G] ◦ F )×∆[F ]

(∆[H ◦G] ◦ F )×∆[F ]

γH,G◦F×id

��

(∆[H] ◦G ◦ F )× (∆[G] ◦ F )×∆[F ] (∆[H] ◦G ◦ F )×∆[G ◦ F ]
id×γG,F // (∆[H] ◦G ◦ F )×∆[G ◦ F ]

∆[H ◦G ◦ F ] ,

γH,G◦F

��

(2)

1×∆[F ] ∆[F ] ,
∼= //

(∆[Id] ◦ F )×∆[F ]

1×∆[F ]

(∆[Id] ◦ F )×∆[F ] ∆[Id ◦ F ]
γId,F // ∆[Id ◦ F ]

∆[F ] ,

(3)

∆[F ]× 1 ∆[F ] .
∼= //

(∆[F ] ◦ Id)×∆[Id]

∆[F ]× 1

(∆[F ] ◦ Id)×∆[Id] ∆[F ◦ Id]
γF,Id // ∆[F ◦ Id]

∆[F ] .
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Proof. (1) Let A be a set. We’ll show that

HG(FA+ 1)× F (A+ 1) HGF (A+ 1)
γHG,F (A)

//

H(GFA+ 1)×G(FA+ 1)× F (A+ 1)

HG(FA+ 1)× F (A+ 1)

γHG(FA)×id

��

H(GFA+ 1)×G(FA+ 1)× F (A+ 1) H(GFA+ 1)×GF (A+ 1)
id×γG,F (A)

// H(GFA+ 1)×GF (A+ 1)

HGF (A+ 1)

γH,GF (A)

��

commutes. Evaluate this diagram at an element (x, y, z) of the domain

(H(ϕy)(z), x) HG(ϕx)H(ϕy)(z) ?= H(ϕw)(z) .� //

(z, y, x)

(H(ϕy)(z), x)

_

��

(z, y, x) (x,G(ϕx)(y)) = (z, w)� // (x,G(ϕx)(y)) = (z, w)

HG(ϕx)H(ϕy)(z) ?= H(ϕw)(z) .

_

��

So we have to show that HG(ϕx)H(ϕy) = H(ϕw) for w = G(ϕx)(y), and it is sufficient to
show that G(ϕx)ϕy = ϕw, i.e. that

GFA+ 1 G(FA+ 1)
ϕy //GFA+ 1

GF (A+ 1)

ϕw
&&

G(FA+ 1)

GF (A+ 1)

G(ϕx)

��

commutes. Restricting to the summands we have

GFA G(FA+ 1)
GjFA //GFA

GF (A+ 1)

GF (jA)
''

G(FA+ 1)

GF (A+ 1)

G[FjA,x]

��

1 G(FA+ 1)
y //1

GF (A+ 1)

w

&&

G(FA+ 1)

GF (A+ 1)

G(ϕx)

��

each of which commutes, the first by functoriality of G, the second by definition of w.
This proves (1).

In (2) (and (3)) we denote the identity functor on Set, which we have been calling X,
by Id. Also 1 denotes the constant functor with value 1, i.e. the terminal endofunctor.
Then ∆[Id](X) = (X + 1) \X = 1, i.e. ∆[Id] = 1. To calculate γId,F , take x ∈ F (A + 1)
and consider γ on the xth summand:

Id(ϕx) : Id(FA+ 1) // IdF (A+ 1)

i.e. just ϕx : FA+ 1 // F (A+ 1). Then y ∈ ∆[Id](FA) must be ∗ and ϕx(∗) = x. So

γid,F (∗, x) = x
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which is what (2) is asserting.
For (3) consider

γ : F (IdA+ 1)× Id(A+ 1) // F Id(A+ 1)

i.e.
γ : F (A+ 1)× (A+ 1) // F (A+ 1) .

For x ∈ A + 1, ϕx : A + 1 // A + 1 is the identity on A but ϕx(∗) = x. If we take
x ∈ ∆[Id](A), x must be ∗ so ϕ∗ = 1A+1 : A + 1 // A + 1 and γ∗ = 1F (A+1). This, when
restricted to ∆[F ](A)× 1, is what (3) says.

Getting a comparison

γ : ∆[G] ◦ F ×∆[F ] // //∆[G ◦ F ]

in that direction is a bit surprising. Normally we would expect a morphism into a product
and, as ∆[G ◦ F ] is a kind of cokernel, a morphism out of it. One might think that there
is a comparison in the reverse direction for which γ is a splitting. Looking more carefully
we see that it seems unlikely because we would need a natural transformation

∆[G ◦ F ] //∆[F ] .

So from an element of GF (X + 1) we would need to construct an element of F (X + 1) in
a natural way. Nothing comes to mind but it’s a bit difficult to pin down precisely.

Consider the following example which illustrates well the nature of γ. Let F (X) be
arbitrary (taut) and G(X) = X3. Then ∆[G](X) = 3X2 + 3X + 1 so that

∆[G](FX)×∆[F ](X) = 3
(
F (X)2 ×∆[F ](X)

)
+ 3
(
F (X)×∆[F ](X)

)
+ ∆[F ](X) .

On the other hand (G ◦ F )(X) = F (X)× F (X)× F (X) so we can use the product rule
(Theorem 3.2.7) (three times) to get

∆[G ◦ F ](X) = 3
(
F (X)2 ×∆[F ]X

)
+ 3
(
F (X)× (∆[F ](X))2

)
+
(

∆[F ](X)
)3

.

Then γ is the identity on the first three of the seven summands, and given by diagonals on
the remaining ones. As γ is component-wise on the summands, any splitting would have
to be too. For the first three summands there is only one choice, but for summands of the
form F (X)×∆[F ](X) //F (X)×∆[F ](X)2 we have the two projections, and for the last
summand there are three. This gives us 2 · 2 · 2 · 3 = 24 “canonical” splittings (for γ at F
and G). But there may be many more depending on F . The simplest possible ∆[F ](X)
is X + 1 for F (X) = X [2] = X2/S2. Then the component of γ on the last summand

∆[F ](X) // (∆[F ](X))3 = (X + 1 //X3 + 3X2 + 3X + 1)
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x � // (x, x, x)
∗ � // ∗ .

Now there are only three splittings of X //X3, the projections (Yoneda) and only one
for 1 // 1, but it’s arbitrary for the six terms in the middle, giving 648 splittings, by
our count (could be wrong, but there are lots of them). But none is natural in G. Any
permutation of 3, σ ∈ Sn gives an automorphism of G which percolates down to the same
permutation on the X3 in (∆[F ](X))3, so no one projection would be invariant. The
upshot is that there is no global splitting of γ natural in F and G.

It will be useful in Subsection 4.5 if we express the difference operator with its lax
chain rule in tangent category terms (see [6] for definitions). Our tangent space for Set
is P1 : Set × Set // Set. Given a taut functor F : Set // Set, we define D(F ) : Set ×
Set // Set× Set by

D(F )(A,B) = (FA,∆[F ](A)×B) .

Note that D(F ) is “linear” in the second variable, i.e. D(F )(A,−) preserves colimits, and
as such is completely determined by D(F )(A, 1).

The chain rule says that D is a monoidal functor on taut endofunctors.

3.3.4. Theorem. Let EndTaut(Set) and EndTaut(Set×Set) be the strict monoidal cat-
egories of taut endofunctors on Set and Set × Set respectively, with taut natural trans-
formations, and tensor given by composition. Then D defines a monoidal functor

EndTaut(Set) // EndTaut(Set× Set) .

In the present context we might even go so far as to write a general object of Set×Set
as (A,∆A) where ∆A is just another object, independent of A but thought of as an
increment in A, just like the dx in f(x)dx. Then

D(F )(A,∆A) = (FA,∆[F ](A)×∆A) .

4. Differences for the special classes

We give explicit formulas for the difference operator on the various classes of taut functors
studied in Section 2.

4.1. Polynomials. Let F (X) = XA for some set A. An element ϕ ∈ ∆[F ](X) =
(X + 1)A \XA is a function ϕ : A //X + 1 with ∗ ∈ Im(ϕ) (∗ is the unique element of
1). If S = {a ∈ A|ϕ(a) ̸= ∗} is the support of ϕ, then ϕ is uniquely determined by its
restriction to S, and the condition ∗ ∈ Im(ϕ) is that S is a proper subset of A. This
produces a bijection

∆[XA] ∼=
∑
S⊊A

XS

where the coproduct is taken over all proper subsets of A. The bijection is natural as
(f + 1)A : (X + 1)A // (Y + 1)A preserves support for any f : X // Y .
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A polynomial functor is a small coproduct of powers

P (X) =
∑
i∈ I

XAi

for a family ⟨Ai⟩i∈ I of sets and as ∆ commutes with coproducts we have

∆[P ](X) =
∑
S⊊Ai

XS

where the coproduct is taken over all i ∈ I and proper subsets S ⊊ Ai.
If A is a finite cardinal n, we can group like powers of X together to get

∆[Xn] =
n−1∑
k=0

(
n

k

)
Xk

where
(
n
k

)
is, as usual, the binomial coefficient.

This is all we need for the following result.

4.1.1. Proposition.

(1) If P (X) is a polynomial functor then so is ∆[P ](X)

(2) If P (X) is a power series functor, so is ∆[P ](X)

(3) If P (X) is a finitary polynomial functor, so is ∆[P ](X).

4.2. Divided powers. Let n be a positive integer. Then X [n] = Xn/Sn consists of
equivalence classes of n-tuples [x1 . . . xn] with [x1 . . . xn] = [y1 . . . yn] iff there is a permu-
tation σ ∈ Sn such that yi = xσ(i) for all i. So ∆[X [n]] consists of such equivalence classes
with xi ∈ X or xi = ∗ for all i and at least one xi = ∗. Within each of these equivalence
classes there are those n-tuples with all the ∗’s at the end. If there are k x’s for X (and
n−k stars) then the equivalence relation reduces to the existence of σ ∈ Sk with yi = xσi.
This way we see that

∆[X [n]] ∼= X [0] +X [1] + · · ·+X [n−1].

If FX is a divided power series

FX = C0 + C1X
[1] + C2X

[2] + · · · =
∞∑
n=0

CnX
[n]

then

∆[F ](X) =
∞∑
i=1

Ci +

(
∞∑
i=2

Ci

)
X [1] +

(
∞∑
i=3

Ci

)
X [2] + . . .

=
∞∑
n=0

(
∞∑

i=n+1

Ci

)
X [n].
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4.2.1. Proposition. If F (X) is a divided power series then so is ∆[F ](X).

∆[X [A]] for infinite sets A is more complicated. For example, for A = N, we have
for each n, equivalence classes of the form (x0, x1, . . . , xn−1, ∗, ∗, ∗, . . . ) giving an X [n]

summand, but there are also equivalence classes of the form

(∗ ∗ ∗ · · · ∗ xnxn+1xn+2 . . . ), n > 0

giving countably many X [N] summands. And there’s even one more type of equivalence
class with infinitely many ∗’s and infinitely many xi ∈ X, which we can represent as

(x0, ∗, x2, ∗, x4, ∗, . . . )

This gives us an extra copy of X [N]. Thus

∆[X [N]] ∼= N×X [N] +
∞∑
n=0

X [n] .

A more general approach will lead to a better understanding. Let G be a group and
A a left G-set. Then

∆[XA/G]

can be described as follows. G acts on the set P ′A of proper subsets of A by application
of the action element-wise

B ⊊ A � g // gB = {gb | b ∈ B}.

Let S ⊆ P ′A be a choice of representative for each orbit of this action. Then we have:

4.2.2. Proposition.
∆[XA/G] ∼=

∑
B∈S

AB/Stab(B)

where Stab(B) = {g ∈ G | gB = B}, the stabilizer of B.

Proof. An element of ∆[XA/G] is an equivalence class [f ] of functions f : A //X + 1
with ∗ ∈ Im(f). The equivalence relation is given by f ∼ f ′ iff there is g ∈ G with

X + 1

A

99

f ′

A

X + 1

f

%%

A

A

g·( )

��
.

A function into X + 1 is equivalent to a partial function

A oo oo B
f̄ //X
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and ∗ ∈ Im(f) is equivalent to B being a proper subset of A. The equivalence relation
translates to the existence of g ∈ G such that

A B′oo oo

A

A

g·( )

��

A Boo oo B

B′

g·( )

��

Pb X

B′

99

f̄ ′

B

X

f̄

%%

B

B′

(*)

and the square being a pullback is equivalent to g(B) = B′.
Any (B′, f̄ ′) is equivalent to a (B, f̄) with B ∈ S (there’s a g ∈ G which maps B′ to

B, and defines f̄ by (∗) above), and for these (B, f) the equivalence relation reduces to
(∗) with g ∈ Stab(B).

4.2.3. Corollary. The class of (generalized) divided power series is closed under the
difference operator ∆.

4.3. Analytic functors.

4.3.1. Proposition. Let C be a left Sn-set (n ∈ N). Then there exist Sk-sets Ck,
k = 0, 1, . . . , n− 1 such that

∆[Xn ⊗Sn C] ∼=
n−1∑
k=0

Xk ⊗Sk
Ck .

Proof. An element of ∆[Xn ⊗Sn C] =
(
(X + 1)n ⊗Sn C

)
\ (Xn ⊗Sn C) is an equivalence

class [x1, . . . , xn; c] where c ∈ C and xi ∈ X or xi = ∗ for all i, with at least one ∗.
[x1, . . . , xn; c] = [y1, . . . , yn; d] iff there exists σ ∈ Sn such that yi = xσi for all i and
c = σd.

The number of ∗’s is invariant under the action of Sn so is an invariant of the
equivalence class, but it is also invariant under the functorial action (i.e. for functions
f : X // Y ), so that ∆[Xn ⊗Sn C] decomposes into a coproduct

n−1∑
k=0

Φk

of endofunctors Φk, where k is the number of x’s that are not stars.
Let Ck be the set of equivalence classes [c] for c ∈ C with c ∼ d iff there is σ ∈ Sn

such that σ(i) = i for all i ≤ k and c = σd. Sk acts on Ck by τ [c] = [τ̄ c] where τ̄ is τ
extended to a permutation on n by the identity, i.e.

τ̄(i) =

{
τ(i) 1 ≤ i ≤ k
i k < i ≤ n .



56 ROBERT PARÉ

The action is well defined because such an extension will commute with the σ’s above as
they act on disjoint sets. So

τ [c] = [τ̄ c] = [τ̄σd] = [στ̄d] = [τ̄ d] .

The claim is that Φk
∼= Xk ⊗Sk

Ck. Each equivalence class in Φk has a representative
of the form [x1, . . . xk, ∗, . . . , ∗; c] (several in fact).

We define
ϕ : Φk

//Xk ⊗Sk
Ck

ϕ[x1 . . . xk, ∗, . . . , ∗; c] = [x1, . . . xk, [c]] .

ϕ is well defined. Indeed, let [x1, . . . , xk, ∗, . . . , ∗; c] = [y1 . . . yk, ∗, . . . , ∗; d] so there exists
σ ∈ Sn such that c = σd, yi = xσi, and the ∗’s get permuted among themselves. Let
τ ∈ Sk be σ restricted to {1, . . . , k}, and τ̄ the extension of τ to {1, . . . , n} by the identity
on i > k. Then

τ [d] = [τ̄ d] = [τ̄σ−1c] = [c]

because τ̄ and σ agree on i ≤ k, i.e. τ̄σ−1(i) = i. As we have yi = xσ(i) = xτ(i) for i ≤ k,
we have

[x1, . . . , xk; [c]] = [y1, . . . , yk; [d]]

and ϕ is well defined.
We show that ϕ is one to one. Suppose [x1, . . . , xk; [c]] = [y1, . . . , yk; [d]], i.e. there

exists τ ∈ Sk such that yi = xτi and τ [d] = [c]. Thus [τ̄ d] = [c] (τ̄ as above) which means
there is a σ ∈ Sn such that σ(i) = i for i ≤ k and c = στ̄d. For i > k, σ(i) > k so

στ̄(i) = τ(i) i ≤ k
στ̄(i) > k i > k

giving our permutation in Sn making

[x1 . . . xn, ∗, . . . , ∗; c] = [y1, . . . yk, ∗, . . . , ∗; d] .

It is clear that ϕ is onto and just as clearly natural, and so is the required isomorphism.

4.3.2. Corollary. If C : Bij // Set is a species and

FX =
∞∑
n=0

Xn ⊗Sn C(n)

the corresponding analytic functor, then

∆[F ](X) ∼=
∞∑
n=0

Xn ⊗Sn

(
∞∑

l=n+1

C(l)n

)
.



TAUT FUNCTORS AND THE DIFFERENCE OPERATOR 57

Proof. By the proposition

∆[F ](X) ∼=
∞∑
n=0

(
n−1∑
k=0

Xk ⊗Sk
C(n)k

)

and grouping like powers of X together we get the desired result.

The Ck above may seem mysterious, at the very least a bit opaque. Passing to per-
mutations on infinite sets will force us into a more conceptual presentation. Rather than
choose a proper subset of each cardinality as we did in the case of [n] we consider them
all at once.

Let A be an arbitrary set and construct a groupoid P(A) (P for proper powerset) whose
objects are proper subsets A0 ⊊ A and whose morphisms are bijections σ of A preserving
the subset, i.e.

A0
//B0

σ : A // A s.t. σA0 = B0 .

For each set X we get a functor

X( ) : P(A)op // Set

with XA0 the set of functions A0
//X, and for σ : A0

//B0

Xσ : XB0 //XA0

(g : B0
//X) � // (A0

σ0 //B0
s //X)

A B0

X

A A0

oooo

oooo

σ

��

σ0

��

Xσ(g)

""

g

<<

.

Let C be a left SA-set. The action of SA on C restricts to a functor

C̄ : P(A) // Set

B0 C .� //

A0

B0

σ

��

A0 C� // C

C .

σ◦( )

��

7→

4.3.3. Proposition.

∆[XA ⊗SA
C] ∼=

∫ A0∈P(A)
XA0 × C̄.
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Proof. An element of ∆[XA ⊗SA
C] is an equivalence class of pairs [f : A // X + 1, c]

for f a function with ∗ in its image and c ∈ C, with [f, c] = [g, d] iff there is σ ∈ SA with

f = gσ and d = σc. f : A // X + 1 is a partial map A A0 Xoooo f0 // with A0 a

proper subset, and f = gσ means

A B0

X

A A0

oooo

oooo

σ

��

σ0

��

f0

""

g0

<<

.

This is exactly a description of a general element of
∫ A0 XA0 × C.

We can simplify things by choosing a skeleton of P(A). A0
∼= B0 iff there exists

σ : A //A in SA such that σA0 = B0 which implies that the cardinality of A0 is equal to
that of B0, #A0 = #B0, but the complements of A0 and B0 also have the same cardinality,
#A′

0 = #B′
0. And this is sufficient to have A0

∼= B0. Thus for every pair of non-zero
cardinals κ = (κ1, κ2) such that κ1 +κ2 = #A, we choose a subset Aκ ⊊ A with #Aκ = κi
and #A′

κ = κ2, and take the full subcategory P′(A) of P(A) determined by these. P′(A)
is now the coproduct of the groups SAκ × SA′

κ
, which are the groups of automorphisms of

the Ak. The coend is then the coproduct of the coends over each of these groups, which
is what we’ve been writing as the tensor product. Thus we have the following:

4.3.4. Corollary.
∆(XA ⊗SA

C) =
∑
κ

XAκ ⊗SAκ×SA′
κ
C

where the coproduct is taken over κ = (κ1, κ2) with κ1, κ2 > 0 and κ1 + κ2 = #A.

This is still not in the form we would like. What we would like is to express it in terms
of ⊗ over symmetric groups. However

XAκ ⊗SAκ×SA′
κ
C ∼= XAκ ⊗SAκ

(
SAκ ⊗SAκ×SA′

κ
C
)

where the SAκ in the middle is given the left SAκ action by left multiplication and the
right SAκ × SA′

κ
action by right multiplication after projecting onto SAκ .

We can further analyze SAκ ⊗SAκ×SA′
κ
C. An element is an equivalence class of pairs

(σ, c) with σ ∈ SAκ and c ∈ C, with (σ, c) ∼ (τ, d) iff there exist ρ ∈ SAκ and ρ′ ∈ SA′
κ

such that
τ = σρ and c = (ρ+ ρ′)d .

Each equivalence class has representatives of the form (id, c) and for these the equivalence
relation reduces to (id, c) ∼ (id, d) iff there exists ρ′ ∈ SA′

κ
such that c = (id + ρ′)d. So

SAκ ⊗SAκ×SA′
κ
C ∼= Cκ
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with Cκ = C/ ∼ where

c ∼ d⇔ ∃ρ′ ∈ SAκ′
(c = (id + ρ′)d) .

The upshot of this long discussion is that:

4.3.5. Corollary.
∆[XA ⊗SA

C)] =
∑

XAκ ⊗Aκ Cκ ,

and ∆ of a generalized analytic functor is again one.

4.4. Reduced powers. Let F be a filter on A. An element of (X+1)F can be identified

with an equivalence class of partial functions A oo oo A0
f //X with (A oo oo A0

f //X) ∼
(A oo oo B0

g //X) if and only if

{a ∈ A0 ∩B0 | f(a) = g(x)} ∪ (A′
0 ∩B′

0) ∈ F

where A′
0 and B′

0 are the complements of A0 and B0 respectively.
If we take X = 1, the f is redundant so that an element of (1 + 1)F may be identified

with an equivalence class of subsets A0 ⊆ A with A0 ∼ B0 if and only if

(A0 ∩B0) ∪ (A′
0 ∩B′

0) ∈ F .

The canonical map (X + 1)F // (1 + 1)F partitions (X + 1)F into a disjoint union
indexed by the equivalence classes of subsets [A0],

(X + 1)F ∼=
∏
[A0]

(X + 1)F[A0]

where an element of (X + 1)F[A0]
corresponds to a partial function A oo oo B0

g // X if
and only if B0 ∼ A0.

For any subset A0 ⊆ A let

FA0 = {A1 ⊆ A0 | A1 ∪ A′
0 ∈ F} .

4.4.1. Proposition. FA0 is a filter on A0 and (X + 1)F[A0]
∼= XFA0 .

Proof. FA0 is easily seen to be a filter. An element of XFA0 is an equivalence class of

functions [A0
t //X].

[A0
f //X] = [A0

g //X]⇐⇒ {a ∈ A0 | fa = ga} ∈ FA0

⇐⇒ {a ∈ A0 | fa = ga} ∪ A′
0 ∈ F

⇐⇒ [A oo oo A0
f //X] = [A oo oo A0

g //X] in (X + 1)F .
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So taking [A0
f // X] in XF

A0
to [A oo oo A0

f // X] in (X + 1)F is well-defined and

one-to-one. To see that it’s onto, first assume that X ̸= ∅, and take [A oo oo B0
g //X]

in (X + 1)F[A0]
and define f : A0

//X by

f(a) =

{
g(a) if a ∈ A0 ∩B0

arbitrary, otherwise

Then
{a ∈ A0 ∩B0 | f(a) = g(a)} ∪ (A′

0 ∩B′
0)

= (A0 ∩B0) ∪ (A′
0 ∩B′

0) ∈ F

because A0 ∼ B0. If X = ∅ then (X + 1)F[A0]
is also empty unless [A0] = [∅], and XFA0

which is contained in (X + 1)F[A0]
is also empty. For [A0] = [∅], (X + 1)F[A0]

∼= 1 and so is

XF[A0] as ∅ ∈ F[A0].

4.4.2. Corollary. ∆[XF ] =
∑

[A0]̸=[A]X
FA0

where the coproduct is taken over a set of representatives of the F-equivalence classes of
subsets A0 ⊆ A with [A0] ̸= [A].

Proof. (X + 1)F ∼=
∑
XF
A0

over all classes and FA = F .

4.4.3. Corollary. If U is an ultrafilter, then

∆[XU ] ∼= 1 .

Proof. As U is an ultrafilter, for any subset A0 ⊆ A, either A0 ∈ U or A′
0 ∈ U . If A0 ∈ U

then [A0] = [A]. If A′
0 ∈ U , then [A0] = [∅] for

(A0 ∩ ∅) ∪ (A′
0 ∩ ∅′) = A′

0 ∈ U .

Thus there are only two classes [A] and [∅] so ∆[XU ] = XF∅ ∼= 1 as F∅ = 2A.

This gives an example of two functors, not differing by a constant, with the same finite
difference, namely X and XU .

We could define reduced power series to be coproducts∑
i∈ I

Ci ×XFi

and get that ∆ of such is again one. Apart from ∆[XF ] we don’t know of any naturally
arising examples.

Note that all filters F on finite sets are principal, i.e. the set of all subsets of A
containing some fixed subset A0, namely the intersection of all elements of F . Then
XF ∼= XA0 , so reduced powers are an essentially infinite phenomenon, infinite powers, so
there would be no corresponding thing in algebra or analysis.
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4.5. Monads. All of the previous examples were variations on the power series theme.
The filter monad F is of a different nature. It was central to Manes’ paper introducing
taut functors [12]. Not only is the functor F taut but the unit η and multiplication µ are
taut transformations, i.e. F is a taut monad.

Recall that F(X) = {F | F is a filter on X}. If f : X // Y then we have F(f)(F) =
{Y0 ⊆ Y | f−1Y0 ∈ F}. The unit η : X // F(X) takes an element x to the principal
ultrafilter generated by x, i.e. {X0 ⊆ X | x ∈ X0}. The multiplication is a bit harder,
and won’t concern us here.

4.5.1. Proposition.
∆[F] = F .

Proof. Let F be a filter on X + 1 and

F0 = {X0 ⊆ X | X0 ∈ F},
F1 = {X1 ⊆ X | X1 ∪ {∗} ∈ F}.

F0 may be empty, but if not it’s a filter on X and F1 is always a filter on X. Clearly
F0 ⊆ F1. If F0 ̸= ∅, then X ∈ F0 so X ∈ F . Then for any X1 ∈ F1, X1 = X ∩ (X1∪{∗})
is in F so X1 ∈ F0 and F0 = F1.

Conversely, given any filter F on X we get two filters on X + 1

F̄ = {X0 ∪ {∗} | X0 ∈ F}

and
¯̄F = F ∪ {X0 ∪ {∗} | X0 ∈ F} .

Thus the filters on X + 1 fall into two disjoint classes, the F̄ ’s and the ¯̄F ’s, and the ¯̄F ’s
are precisely the images of F̄ ’s in F(X) under the inclusion F(j) : F (X) // F (X + 1).
Consequently, ∆[F](X) consists of all the F̄ ’s and is isomorphic to F(X) itself.

If F′ is the submonad of F of proper filters then for any filter F on X, F̄ will always
be proper whereas ¯̄F will only be proper when F is. This gives the following result.

4.5.2. Proposition.
∆[F′] ∼= F .

The ultrafilter monad, usually called β, is also a submonad of F. An ultrafilter U on
X + 1 will be of the form ¯̄F only if F is the powerset PX and then U will be ⟨∗⟩, the
principal ultrafilter determined by ∗. On the other hand ¯̄F will be an ultrafilter iff F is
one on X. It follows that β(X + 1) ∼= βX + 1 and we get:
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4.5.3. Proposition. ∆[β] = 1.

In fact, as is well known and easy to prove, β preserves finite coproducts and β1 = 1,
from which the proposition follows, without the analysis of F.

The covariant powerset monad P can also be considered a submonad of F, by the
“principal filter inclusion”,

A ⊆ X 7−→ ⟨A⟩ = {X0 ⊆ X | A ⊆ X0} .

For f : X // Y ,

F(f)(⟨A⟩) = {Y0 ⊆ Y | f−1Y0 ∈ ⟨A⟩}
= {Y0 ⊆ Y | A ⊆ f−1Y0}
= {Y0 ⊆ Y | fA ⊆ Y0}
= ⟨fA⟩ .

So we could analyze ∆[P] in terms of F , but it is easier done directly, though it’s really
the same thing.

A subset of X + 1 either contains ∗ or not. In the first case it is of the form X1 ∪ {∗}
for X1 ⊆ X and in the second it’s just X0 ⊆ X, the image of X0 under P(j). This gives:

4.5.4. Proposition. ∆[P] ∼= P .

Although ∆[F] = ∆[F′] = F, ∆[P] = P and ∆[β] = 1 are all monads it’s the exception
rather than the rule that ∆ of a taut monad is again a monad. Note that, although
∆[β] = 1 is a monad, it is not a taut one as the unit X // 1 is not taut. Even for such a
basic monad as TX = M ×X, for M a monoid, its difference is the constant functor M
which may look like a monad but it’s not (unless M = 1).

The reason is that for (T, η, µ) a taut monad, we have a pullback

X T (X) ,
ηX

//

X + 1

X

OO

OO

X + 1 (X + 1)
η(X+1) // (X + 1)

T (X) ,

OO

OO
Pb

so, in passing to the difference ∆[T ](X) = T (X + 1) \ T (X), we’ve removed the unit.
However, as we saw in Theorem 3.3.4, looking at the difference operator as producing

an endomorphism of the “tangent space”, we get a monoidal functor

D : EndTaut(Set) // EndTaut(Set× Set)

which does preserve monoids, i.e. monads. So, for a taut monad (T, η, µ) on Set we get
a taut monad D(T, η, µ) on Set× Set

Set× Set // Set× Set
(A,B) � // (TA,∆[T ](A)×B) .
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The unit is

(A,B)
(ηA,hA×B) // (TA,∆[T ](A)×B)

where hA is defined by

A+ 1 T (A+ 1)
η(A+1)

//

1

A+ 1

��

j2

��

1 ∆[T ](A)hA // ∆[T ](A)

T (A+ 1)

��

��

which exists because η is taut. It is just ∆[η](A).
The multiplication comes from the chain rule transformation. It is

(T 2A,∆[T ](TA)×∆[T ](A)×B)
(µA,mA×B) // (TA,∆[T ](A)×B)

where mA is the composite

∆[T ](TA)×∆[T ](A) // γ //∆[T 2](A)
∆[µ](A) //∆[T ](A) .

The B looks just tacked on with nothing to do with T or A, but they are intertwined
via the associativity law for the monad D(T, η, µ). We won’t look at this directly, but it
is apparent when we consider Eilenberg-Moore algebras for it. An algebra is

(α, β) : (TA,∆[T ](A)×B) // (A,B)

such that (A,α) is a T -algebra and β makes the following diagrams commute

1×B ∆[T ](A)×Bh×B //1×B

B

∼=
&&

∆[T ](A)×B

B

β

��

and

∆[T ](A)×B B .
β

//

∆[T ](TA)×∆[T ](A)×B

∆[T ](A)×B

∆[T ](TA)×∆[T ](A)×B ∆[T ](A)×B∆[T ](α)×B // ∆[T ](A)×B

B .

β

��

∆[T ](TA)×∆[T ](A)×B

∆[T 2](A)×B

γ×B

��
∆[T 2](A)×B

∆[T ](A)×B

∆[µ]×B

��

We see the α appearing in the top row in the equations for β.
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4.6. Dirichlet functors. The analysis of P easily generalizes to the covariant expo-
nentials LX .

4.6.1. Proposition. Let L be a sup-lattice, then

∆[LX ] ∼= L∗ × LX

where L∗ = {l ∈ L | l ̸= ⊥}.

Proof. An element of L(X+1) is a function X + 1
[ϕ,l] // L where ϕ : X // L and l ∈ L.

If f : X // Y and Lf [ϕ, l] = [ψ,m] : Y + 1 // L, then ψ(y) =
∨
fx=y ϕ(x) and m is the

sup over all pre-images of ∗, i.e. {∗}, so m = l, i.e. L(X+1) ∼= LX × L, as functors.
Lj(ϕ) = [ϕ,⊥] : X + 1 // L where ϕ : X // L and ⊥ is the bottom element of L,

i.e. the sup of the empty set, j−1{∗}. This gives the result.

Recall that for l ∈ L, a sup lattice, D(l) denotes the down-set of l, {l′ ∈ L | l′ ≤ l},
which is a sub sup lattice of L.

4.6.2. Proposition. Let Cl = {l′ ∈ L | l ∨ l′ = ⊤ and l′ ̸= ⊥}. Then

∆[L[X]] ∼=
∑
l∈L

Cl ·D(l)[X] .

Proof. The proof is similar to that of the previous proposition. An element of ∆[L[X]] is
a function [ϕ, l′] : X + 1 // L for l′ ̸= ⊥ and

∨
x∈X ϕ(x) ∨ l′ = ⊤. If we let l =

∨
x∈X ϕ(x)

then ϕ ∈ D(l)[X]. And there’s one such ϕ for each l′ ̸= ⊥ and l ∨ l′ = ⊤.

4.6.3. Corollary. ∆ of a Dirichlet functor is a Dirichlet functor.

4.6.4. Corollary. (1) If ⊤ is join-irreducible then

∆[L[X]] = L∗ · L[X] +
∑
l ̸=⊤

D(l)[X] .

(2) ∆[n[X]] = (n− 1) · n[X] + (n− 1)[X] + (n− 2)[X] + · · ·+ 2[X] + 1[X] .

(3) ∆[p
[X]
∗ ] = π(p) · p[X]

∗ +
∑
q
[X]
∗ + 1, the coproduct taken over all primes < p.

Proof. (1) ⊤ join-irreducible means l ∨ l′ = ⊤ ⇒ l = ⊤ or l′ = ⊤, so

C⊤ = L∗ = {l′ | l′ ̸= ⊥} and if l ̸= ⊤

then Cl = {⊤} ∼= 1.
(2) The top element of n is join-irreducible, so this is a special case of (1).
(3) This is a special case of (2), given the definition of p∗.
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4.6.5. Proposition. ∆ of a sequential Dirichlet functor is again one.

Proof. By Corollary 4.6.4 (3) we know that for a prime p, ∆p
[X]
∗ is a sequential Dirichlet

functor. For a composite n, n∗ is a cartesian product of p∗’s so by Proposition 2.6.13,
∆n

[X]
∗ is also a sequential Dirichlet functor. Finally, ∆ of a sequential Dirichlet functor is

a coproduct of ∆n
[X]
∗ ’s so is again one.

5. A Newton summation formula

For a function f : R // R, the difference operator ∆

∆[f ](x) = f(x+ 1)− f(x)

can be iterated giving discrete versions of higher derivatives. Thus

∆2[f ](x) = f(x+ 2)− 2f(x+ 1) + f(x)

∆3[f ](x) = f(x+ 3)− 3f(x+ 2) + 3f(x+ 1)− f(x)

and so on.
The Newton series is a discrete analog of Taylor series, trying to recover f or some

reasonable approximation of f , from specific values ∆k[f ](a). It takes the form

g(x) =
∞∑
n=0

∆n[f ](a)

n!
(x− a)↓n (1)

=
∞∑
n=0

(
x− a
n

)
∆n[f ](a) (2)

where (x− a)↓n is the falling power

(x− a)(x− a− 1)(x− a− 2) . . . (x− a− n+ 1)

and
(
x−a
n

)
is the “binomial coefficient”

(x− a)(x− a− 1) . . . (x− a− n+ 1) .

n!

The formulas (1) and (2) look sufficiently combinatorial to suggest that there may
be a similar formula for taut endofunctors of Set, and indeed there is. That is what we
develop in this section.

This section has significant overlap with [17] but it is hard to isolate what precisely.
Their objective was completely different from ours, concentrating on monads, theories,
and operads. But crucial points here appear at various points in their work. They
clearly recognized the importance of the category Surj of finite cardinals and surjections
(there called S) and its relation to soft analytic functors (called semi-analytic). Their



66 ROBERT PARÉ

Theorem 2.2 is basically Part I of our main theorem below. In particular the A[n] of their
Lemma 2.5 is ∆n[F ](0) by our Corollary 5.1.3.

Neither of the formulas (1) or (2) generalize directly to functors, even for a = 0. We
need more structure on the higher differences ∆n[F ], and to study this we need a better
understanding of them.

The suggestive notation ∆[F ](X) = F (X + 1) \ F (X) is too suggestive here. Blindly
applying the difference twice would give

∆2[F ](X) = (F (X + 2) \ F (X + 1)) \ (F (X + 1) \ F (X))

= F (X + 2) \ F (X + 1)

which is definitely wrong, as can easily be seen by taking F (X) = X2. We must be
mindful of which injection we are complementing.

To track the injections, let’s take two different one-point sets 1a = {a} as 1b = {b}
with corresponding difference operators

∆a[F ](X) = F (X + 1a) \ F (X)

∆b[F ](X) = F (X + 1b) \ F (X) .

Thus we have

∆a[∆b[F ]](X) = ∆b[F ](X + 1a) \∆b[F ](X)

=
(
F (X + 1a + 1b) \ F (X + 1a)

)
\
(
F (X + 1b) \ F (X)

)
= F (X + 1a + 1b) \

(
F (X + 1a) ∪ F (X + 1b)

)
as F (X) ⊆ F (X + 1a).

This leads to the following. Let SA : Set // Set be the translation functor SA(X) =
X + A, which is obviously taut. For any taut functor F : Set // Set and any set X, let
DA[F ](X) be the subset of F (X +A) consisting of those a ∈ F (X +A) not in the image
of F (X +A0) // // F (X +A) for any proper subset A0 ⊊ A. As there will be much talk
of proper subsets in what follows, we will use an arrow with a double tail A0

// // // A to
indicate a monomorphism which is not an isomorphism.

5.1.1. Proposition. DA[F ] is a taut subfunctor of FSA.

Proof. First we show it’s a subfunctor. Let f : X // Y and a ∈ FSA(X) = F (X + A).
Then F (f + A)(a) ∈ F (Y + A). Let A0

// // // A be a proper subset of A. Then as

Y + A0 Y + A// //

X + A0

Y + A0

f+A0

��

X + A0 X + A// // X + A

Y + A

f+A

��
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is a pullback and as F is taut

F (Y + A0) F (Y + A)// //

F (X + A0)

F (Y + A0)

F (f+A0)

��

F (X + A0) F (X + A)// // F (X + A)

F (Y + A)

F (f+A)

��

is also a pullback. Thus if F (f +A)(a) were in F (Y +A0), a would be in F (X +A0). So
if a ∈ DA[F ](X), F (f + A)(a) is in DA[F ](Y ), i.e. DA[F ] is a subfunctor of FSA.

DA[F ](X) is defined to be the complement of⋃
F (X + A0) ⊆ F (X + A) ,

the union taken over all proper subsets A // // // A. Thus DA[F ] is a complemented sub-
functor of FSA and by Proposition 1.3.11 is taut.

5.1.2. Proposition. DA[DB[F ]] ∼= DA+B[F ] .

Proof. An element a ∈ DA[DB[F ]](X) is an element a ∈ DB[F ](X + A) which is not
in any DB[F ](X + A0) for a proper subset A0 ⊊ A. The first condition means that
a ∈ F (X+A+B) but not in any F (X+A+B0) for a proper subset B0 ⊆ B. The second
condition ((a /∈ DB[F ](X +A0)) means that a is not in F (X +A0 +B) or there exists a
proper subset B0 ⊊ B with a ∈ F (A+A0 +B0). But this last condition is impossible, for
if a were in F (X+A0 +B0) it would be in F (X+A+B0) which it is not. The conclusion
is that a ∈ DA[DB[F ](X) if and only if a ∈ F (X + A + B) but a /∈ F (X + A + B0) and
a /∈ F (X +A0 +B). This is equivalent to a ∈ F (X +A+B) and a /∈ F (X + C) for any
proper subset C ⊊ A + B because such a C would be contained in either a A0 + B or a
A+B0. The result follows.

5.1.3. Corollary. For any finite cardinal n

∆n[F ] = Dn[F ]

∆n[F ](X) = {a ∈ F (X + n)|a /∈ F (X + n0) for any n0
// // // n}.

Proof. ∆0[F ] = F = D0[F ] and ∆1[F ] = ∆F = D1[F ] by definition. The result now
follows from the previous proposition by induction.

We are hoping to recover F from the sequence ∆n[F ](0) via some version of the Newton
series, at least for polynomial functors. From the above description of ∆n[F ](0), it is clear
that Sk acts on ∆n[F ](0) so we get a symmetric sequence (species) and a corresponding
analytic functor

∞∑
n=0

Xn ⊗Sn ∆n[F ](0).
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This looks promising but it doesn’t give F even for polynomials. For example F (X) = Xn

is connected but the above analytic functor is not. It’s defined as a sum of (non trivial)
functors. We need something a bit tighter. In fact, not only do bijections act on the
∆n[F ](a) but epimorphisms do too, in the appropriate sense of course.

Let Surj be the category of finite cardinals with surjections as morphisms.
Although it will not be used below, it may be of interest to note that Surj is the free

symmetric monoidal category generated by a commutative monoid.

5.1.4. Proposition. For any taut functor F : Set //Set and set A, the family ⟨∆n[F ](A)⟩n
is the object part of a functor

Surj // Set.

Proof. Let f : m // // n be a surjection and a ∈ ∆m[F ](A), so a ∈ F (A + m) but
a /∈ F (A+m0) for any m0

// // //m. Then F (A+ f)(a) ∈ F (A+ n) and we have to show
that it’s not in any F (A+ n0) for n0

// // // n. Suppose it were. Take the pullback

n0 m .// // //

m0

n0
��

m0 n// // // n

m .

f

����

Pb

As usual m0
// //m is monic, but it is also proper because f is surjective. F being taut

produces a pullback

F (A+ n0) F (A+ n)// //

F (A+m0)

F (A+ n0)
��

F (A+m0) F (A+m)// // F (A+m)

F (A+ n)

F (A+f)

��

Pb

so if F (A+ f)(a) were in F (A+ n0), a would be in F (A+m0) contrary to the definition
of a.

Furthermore, the construction F ⇝ ⟨∆n[F ](A)⟩n is itself functorial. If Taut is the
category of taut endofunctors of Set with taut natural transformations as morphisms,
then we have the following.

5.1.5. Proposition. For any set A, taking iterated differences produces a functor

∆∗
A : Taut // SetSurj .

Proof. For F : Set // Set a taut functor, let ∆∗
A(F ) be given by

∆∗
A(F )(n) = ∆n[F ](A)
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the functor of the previous proposition. Let t : F // G be a taut transformation. By
applying Proposition 3.1.5 iteratively we see that tSn : FSn // GSn restricts to a taut
transformation

∆n[G] GSn .// //

∆n[F ]

∆n[G]

∆n[t]

��

∆n[F ] FSn// // FSn

GSn .

tSn

��

This gives the formula for ∆∗
A(t), namely ∆∗

A(t)(A) = t(A+n). So naturality of ∆∗
A(F )(m)

in n is simply

G(A+m) G(A+ n)
G(A+f)

//

F (A+m)

G(A+m)

t(A+m)

��

F (A+m) F (A+ n)
F (A+f) // F (A+ n)

G(A+ n)

t(A+n)

��

for any surjection f : m // // n, which is just naturality of t itself.
Functoriality of ∆∗[t] in t follows from the fact that it is a restriction of tSn.

5.1.6. Definition. Let us call a functor G : Surj // Set a soft species (“soft” because
the structures can be compressed). A soft species produces a soft analytic functor, the
Newton sum of G.

G̃(X) =

∫ n∈Surj
Xn ×G(n),

i.e. , left Kan extension of G along the inclusion J of Surj into Set

Surj

Set

G

��

Surj Set// J // Set

Set

LanJG=G̃

��

+3

.

This is similar to the definition of analytic functor which is the Kan extension along
the inclusion of Bij into Set. For a species F : Bij //Set we can take the Kan extension
of F in steps

Bij

Set

F

��

Bij SetSet

Set

LanJIF

��

Bij Surj// I // Surj Set// J //Surj

Set

LanIF

��

so that every analytic functor is soft analytic: every species can be softened.
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It may be of interest to note that the soft species associated to F , LanIF is given by

(LanIF )(n) =
∑

m // // n

F (m)/∼

where the sum is taken over all surjections f : m // // n, and the equivalence relation is
the quotient of F (m) by the subgroup of Sm consisting of all elements preserving f

m

n

f

�� ��

m m
σ //m

n

f

����
.

We can analyze the definition of G̃ further to connect it to analytic functors and
underline the similarity with formulas (1) and (2) for Newton series. From the definition,

G̃(X) consists of equivalence classes [a ∈ G(n), f : n // X] of triples (n, a, f) where
the equivalence relation is generated by the relation (n, a, f) ∼ (m, b, g) if there exists a
surjection σ : n // //m such that f = gσ and b = G(σ)(a)

b ∈ G(m)

a ∈ G(n)_

��
G(σ)

��
m X .g

//

n

m

σ

����

n X
f // X

X .

So the equivalence relation is expressed in terms of a zigzag path of surjections and
elements of G satisfying conditions as above. We will see presently that we can assume
that the f : n //X is monic, σ a bijection and the zigzag paths have length one, i.e. no
zigzag at all. Everything we need can be expressed in these terms.

5.1.7. Proposition.

(1) Every equivalence class in G̃(X) contains a representation in which f is monic.

(2) Two elements (n, a, f) and (m, b, g) with f and g monic are equivalent if and only
if m = n and there is a bijection σ : n //m with f = gσ and b = G(σ)(a).

(3) For a morphism ϕ : X //Y , G̃(ϕ)[n, a, f ] = [m, b, g] where g is the image of ϕf and
b comes from a as in

b ∈ G(m)

a ∈ G(n)_

��
G(e)

��
m Y .//

g
//

n

m

e

����

n X// f // X

Y .

ϕ

��
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(4) If ϕ : X // // Y is monic, then so is G̃(ϕ) and an element [b,m, g] in G̃(Y ) is in

the image of G̃(ϕ) if and only if g factors through ϕ

m Y .g
//

X

m

??X

Y .

��

ϕ

��

Proof. (1) For any equivalence class [n, a, f ] take the image factorization of f , and since
the quotient of a finite cardinal is again one, we get

ā = G(e)(a)∈ G(n̄)

a ∈ G(n)_

��
G(e)

��
n̄ X//

f̄
//

n

n̄

e

����

n X
f // X

X

so that [n, a, f ] = [n̄, ā, f̄ ].
(2) Suppose elements (n, a, f) and (m, b, g) of the same equivalence class are related

by a single epimorphism σ : n // //m

b ∈ G(m)

a ∈ G(n)_

��
G(σ)

��
m X .g

//

n

m

σ

����

n X
f // X

X .

Factor f and g, giving

m X

n

m

σ

����

n XX

Xm m̄
e′

// // m̄ X .//
ḡ

//

n n̄
e // // n̄ X// f̄ //n̄

m̄

σ̄

��

We see that σ̄ is both one-one and onto, so a bijection. Let ā = G(e)(a) and b̄ = G(e′)(b).
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Then G(σ̄)(ā) = b̄. So any zigzag path relating (n, a, f) to (m, b, g)

b ∈ G(m)

...

a2 ∈ G(n2)

a1 ∈ G(n1)

a ∈ G(n)

...

m X

n2 X

n1 X

n X

...
...

_

OO OO

_

��

_

OO OO

_

�� ��

OOOO

����

σ2

OOOO

σ1

����

//
g

//

f2 //

f1 //

// f //

��

can be replaced with one in which all the fi are monic and all the σi bijections. Replacing
the backward σ’s by their inverses gives a path of length 1.

(3) For a morphism ϕ : X //Y , G̃(ϕ) is given by composition, G̃(ϕ)[n, a, f ] = [n, a, ϕf ]
and if we want to express this with a monic g we factor ϕf ,

b ∈ G(m) m Y

a ∈ (n) n X_

��
G(e)

��
e

����

ϕ

��
//

g
//

// f //

and [n, a, ϕf ] = [m, b, g].
(4) A monomorphism in Set, ϕ : X // //Y is split, unless X = ∅ ≠ Y , and will be auto-

matically preserved. In case X = ∅, an element of G̃(∅) is of the form [a ∈ G(∅), ∅ // // ∅]
and G̃(ϕ) will take it to [a ∈ G(∅), ∅ // // Y ]. This is also monic because the equivalence
relation is trivial.

For the second part of the statement, the “if” is trivial. So suppose we have an element
[m, b, g], with g monic, in the image of G̃(ϕ) so that there is [n, a, f ], with f monic, in

G̃(ϕ) with [m, b, g] = [n, a, ϕf ]. Then by (2) there is a bijection σ such that

b ∈ G(m) m Y

a ∈ G(n) n X Y

_

OO OO

σ

OO

//
g

//

// f // // ϕ //

and there is our factorization.
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So we see that G̃ on objects is given by

G̃(X) =
∞∑
n=0

G(n)×Mono(n,X)/Sn

which, if we take G = ∆∗[F ], looks a lot like formula (2) for the Newton sum. It also

looks like the formula for an analytic functor. But G̃ is not the coproduct of functors
that this might suggest. First of all Mono(n,X) is not functorial in X, and secondly G̃ is
a coend over Surj, so surjections have to be accounted for. The point is that the extra
structure that G has compensates for the shortfalls of Mono(n,X).

Power series functors
∞∑
n=0

CnX
n

are analytic so soft analytic too but we can calculate directly what the corresponding soft
species is. We can view such a polynomial functor as a left Kan extension

N

Set

C( )

��

N SetK // Set

Set

∑
CnXn

��

+3

where N is the discrete category whose objects are natural numbers, and K takes the
number n and sends it to the set of cardinality n

K(n) = {1, 2, . . . , n}.

The corresponding soft species G is given by

G(n) =
∑

m // // n

Cm ,

one summand for each surjection m // // n.

5.1.8. Proposition.

(1) For a soft species G, the corresponding soft analytic functor G̃ is taut.

(2) For a morphism of soft species t : G //H, i.e. a natural transformation, the corre-

sponding t̃ : G̃ // H̃ is taut.

(3) (̃ ) defines a functor SoftSp //Taut, from the category of soft species SetSurj to
the category of taut endofunctors of Set and taut natural transformations.
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Proof. (1) Let

Y0 Y//
j

//

X0

Y0

ϕ0

��

X0 X// i // X

Y

ϕ

��

Pb

be an inverse image diagram. We want to show that

G̃(Y0) G̃(Y )// //

G̃(X0)

G̃(Y0)

G̃(ϕ0)

��

G̃(X0) G̃(X)// // G̃(X)

G̃(Y )

G̃(ϕ)

��

is a pullback. Take [a ∈ G(a), n // f //X] in G̃(X).

G̃(ϕ)[a, n, f ] = [a ∈ G(n), n // //X
f // Y ]

= [G(e)(a) ∈ G(m),m // g // Y ]

where n e // //m // g //Y is the image factorization of ϕf . Suppose there is [b ∈ G(p), p // h //Y0]

in G̃(Y0) such that

[b ∈ G(p), p // h // Y0 // // Y ] = [G(e)(a) ∈ G(m),m // g // Y ].

Then by 5.1.7 (2), there exists a bijection σ : m // p such that

b ∈ G(p) p Y0 Y

G(e)(a)∈ G(m) m Y
_

��
G(σ)

��
σ

�� //
h
// //

j
//

// g //

i.e. b = G(σ)G(e)(a). Consider the diagram

Y0 Y .

p

X0 Xm

n 11 f

  
k

��
// i //

""

h ""
//

j
//

e
����

σ
��

ϕ0

��

ϕ

��

Pb
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jhσe = ge = ϕf so there exists k as above, and [n, a, f ] is in G̃(X0). So G̃ is taut.

(2) Let t : G //H be a natural transformation. Then t̃ : G̃ // H̃ is defined as follows

t̃(X) : G̃(X) // H̃(X)

[a ∈ G(n), n // //X] 7−→ [t(n)(a) ∈ H(n), n // //X].

We have several things to prove:
(i) Well-defined: If [a ∈ G(n), n // // X] = [a′ ∈ G(n′), n′ // // X] then there is a

bijection σ : n // n′ such that

a′ ∈ G(n′) n′ X

a ∈ G(n) n X_

��
G(σ)

��

σ

��
// //

// //,

,

i.e. a′ = G(σ)a. So H(σ)t(n)(a) = t(n′)G(σ)a = t(n′)a′.
(ii) Natural:

G̃(Y ) H̃(Y )
t̃(Y )

//

G̃(X)

G̃(Y )

G̃(ϕ)

��

G̃(X) H̃(X)
t̃(x) // H̃(X)

H̃(Y )

H̃(ϕ)

��

?

X

Y

ϕ

��

Choose an element [a ∈ G(n), α : n // //X] of G̃(X) and chase it around the diagram

[a, ϕα] [t(n)(a), ϕα] .� //

[a, α]

[a, ϕα]

_

��

[a, α] [t(n)(a), α]� // [t(n)(a), α]

[t(n)(a), ϕα] .

_

��

t̃ is indeed natural.
(iii) Taut: Let

Y0 Y// //

X0

Y0

ϕ0

��

X0 X// // X

Y

ϕ

��

Pb
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be an inverse image diagram and consider

G̃Y0 G̃Y .// //

G̃X0

G̃Y0

G̃(ϕ0)

��

G̃X0 G̃X// // G̃X

G̃Y .

G̃ϕ

��

(*)

If G̃(ϕ)[a ∈ G(n), n // // X] ∈ G̃Y0, then it is [G(e)(a) ∈ G(m),m // g // Y ] where

n e // m // g // Y is the image factorization of ϕf . By 5.1.7 (4), G̃(ϕ)[a, n] is in G̃Y0
iff g : m // // Y factors through Y0

m

Y0 .

��

g0

��

m Y// g // Y

Y0 .

CC

CC

In the diagram

Y0 Y .

X0 X
m

n

��

g0

��

f0

��
e

��
// //

// //

ϕ0

��

ϕ

��

f

''

Pb

the outside commutes, so there exists f0 : n // X0, as above, i.e. f factors through X0,
and so [a ∈ G(n),m // //X] ∈ G̃(X0). Therefore (∗) is a pullback, and t̃ is taut.

(3) (̃ ) is automatically functorial SetSurj //SetSet because it is Kan extension. The
only question is whether it takes its values in Taut, and that’s what was proved in (1)
and (2).

We are now ready for our main theorem which might be dubbed “The Fundamental
Theorem of Functorial Difference Calculus”. Part I says “Summing a soft species and then
taking differences gives the original soft species” and Part II says “Taking differences of a
taut functor and then summing produces a best approximation by a soft analytic functor”.

5.1.9. Theorem. [Newton summation]
I. For a soft species G : Surj // Set we have a natural isomorphism

G(n)
∼= //∆∗[G̃](0).

II. (̃ ) : SoftSp //Taut is left adjoint to ∆∗ : Taut // SoftSp.
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Proof. I. Using Proposition 5.1.7 (1) and Corollary 5.1.3, we see that an element of

∆n[G̃](0) is an equivalence class

[a ∈ G(k), k // // n]k

which is not equal to any

[b ∈ G(k0), k0 // // n0
// // // n]k0

for a proper mono n0
// // // n. If k // // n were a proper mono, we would have

a ∈ G(k) k = k // // // n ,

a ∈ G(k) k n_

�� ��

// //

so [a ∈ G(n), k // //n] would not be in ∆n[G̃](0). It follows that the elements of ∆n[G̃](0)
are of the form

[a ∈ G(n), σ : n // n]

for σ a bijection. Each such class has a canonical representative with σ = id, and for
these the equivalence relation is equality, i.e. ∆n[G̃](0) is in bijection with G(n) itself.

The natural transformation which gives this bijection is

η(n) : G(n) // ∆n[G̃](0)
a � // [a ∈ G(n), id : n // n] .

II. Let G : Surj // Set be a soft species and F : Set // Set be a taut functor. As
G̃ is the left Kan extension of G along the inclusion J : Surj // Set, we already have a
natural bijection of natural transformations

G̃
t // F

G u
// FJ .

Note that ∆∗[F ] is a subfunctor of FJ . We will show that in the above bijection t is taut
if and only if u factors through ∆∗(F ) // // FJ .

First assume t is taut. By Kan extension theory, the u corresponding to t is given by

u(n) : G(n) // F (n)

u(n)(a) = t(n)[a ∈ G(n), id : n // // n] .

We want to show that u(n)(a) is in fact an element of ∆n[F ](0), i.e. u(n)(a) is not in
any F (n0) // // F (n) for a proper mono f : n0

// // // n. Suppose it were, so that we would
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have x ∈ F (n0) such that F (f)(x) = u(n)(a). As t is taut, we have the pullback

F (n0) F (n)//
F (f)

//

G̃(n0)

F (n0)

t(n0)

��

G̃(n0) G̃(n)// G̃(f) // G̃(n)

F (n)

t(n)

��

Pb

and so there is an element [b ∈ G(m),m // // n0] in G̃(n0) such that t(n0) of which is x

and G̃(f)[b ∈ G(m),m // // n0] = [a ∈ G(n), id : n // // n]. This last equation means that
there is a bijection σ : n //m with

b ∈ G(m)

a ∈ G(n)_

��

G(σ)

��
m n

n

m

σ

��

n nid // n

nm n0
// // n0 n// //

which implies that n0
// // n is an iso, i.e. is not proper. This contradicts our choice of

n0, so u(n)(a) is indeed an element of ∆n[F ](0), and u factors through ∆∗[F ] // // FJ .

Now, let u : G //FJ factor through ∆∗[F ]. The corresponding t : G̃ //F is given by

t(X) : G̃(X) // F (X)

[a ∈ G(n), n // f //X] 7−→ F (f)u(n)(a)

and we want to show that it’s taut. To this end, let ϕ : Y // // X be a monomorphism.
We will show that

FY FX//
Fϕ

//

G̃(Y )

FY

t(Y )

��

G̃(Y ) G̃(X)//G(ϕ) // G̃(X)

FX

t(X)

��

is a pullback. Take [b ∈ G(n), g : n // //X] in G̃(X) such that there is y ∈ FY with

F (ϕ)(y) = t(X)[n, b, g]

= F (g)u(n)(a) . (*)

We want to show that g factors through ϕ. Take the pullback

Y X//
ϕ

//

m

Y

��

f

��

m n// ψ // n

X

��

g

��

Pb
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and, as F is taut, we get another pullback

F (Y ) F (X) .//
F (ϕ)

//

F (m)

F (Y )

��

F (f)

��

F (m) F (n)//F (ψ) // F (n)

F (X) .

��

F (g)

��

Pb

Because of (∗), there is x ∈ F (m) such that F (f)(x) = y and F (ψ)(x) = u(n)(a).
Since u(n)(a) is in ∆n[F ](0), ψ cannot be proper so that g will factor through ϕ and

[b ∈ G(n), s : n // //X] is in G̃(Y ).

5.1.10. Corollary. If F : Set // Set is soft analytic, e.g. power series or analytic,
then its Newton series converges to it

F (X) ∼=
∫ n∈ Surj

Xn ×∆n[F ](0) .

Note that what we are calling power series are functors of the form

F (X) =
∞∑
n=0

CnX
n

and only involve finite powers of X. For polynomial functors as in Definition 2.1.3 involv-
ing arbitrary powers of X, the corollary doesn’t hold. We merely get a comparison. For
example, for an infinite set A, the Newton series of F (X) = XA converges to the functor

G(X) = {f : A //X | the image of f is finite}.
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