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Abstract. We define a tileorder to be a double order generated by a dissection of a rectangle into 
subrectangles. These structures are of interest both geometrically and as the order structures under- 
lying double categories. We here give three different characterizations of those double orders which 
are titeorders. 
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1. Introduction 

A double order is a set T with two partial orderings, -< ( 'below') and < ('to the 
left of'). A tiIeorder is a double order induced by a dissection of  a rectangle into 
finitely many subrectangles. The objects of the double order are the subrectangles. 
A ~< B if there exists a chain of tiles A = X1, X2,.  • . ,  X,~ = B such that the right 
edge of  X~ intersects the left edge of  Xi+l in more than one point; and A --<_ B if 
there exists such a chain in which the top edge of each Xi intersects the bottom 
edge of X/+I in more than one point. 

For instance, in Figure 1, we have a < b, a < c < d, and e < d; while in the 
vertical direction, we have a >- e, b >- e >- e, and b >- e. However, not every 

a t  b 

Fig. 1. 
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Fig. 3. 

double order can be so represented. We list some illustrative examples: 
• If A and B are rectangles, and the right edge of A intersects the left edge 

of B, then a translation of A to the right causes it to collide with B. Thus, the 
orderings ~< and _ are examples of one-directional collision relations. Rival and 
Urrutia have shown ([6], Theorem 1) that an order relation can be represented as a 
one-directional collision relation if and only if it is a truncated planar lattice. 

Thus, for < T, ___, ~< > to be a tileorder, it is clearly necessary that both < T, _~ > 
and < T, ~< > be truncated planar lattices. However, the next example shows that 
this condition is not sufficient. 

• The 2-element double order with a < b, a >- b cannot be represented as a 
dissection of a rectangle, as the two subrectangles would have to have two edges 
in common. 

• The 3-element double order in which a < b, c -4 b, but a is not related to 
c by either > or > cannot be represented as a dissection of a rectangle. However, 
if a fourth element d is added so that d < c, d -.< a, the new double order can be 
realised (see Figure 2): 

• Consider the following double order on [1 ,2 , . . . ,  n]. m < n if re is strictly 
less than n and n is even; and m -< n if re is strictly less then n and n is odd 
(Figure 3). This is a tileorder, as illustrated. However, if we reverse the order of 2 
and 1, the resulting double order is not a tileorder (although its constituent orders 
are both truncated planar lattices, see Figure 4). The purpose of this paper is to 
characterize tileorders, and determine some of their properties. We will first exhibit 
a simple inductive construction, by which any tileorder can be built up, starting with 
eight elementary tileorders. This will be used to derive another characterization, 
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showing that a double order is a tileorder if and only if the maximal chains of  its 
two component orders have certain intersection properties. 

Finally, we derive a third characterization of  tileorders, which is stated entirely 
in terms of  'small' configurations. Certain configurations (such as a < b -< a) are 
forbidden; and others, such as a < b --4 c, must extend to larger configurations (in 
the example shown, we must also have a -4 d < c.) These conditions are shown to 
be necessary and sufficient. 

While this particular problem does not seem to have been considered before, 
there is a moderately extensive literature on dissections of rectangles into rectan- 
gles. The majority of these papers (notably, in order of publication, [4], [1], [5]) 
have dealt with dissections of  squares and rectangles into squares of  different sizes, 
a combinatorial problem now susceptible to computational solutions via a well- 
known parallel with electrical circuit theory. More general dissections of rectangles 
into rectangles are dealt with in [2], in which some interesting results are derived 
on existence and average tile size of  'simple' tiled rectangles. 

2. Regularity and Welding 

The theory of  DO's has several dualities; we may invert one or both of  the con- 
stituent orders, or exchange them. Theorems and definitions will, for brevity, often 
be stated in one form only, understood to include all duals; for the details of  these 
dualisations, we rely on the reader's common sense. 

The two orders constituting a DO may be represented in terms of  sets such as 
a = {x • x _ a} and +-- a = {x • z ~< a}. We will call < T',  -<', ~<'> a sub-DO 

of< T,-<, ~<> i f T '  _C T , a  -<' b ~ a -< b, and a <~1b ~ a <~ b. If  a < b and there 
is no c such that a < c < b, we will say that a is a left neighbour or <-neighbour 
of  b, and write a <!b. 

We will call a DO strongly antisymmetric if, for a # b, at most one of a < b, 
a > b, a -< b, a ~ b hold. In any DO, we can define the following additional 
relations: a _-<~< b if there exists c with a _~ c ~< b, a ~ b if there exists c with 
a ~< c _-< b, a _~/> b if  there exists c with a < c i> b, and a / > _  b if there exists c 
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witha ) c ~_ b. A DO is rectangulari f  a -< <~ b ¢~ a << ~_ banda  ___~< b¢~ a ~<___ b; 
and total if, for every a, b, at least one of a -< ~< b, a _ ~< b, a -<_) b, or a ~_) b 
holds. A DO which has all three of these properties will be called regular. In a 
regular double order ~ ~< and __) are themselves orders. We will write / a for 
{x :x  ___~< a},etc. 

It will be shown below that all tileorders are regular. However, not every regular 
double order is a tileorder. The double order of Figure 5 is regular, but (by The- 
orem 1 or Theorem 2 below) is not a tileorder. A DO which has th e property that the 
,<-maximal elements and the <~-minimal elements form a maximal -<-chain, while 
the -<_-maximal and ___-minimal elements form a maximal <-chain, will be called 
well-bordered. A well-bordered DO may be thought of as possessing a top, bot- 
tom, left, and right edge, each linearly ordered. Note also that a finite well-bordered 
DO has a unique ___,.<-maximal element, a unique ___)-maximal element, a unique 
± ~<-maximal element and a unique _) -maximal  element; these may be thought 
of as the 'corners' of the DO. Tileorders are obviously well-bordered. Furthermore: 

THEOREM 1. A finite regular DO is well-bordered. 
Proof. Let a, b be two -<-maximal elements of T. Then, w.l.o.g., there exists c 

such that a "2<_ e ~< b (note that if a _ c ~< b, then there exists d such that a ~< d _ b). 
As a is ___-maximal, we conclude that a = c ~< b; thus ___-max(T) is a <-chain. 
To show that this chain is maximal, suppose c, e to be <-neighbours in _-max(T) 
but not in T. Let d be any element of T with c < d < e, and d ~ any -<-maximal 
element of T such that d -< d t. But, as c < !e in -<-max(T), either d ~ < c < d or 
d < e < d I, contradicting our assumption of strong antisymmetry. [] 

If < S, -<~, </>  and < T, ~,  <~> are well-bordered, and there is an order 
isomorphism j • <'  - max(S) ~ < - min(T), we define their (horizontal) weld, 
< S, "Z_', <~'> -~ < T, ~,  ~<> to be the DO with underlying set S U T ' / s  ~ j s ,  
in which a is a left (right, upper, or lower) neighbour of b in < S U T, _",  ~<"> 
if and only if it is a left (right, upper, or lower) neighbour of b in < S, ___r, ~<~> or 
< T, ~, ~<>. Thus, a __H b i f a  ~_~ b, o r a  ~ b, o ra  ~_~ ~ a n d j s  ± b, o ra  ~_ j s  and 
s __r b, anda ~<" b i f a  </b ,  a ~< b, or a <<.' s a n d j s  <<. b. 

When S and T are well-bordered and there is an order isomorphism j :-<~ 
- max(S) ~ -< - min(T), we define their (vertical) weld < S, -4_', ~<~>~< T, _ 
, ~< > similarly, identifying the top boundary of S with the bottom boundary of  T 
and taking the transitive closure. Intuitively, the weld operations join double orders 
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Fig. 6. 

Fig. 7. 

by identifying (say) the top boundary of one with the bottom boundary of the other. 
Note that the weld of two well-bordered DO's is itself well-bordered. 

THEOREM 2. The tileorders are precisely the double orders generated from the 
eight titeorders of Figure 6 by the weld operations. 

Proof. If two DO's can be realised as tileorders, then their weld can also be 
realised, by joining the two tiled rectangles along the appropriate edge and erasing 
the edges between them (Figure 7). It suffices, then, to show that any tileorder 
other than the eight above is the weld of two tileorders with strictly fewer files. It is 
easy to verify that any filing other than the eight shown above contains two parallel 
but noncollinear internal edges. Then a line parallel to these edges and between 
them divides the filing into two strictly smaller filings, whose weld is the original 
one. [] 

Remark for categorists. Theorem 2 may be interpreted as characterizing tileorders 
as the cell elements of a certain double category. This double category has one 
object , ,  and its categories of horizontal and vertical morphisms are each freely 
generated by one element, h and v respectively. Thus, each is isomorphic to the 
natural number category 1~. The identity cell o n ,  corresponds to the tileorder (6a), 
while the identity cells on h and v correspond to (6d) and (6b) respectively. Identity 
cells on the other horizontal morphisms correspond to welds of (6d) with itself; 
those on the other vertical morphisms correspond to welds of (6b) with itself 

The cells of the double category are generated by five cells corresponding to 
(6c),(6e),(6f),(6g), and (6h). The domains and codomains are determined by the 
number of tiles on the corresponding edge. For instance, the cell corresponding 
to tileorder (6c) has vertical domain h, vertical codomain equal to the horizontal 
identity, and horizontal domain and codomain both equal to v. The domains and 
codomains of (6e), (60, and (6g) are defined analogously. The vertical domain and 
codomain of the cell corresponding to (6h) are both h, while the horizontal domain 
and codomain are both v. Vertical and horizontal composition of cells correspond 
to vertical and horizontal welding respectively. The cells of the free double care- 
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gory generated by these five cells and two morphisms correspond naturally to the 
tileorders. We will take this point up in more depth in an upcoming paper. 

3. Maximal Chain Properties 

A DO will be said to have the -<-parallel maximal chain property (-<-PMCP) if, 
given any two maximal -<-chains K and L with hi -< k2 E K, I1,12 C L, hi ~< Ib 
12 ~< k2, there exists e E K n L with kl, Ii -< e -4 k2, 12. It will be said to have em 
orthogonal maximum chain property (OMCP) if every maximal <-chain intersects 
every maximal -<_-chain precisely once. 

THEOREM 3. A DO with the OMCP is strongly antisymmetric and total; a DO 
with the OMCP and the PMCP is regular. 

Proof. If a ~ b, a ~< b, but a # b, then a vertical chain through a and b intersects 
a horizontal chain through a and b in more than one element; this is forbidden by 
the OMCR 

Any maximal vertical chain through an element a intersects any maximal hori- 
zontal chain through an element b; thus a _<~ b, a _-<>/ b, a __~< b, or a ___) b, and 
any DO with the OMCP is total. 

Let the DO also have the PMCP, and suppose, w.l.o.g., that a _ c ~< b. Exchang- 
ing ~< and _ in the previous argument, we also have a ~<_-< b, a )_-< b, a ~<___ b, 
or a />_ b. Suppose that a ) d _ b. Then by the PMCP there exists e such that 
a _~ e ~_ c, d _ e _~ b; and a ~ b. Similar arguments show that if a ~<___ b, then 
a ~< b; and if a >~___ b, then a = b. Thus, the DO is rectangular. [] 

THEOREM 4. A double order is a tileorder if  and only if  it has the OMCP and 
PMCP. 

Pro@ To show that a tileorder has the OMCE consider the trail of a maximal 
_-_<-chain X1 -4 X2 -< --. -< X,~ of rectangles, defined to be the polygonal arc 
with vertices (xi : 0 <<. i <<. m) where xo is the midpoint of the bottom face of X1, 
xm is the midpoint of  the top face of X ~ ,  and for 0 < i < m, xi is the midpoint 
of  Xi  n Xi+l.  The trail is a connected path joining the top and bottom edges 
of the rectangle. Defining the trail of  a maximal ,.<-chain Yo < Y1 < --" < Y~ 
analogously, it is clear that they must intersect, and that the rectangle containing 
their point of intersection is in both chains. It remains to show that the chains do 
not intersect twice. Suppose, for a contradiction, that they do. Let X~ = Yb and 
X~ = Yd be in both chains, and (without loss of generality) assume that a < c, 
b < d, and that no Xi,  a < i < c, is in both chains. Then x~ is above the trail of  
(1~), and as each successive zj has a vertical coordinate greater than that of x j_l  
it follows that xa+~, x~+2, • •., xe-1 are also above the trail of (Y/). But xc-1 is on 
the bottom edge of Xc so X~ cannot equal Yd. 

It remains to show that any DO (X, ~<, ~)  with both maximal chain properties 
may be reaiised as a tiling. This is done inductively. Suppose that such a DO contains 
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a maximal -<-chain K and elements x, y ~ K with x < k C K, y > k ~ C K. 
Define X L  = {a " a <<. k E K}, XR = {a • a >/ k E K}.  By the OMCP, any 
maximal <-chain L through any element a E X intersects K;  thus X = XL U XR. 
Furthermore, L only intersects K once; so K = XL N Xr~. XL and XR both have 
strictly fewer elements than X;  in particular, x ¢ XR and y ~ XL. Furthermore, 
the sub-DPO's (XL, ~<, -<) and (XR, ~<, _ )  also have the OMCP and the PMCP.  
To check this, we must consider three cases: two parallel _~-chains, two parallel 
<~-chains, and two orthogonal chains. 

The first case follows trivially, as maximal -<-chains of  XL are also maximal 
_-_<-chains of  X .  In the second and third cases, the maximal ,<-chains of  XL can be 
extended to maximal <~-chains of  X.  The maximal chain properties for X require 
an intersection to exist. In the orthogonal case, the element at which the intersection 
occurs is an element of  a maximal -j-chain of XL, hence in Xc; in the ~<-paratlel 
case, the intersection is required to occur to the left of a specified element of  XL, 
hence in XL. 

Furthermore, X = XL~ XR. To show this, we need to verify that the relations 
~< and ± in L can be recovered from those in XL and XR. If x and y are both in 
XL or both in XR this is trivial. Otherwise, suppose (without loss of generality) 
that x E XL, y E XR. Then if x ~<y, there is a maximal ~<-chain in X through x 
and y; by the OMCP this intersects K in an element w. As w E K,  x 4 w in XL 
and w <~ y in Xx~,; thus z ~< y in XL-~ XR. Similarly, i f x  -< y, there is a maximal 
-<-chain L through x and y, and there exist k, k' C K such that x ~< k, k ~ <~ y. 
Therefore, by the PMCP, K intersects L in some element w with x -< w in XL and 
w -< y i n X R a n d x  ~ y i n X L ~  XR. 

Thus, every finite DO with the maximal chain properties can be obtained by 
welding weld-irreducible DO's with the maximal chain properties and with no 
two elements separated by a maximal chain. By Theorems 1 and 3, such a weld- 
irreducible DO is well-bordered. Each of the four edges must be a one- or a 
two-element chain, and inspection shows that there are exactly eight possibilities. 

If the bottom edge has one element, either it has no upper neighbours (case 1), 
one upper neighbour (case 2) or two upper neighbours (case 3). In each case, this 
exhausts the elements of the DO, as no vertical chain is of  length 3. If the bottom 
edge has two elements, either nothing is above either of them (case 4), one element 
is above the left bottom element (case 5), one element is above the right bottom 
element (case 6), a common element is above both bottom elements (case 7) or 
each bottom element has a different top element above it (case 8). 

In cases 4,5,6, and 7 the listed elements clearly exhaust those of  the DO. In case 
8, it remains to show that if a > b -< c < d, a ~ c and d ;~ b. Suppose a > c; then 
(a > c) is a maximal chain. Clearly b -~ c, and by the OMCP, a maximal -i-chain 
through d meets this chain. Strong antisymmetry forbids c -4 d; and if a -~ d, then 
the chain (a > c) separates b and d. Thus we conclude that in case 8, a ;¢ c and 
d ;~ b; another application of the OMCP allows us to conclude that a -4 d. Thus 
cases 1-8 correspond to the eight weld-irreducible tileorders of  Figure 6, in the 
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order shown. [] 

COROLLARY. ~leorders are regular. 

4. Butterfly Factorization and Related Properties 

The characterizations of tileorders given by Theorems 2 and 4 are intuitive, but 
tell us little about the behaviour of small sets of tiles. In the rest of this paper, 
we will investigate various other properties of tileorders which give rise to a 
rather surprising characterization, and are useful in the study of  tileordered double 
categories. 

Any diagram of the form 
a b 

c d 

where the arrows a =~ c, b =~ d represent the same one of {~<, >/, ~,  h}  and the 
arrows a ~ d, b ---* c each represent any of {~<,/>, _ ,  ~} will be called a butterfly 
diagram. A butterfly diagram in a DO will be said to factorize if there exists an 
element e such that a --, e --+ d, b --~ e "-~ c. The main result of  this section is that 
a finite regular double order is a tileorder if and only if all butterflies factorize. 

Up to duality, every butterfly diagram is of one of the types in Figure 8 (note 
that the first three may also exist in an order). It is clear that (8b), or any butterfly 
equivalent under duality, factorizes trivially in any order. (8c), (8e), and (8g), in 
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z ~.----- b z <  b z 

x __ ?< _I 2e 

Fig. 9. 

contrast, cannot occur in a regular DO except in the degenerate case in which 
a = b = c = d. This follows immediately from strong antisymmetry for (8c) and 
(8e); in (8g), rectangularity implies the existence of an element f with e ) f ,  
d _ f .  Thus b ) f and b _. f ;  by strong antisymmetry, b = f = c = d = a. 

The remaining three cases are of more interest. We will (8a) a ~-homogeneous 
butterfly; a ~-homogeneous butterfly is defined dually, and a homogeneous butterfly 
is one which is either _-Z- or ~-homogeneous. (Sd), and the butterfly obtained from it 
by reversing the inequality a ~< d, will be called ~_-orthogonal butterflies. Finally, 
(8f) will be called a ,.<-parallel butterfly; and ,.<-orthogonal, ~_-paralIeI, orthogonal, 
and parallel butterflies are defined analogously. (The apparent inconsistency in 
the nomenclature for parallel butterflies makes the statements of various theorems 
below more consistent.) 

If every ±-homogeneous (resp. ~<-homogeneous, homogeneous, orthogonal 
. . .  ) butterfly in a DO factors, we will say that that DO has the "<-homogeneous 
(resp. <<.-homogeneous, homogeneous, orthogonaI. . . ) butterflyfactorization prop- 
erty. These properties will generally be abbreviated, as the - H B F P ,  ~-HBFP, 
HBFP, etc. 

A DO will be called convex if the following and its duals hold: 

x ~ a <~ z, x ~ b >>. z ~ x -< z. (1) 

It is clear that (1) is its own dual upon inverting ~<; a moment 's  reflection will 
show that, given rectangularity, the existence of the dashed arrows in diagrams of 
the three types in Figure 9 are equivalent, and so (1) is also self-dual upon inverting 
_~. We may thus, for rectangular DOs, reduce convexity to two subaxioms, _ -  
convexity (illustrated) and <~-convexity. Note that a DO < T, _~, ~< > is _~-convex 
if and only if \ aA 7 a =T a. This motivates the following result: 

THEOREM 5. Let a ~r b if  a ~_<<. b and a -<>>. b. Then i f <  T,  ~ ,  <~ > is a regular 
DO, < T,  ~_1, << > is a ~r-convex regular DO and < T,  ~_~, <~ > is a convex regular 
DO. 

Proof. We shall show that < T, ___', ~<'> is regular and convex; the proof for 
< T, _~, ~<> is similar and slightly simpler. Totality follows immediately from that 
of < T, ___, ~<>. Given that a _-_<' b ~<' c, see the result in Figure 10. 

By rectangularity, there exists h E T such that e _ h ~< f .  Thus a _-_< h ~< c, 
and so there exists i with a <<. i ~_ e; afort iori ,  a ~_' i ~_t e; so < T,~f ,<~> is 
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rectangular. Replacing c by a in the above diagram, a similar argument shows that 
< T, ___', ~<> is strongly antisymmetric. 

(Remarks for categorists. If we define a morphism of double orders to be a func- 
tion preserving both ~ and <~, the last two constructions have nice categorical 
properties. First, both horizontal and vertical welds are easily seen to be a special 
type of pushout in the category of DO's. Moreover, if a DO < T, _ ,  ~< > has a con- 
vex extension < T, ~',  ~ '> ,  the new relations on T created by the convexification 
process already exist in T';  so this construction is reflective.) 

The next result must surely be well-known. Its proof is easy: 

PROPOSITION. In a finite order, the following are equivalent: 
(i) (Va, b) ((~. aN J. b = ~) or (3e)(1 aN I b =1 e)); 
(ii) (Vc, d) ((T cA T d = ~) or (3e)(T cA 1 d =T e)); 
(iii) The order has the ~_-HBFP. 
Proof. Trivially, (i) ~ (iii). To show the converse, suppose that J. an  ~ b is 

nonempty; then, being firfite, it has at least one maximal element. The factorization 
(iii) implies that this maximal element must be unique, as if c, d E ~ an  I b, either 
c ~ d, d _ c, or there exists an element e >- c, d; thus (iii) ~ (i). Dually, (ii) 
(iii). [] 

Such an order will be called a partial lattice. The next theorem establishes the 
relationship between partial lattices and some related structures. 

THEOREM 6. The following implications exist and are irreversible. 

truncated planar lattice lattice 

partial lattice 

truncated lattice 

Proof. It is clear that any lattice is a partial lattice, and any partial lattice may 
be made into a lattice by adding a top element and a bottom element. To show that 
any truncated planar lattice is a partial lattice, consider the two essentially different 
ways of embedding (8a) in a planar lattice diagram (Figure 11). 
In case (11a), the factorization is obvious. In case (11b), c ~ d, and (8a) factors 
through c. For suppose not; then c A d is strictly below d, and the arrow c _ (c A d) 
must cross (~%OG) b _ d in a node x with c ± x _ d, a contradiction. 

Finally, none of these implications is reversible. (8a) is a truncated lattice which 
is not a partial lattice. (1 la) is a partial lattice which is not a lattice; and the cubic 
lattice 2 3 is a partial lattice but not planar. [] 
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Fig. 10. 

a b 

c / 

C a )  

Fig. 11. 

( b )  

This, in combination with Theorem 1 of [6], shows that every tileorder has the 
HBFP. However, we can also prove this indirectly. Theorem 8, below, states that 
any DO with the PBFP and the OBFP has the HBFP; and we shall see that every 
tileorder does, in fact, have the former two properties. 

THEOREM 7. For a finite regular DO, (i) ~ (ii) ~ (iii) 
(i) < T, ~,  <<. > is ~-convex and < T, ~ > is a partial lattice; 
(ii) The DO has the ~ ~PBFP 
(iii) < T, _ ,  ~< > is ~_-convex. 
Proof  (i) ~ (ii): By convexity, a ~ b and c _-_4 d in (Sf); thus the factorization 

follows by the previous proposition. 
(ii) ~ (iii): If (8f) factors, then a -< e -< b, c -~ e ~< d. [] 

THEOREM 8. If  a regular DO < T, ~,  <~ > has the ~-OBFP and the ~_-PBFP, 
then < T, ~_ > is a partial lattice. 

Proof Suppose that 

a b 

c Q 

By totality, we have (up to duality) one of the two configurations of Figure 12. 
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a <  b' 

a'< .b 

d C '< I \ + /  + 
d'  c <  

Fig. 12. 

c/ 

/ \  
a ' <  , e ~  ..... b 

\ . , /  
e 

Fig. 13. 

a <  b '  / + 
a'< b 

+ 
d l \ ! /  

a 

f 

In the left-hand diagram, a > a'  ~< b > d -< a, so by the _~-OBFP there exists e 
with a > e >- d, a t ~< e ~< b. Similarly, there exists f with b _ f _ c, c' ~< f ~< d. 
But then e ~< b ___ f ~< d _~ e, so by the _-L:-PBFP there exists g with e ___ g >_ d, 
b _~ 9 >2_ f .  But then a _>2 g ± c, so the original homogeneous butterfly diagram fac- 
tors (Figure 13). A similar argument yields g in the right-hand diagram of  Figure 12. 

THEOREM 9. (i) A DO with the <-PMCP has the <~-PBFP; (ii) A convex DO with 
the OMCP has the OBFP. 

Proof. (i) follows trivially from the definition e f  the <-PMCP if  we extend the 
relations a < d, c < b of  (Sf) to maximal <-chains. To prove (ii), extend the 
relations a < d, b ;,- c of  (8d) to maximal chains. These must intersect in some 
element e; it suffices to show that a < e < d, b ~ e > c. Suppose otherwise; then, 
without loss of  generality, we have one of  the following cases: 

d < e, b ~ e: The OMCP implies strong antisymmetry; but (8d) has d -< b, and 
hence d -< e. 

d < e, c -< e -< b: Then c -< e > d, and (8d) also has c -< a < d. Thus by 
convexity c -< d, and (8d) factors through d. 

e -< c, a < e < d: (8d)has  c -< a, which would imply e -< a, ruled out by 
strong antisymmetry. [] 

COROLLARY. Every tileorder is convex. 
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The OMCP on its own does not imply either form of the OBFP, even for regular 
DO's, as shown by the following counterexample, in which all orthogonal pairs of 
maximal chains intersect but the orthogonal butterfly with vertices a, b, c, d does 
not factorize (Figure 14). 

A DO will be said to have the -<-neighbour chain property if the set {z : z -< !a} 
of lower neighbours of any element a and the set {z : z :,- !a} of  upper neighbours 
of any element a are totally ~<-ordered. Interchanging _ and ~< yields the dual 
<-neighbour chain property; a DO with both has the neighbour chain property. 

It will be shown below that every tileorder has the neighbour chain property. 
This fact is used in [3] to show that certain operations are well-defined in double 
categories. The next two theorems indicate how the neighbour chain property is 
related to previously introduced properties. 

THEOREM 10. A finite regular DO with the -<-NCP and the ~_-PBFP has the 
<-PMCP. 

Proof. Suppose K, L to be maximal -<-chains, with hi -< kz E K,  ll,12 E L, 
such that kx ~ lt, k2/> lz. The DO is chain-trichotomic, so that for every element 
k E K there exists I E L with k > I, k = l, or k < I. Thus, there must exist 
k, U E K, 1,1 r E L with kl ~_ k -<!k' ~ k2, k <<. l, and U >t I t. Strong antisymme- 
try forbids t ~ 1 t, so l -< I r <~ U _ k ~< I. This _-Parallel butterfly factorizes, with 
l ~ e ~ I r, k -< e -< U. But as k -<!U, we have (without loss of generality)e = k, 
whence by strong antisymmetry I = k. [] 

Open question: We do not at present know precisely how strong the PBFP is for 
finite regular DO's. Every example of a regular finite DO with the PBFP that we 
have been able to construct has also been a partial lattice and had the PMCE This 
suggests the (perhaps foolhardy) conjecture that every finite DO with the PBFP 
has these properties. If this were so, clearly several of the theorems presented here 
could be formally strengthened. 

THEOREM 11. A DO with the ~_-OBFP has the -<-neighbour chain property. 
Proof. Let c, d be immediately below a. By totality, there exists (without loss 

of  generality) b such that c ~< b ~ d. Then, by hypothesis, there exists e such that 
c ~< e ~< b, d _ e ~ a. If e = a, then a ~< c, and by strong antisymmetry a = e, 
which contradicts our original assumption. Thus e ¢ a; but d -< !a, so d = e >/e.[] 

COROLLARY. A finite regular DO with the -<-OBFP and the ~_-PBFP has the 
-PMCP. 

Note that the converse to Theorem 11 is not true: Figure 14 above shows a DO that 
has the NCP but contains an orthogonal butterfly that does not factor. 
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A condition closely related to the neighbour chain property is -<-chain tri- 
chotomy. A DO has this property if, given any maximal -<-chain t (  and any 
element a, exactly one of {a C K,  a < k C K, a > k E K} holds. <-chain 
trichotomy is defined similarly, interchanging ~ and <; and a DO with both dual 
forms of this property is chain-trichotomic. This property is important, as a DO 
that has it is divided into two sub-DOs by any maximal chain, which intersect 
only in their boundaries; and it is the weld of those sub-DOs. All tileorders are 
chain-trichotomic; this will follow from Theorem 13. 

THEOREM 12. A regular; <<.-convex and -<-chain trichotomic DO has the -<- 
neighbour chain property. 

Proof. Let b, c be distinct elements atomically below a; by totality there exists 
(without loss of generality) d such that b ~< d _ c. There exists a maximal -<-chain 
K through a and e, and by hypothesis there exists k C K with b > k or b < k. Ei- 
ther k _-< c or k _ a; but in the latter case k >- b, ruled out by strong antisymmetry; 
so k -< e -< d. If k < b, then k < d, again impossible by strong antisymmetry; we 
thus have b < k -< c -< d > b, and by <-convexity, b < c. [] 

THEOREM 13. A finite, regular DO < T, -<, <<.> is -<-chain trichotomic if  one of  
the following holds: 

(i) it is <<.-convex, and has the -<-NCP and the ~_-PBFP; 
(ii) it has the -<-NCP and the PBFP; 
(iii) it is convex, has the -<-NCP, and < T, ~_ > is a partial Iatt~ce; 
(iv) it is convex and has the -<-NCP and the <~-OBFP; 
(v) it is convex and has the OBFP. 
Proof. (ii) ~ (i), (iii) ~ (i), and (v) ~ (iv). We shall prove cases (i) and (iv) 

in parallel, as much of the proofs overlap. Let {ki " 0 ~< i ~< n} be the elements 
of a maximal -<-chain K. Any element a ~ K  of the DO is related to each kl 
by one of {~<-<, ~<___, ~>___, >~_>-, }. If k~ -< ki+l and ki ~<_ a, then k~+1 ~<___ a; so 
%, a N K is J.-closed in K. Similarly, ~ a O K is T-closed, "~ a n K is ~-closed, 
and / a N K is L-closed in K. But the union of these four is all of K,  while 
/ z  a N a l  a n K  =",~ a N N ,  a N K  = { a } N K  = (L As ko E"~ aU / a a n d  
k~ E/z a U %, a, it follows that there exist adjacent chain elements k~, ki+l with 
kl E"~ aU ~ / a  and ki+l E/z aU %, a. 

Let us first consider the case in which ki <~___ a ___~< ki+l or k~ > ~  a ~>___ k~+t 
(without loss of generality, assume the former). 



CHARACTERIZING TILEORDERS 125 

(i) There exist p, q with hi ~_ p <~ a <~ q ~ ki+l. If (say) p = hi, then a ) ki 
and we are done; so we may assume that hi ~ p, q -< ki+t. Then there exist l, m 
such that ki -< !l ~ p, q ~ m -~ !ki+ l ; bythe-<_-neighbour chain property, 1 ) ki+ l 
or l <, hi+l, and m ) ki or m <<. ki. If l > ki+l or m < hi (say the former), 
then a ) ~  l > ki+l ~>___ a, impossible by strong antisymmetry; so I ~< ki+l and 
m ) ki. But if I <~ ki+l ~- m and l ~ <  a ~<_-_4 ra, by ~<-convexity 1 ~ m. But 
we also have l <~ ki+a ~- ki ) ra, so the resulting ~<-orthogonal butterfly factors 
through an element e with I ~< e ~< m, ki ~ e -4 ki+l. As ki -~ !hi+l, e = (without 
loss of generality) hi. Then I <~ ki -< l, impossible by strong antisymmetry. 

(iv) There exist r, s with ki <~ r ~_ a ~ s <~ ki+l. Then hi, r, s, and ki+l 
form a __-parallel butterfly, which factors through an element e with r _ e _ s, 
ki -~ e ~ ki+l. As hi "~!ki+l, without loss of  generality e = hi+l, so by strong 
antisymmetry s = ki+b and a ~_ ki+l. By fiNteness there exists an element l 
such that a ~_ l -<!ki+l. By the -<-NCR l <, ki or I ) ki. In the former case, 
r ) ki ) l ~_ a ~ r, so I = r = ki = a. Otherwise, a ~_ r >>. ki and a ~_ I ) ki. 
By <~-convexity, a/> ki. 

We now turn to the remaining cases, in which (say) ki < ~  a )~_ ki+l. Then 
there exist p, q with hi ~_ p <~ a, ki+l ~ q <~ a, and as above, we may assume that 
there exist I, m with ki -<!I _~ p, ki+l )'- rr~ ~ q, t >/ ki+l or  I <~ ki+l, and m >/hi 
or ra ~< hi. I f / <  ki+l and ra < ki, we again consider (i) and (ii) separately. 

(i) We have I <~ ki+l ~- m <~ ki -< l, so, by -<-convexity, m -4 l (see Figure 
15). 

Thus q ~ l; we also know that 1 ~ p, p ~< a, q ~< a, so by ~<-convexity l ~< a. 
Then t, a, m, and ki+~ form an ~<-orthogonal butterfly configuration, which factors 
through some e such that m ~ e _ ki+l, l ~< e ~< a. As hi+l ~ !m, either m = e, in 
which case by strong antisymmetry ra = l and hi ~_ m = l ~_ hi+l ,  contradicting 
our original assumptions; or else hi+l = e ~ a, and we are done. 

(iv) We have l <~ hi+l ~ m ~< hi -< l; this parallel butterfly diagram factors, 
and we get hi ~_ e ~_ l, m -< e -< hi+l. But as hi -< !hi+l, without loss of generality 
ki+l = e ~_ 1. Thus by strong antisymmetry hi+l = l; so hi+l ~_ p <<. a. But 
hi+l ~_<<, a, so by convexity hi+l <~ a. 

Otherwise, without loss of generality, hi+l < l. In that case, a ) p ~ l > hi+l ,  
a ) q -< hi+l, so that, by ~<-convexity, a ) hi+l. [] 

COROLLARY: A finite regular DO in which parallel  and orthogonal butterfly 
diagrams factorize has chain trichotomy and the neighbour-chain property. 

The following example shows that we cannot hope to weaken the conditions of 
Theorem 13 too much more; the DO exhibited in Figure 16 has the <~-PBFP, -<- 
NCP, the ~_-OBFP, and both forms of convexity, but falls to be chaln-trichotomic. 
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THEOREM 14. A finite regular <~-chain-trichotomic DO with the ~-OBFP has 
the OMCP. 

Proof Let K be a maximal ~<-chain, and L a maximal -<-chain. By ,<-chain 
trichotomy, every element of L is either above or below some element of K. Thus 
there must exist l, 1 f E L and k, k' E K such that k ~ l ___!I' ~ k'. As (without 
loss of generality) k ~< U, by the usual argument I = I t = k = k'; so the chains 
intersect. Strong antisymmetry ensures ~a t  they cannot intersect more than once. 

[] 

THEOREM 15. For a finite DO, the following are equivalent: 
(i) It is a tileorder; 
(ii) It has the OMCP and the PMCP; 
(iii) It is regular, and has the OBFP and PBFP; 
(iv) It is regular, and all butterflies factorize. 
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Fig. 16. 

Proof. The equivalence of (i) and (ii) follows from Theorem 4, that of (iii) and 
(iv) from Theorem 8. By Theorems 7 and 9, (ii) =~ (iii). If a DO has the OBFP 
and PBFP, by Theorem 11 it also has the NCE whence by Theorem 10 it has the 
PMCR Furthermore, Theorem 13 implies (in two distinct ways) that it has chain 
trichotomy, so by Theorem 14 it has the OMCE Thus (iii)-(ii). [] 

5. Tileorder Recognition Algorithms 

The characterization of a tileorder in Theorem 1, while simple, does not give 
an effective way to subdivide an abstract double order, and so does not in itself 
constitute an effective algorithm to recognize tileorders. (It does provide a recursive 
algorithm to generate, with some repetition, all tileorders of a given (small) size.) 

However, as we have established that all titeorders are chain-trichotomic, it 
follows that any maximal chain in a tileorder, except the four 'edges', subdivides 
the tileorder into smaller pieces. This yields a polynomial time algorithm that 
determines whether an n-element double order is a tileorder. 

We can, in O(n 2) operations, construct such a chain (should it exist) in the 
given double 6rder. Should it fail to exist, then either the double order is one of the 
primitive tileorders of Figure 4, or it is not a tileorder. We can, again with O(n 2) 
operations, test the remaining elements to determine whether chain trichotomy 
holds with respect to that chain. If it does not, then the order is not a tileorder. If 
it does, then the double order may be effectively subdivided into smaller double 
orders, and it is a tileorder if  and only if they are both tileorders. This recursion 
can require at most n repetitions, and can thus be carried out in O(n 3) operations. 
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Theorem 4 provides, in theory, a recognition algorithm for tileorders; but as 
the number of maximal chains in a tileorder increases exponentially with its size, 
it is not efficient. Theorem 15 also suggests a recognition algorithm, in which 
every parallel and orthogonal butterfly configuration is tested to determine whether 
it factorizes. This, however, potentially requires O(n 5) steps, and is therefore 
inefficient compared with that obtained using Theorem 1 and chain trichotomy. 
This can be tested in polynomial time, and thus constitutes a reasonably efficient 
recognition algorithm for tileorders. 

6. Open Questions 

The results above leave various questions open. For instance, it would be interesting 
to know what tileorders can be realised by dissections of squares into squares, of 
rectangles into squares, or of rectangles into rectangles of equal area. (It is easily 
shown that none of these representations is always possible!) While we can find 
upper and lower bounds fairly easily, determining the number T(n) of tileorders 
with n elements appears to be an extremely difficult problem. The related, and 
probably even more difficult, problem of enumerating the dissections of a square 
into rectangles of equal area is problem 34 of [7]. 

Finally, the extension of these results into three dimensions appears fraught 
with complications; in particular, it is easily observed that strong antisymmetry, as 
defined here, does not hold for dissections of a rectangular 'brick' into 'sub-bricks'. 
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