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Paintbucket on graphs is PSPACE-complete

Ethan J. Saunders and Peter Selinger

Dalhousie University

Abstract

The game of Paintbucket was recently introduced by Amundsen and Erickson. It is played on

a rectangular grid of black and white pixels. The players alternately fill in one of their opponent’s

connected components with their own color, until the entire board is just a single color. The player

who makes the last move wins. It is not currently known whether there is a simple winning strategy

for Paintbucket. In this paper, we consider a natural generalization of Paintbucket that is played on an

arbitrary simple graph, and we show that the problem of determining the winner in a given position of

this generalized game is PSPACE-complete.

1 Introduction

The game of Paintbucket was recently introduced by Amundsen and Erickson [1]. It is played on a rectangular
grid of black and white pixels. The players alternately fill in one of their opponent’s connected components
with their own color, until the entire board is just a single color. Here, two pixels are considered to be
connected if they share a common edge. The player who makes the final move wins. An example game of
Paintbucket is shown in Figure 1(a). It is not currently known whether there is a simple winning strategy
for Paintbucket.

In this paper, we consider a natural generalization of Paintbucket that is played on an arbitrary simple
graph. Consider a simple undirected graph G, given by a set V of vertices and a set E of two-element
subsets of V called edges. We initially assign a color, black or white, to every vertex. Two black vertices
are connected if there is a path (of length zero or greater) between them that only passes through black
vertices. A black group is a non-empty connected component of black vertices, i.e., a maximal connected set
of black vertices. White groups are defined analogously. A move by a player consists of picking one of the
opponent’s groups and flipping the colors of all of its vertices. The winner is again the player who makes
the last move. Note that Paintbucket played on a square grid graph, as in Figure 1(b), is exactly the same
thing as the original version of Paintbucket played on a rectangular grid of pixels.

In this paper, we prove that the problem of determining the winner in a given position of Paintbucket
on graphs is PSPACE-complete.

Related work. Burke and Tennenhouse studied the game Flag Coloring [2], which in the case of two
colors can be thought of as an impartial version of Paintbucket. They showed that Flag Coloring on graphs
is PSPACE-complete.

2 Avoider-enforcer games

We will show the PSPACE-completeness of Paintbucket on graphs by reduction from a known PSPACE-
complete problem, namely the decision problem for avoider-enforcer games, which we now define.

Definition 2.1. The avoider-enforcer game is played on a pair (C,A), where C is a finite set of cells and
A = (Aj)j∈J is a family of subsets of C, which we call the avoider sets. The players, who are called the
avoider and the enforcer, take turns. On each turn, a player claims one cell, which afterwards cannot be
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(a)
Black White Black White

(b)
Black White Black White

(c)
Black White Black White

Figure 1: (a) An example game of Paintbucket played by the authors. White makes the last move and
therefore wins. (b) The same game, played on a graph. (c) The same game, played on a bipartite graph.

claimed again (we can think of the players as “coloring” the cells). The game finishes when all cells are
colored, and the avoider loses if and only if they have colored all the elements of some avoider set.

Remark 2.2. The following is an equivalent description of the avoider-enforcer game. Given a position
(C,A), a move by the avoider consists of choosing some c ∈ C, and then the new position is (C′,A′), where

C′ = C \ {c} and A′ = (Aj \ {c})j∈J .

A move by the enforcer in position (C,A) consists of choosing some c ∈ C, and then the new position is
(C′′,A′′), where

C′′ = C \ {c} and A′′ = (Aj)j∈J, c 6∈Aj
.

In other words, the avoider removes a cell from C and from all avoider sets, whereas the enforcer removes
a cell from C and removes all avoider sets containing it. The game ends when C = ∅. In this case, either
A = ∅, in which case the avoider wins, or A = {∅}, in which case the enforcer wins.

The decision problem for avoider-enforcer games is the following: given a position (C,A) and a player to
move, decide whether the avoider has a winning strategy. This problem is known to be PSPACE-complete,
even in the case where each avoider set consists of exactly 6 cells [3].

Remark 2.3. The decision problem for avoider-enforcer games remains PSPACE-complete even if we restrict
the possible instances to those where the number of cells |C| is even and the avoider moves first. Indeed,
given a position where the enforcer moves first, we can simply add one additional cell c to C and to none
of the avoider sets, and let the avoider move first; it is easy to see that it is in the avoider’s interest to play
their first move at c, after which the game is equivalent to what we started with. We can therefore assume
without loss of generality that the avoider moves first. Now, consider the case where |C| is odd. We modify
the game by adding one more cell c′ and exactly one additional avoider set {c′}. Clearly, the avoider loses if
they ever play at c′, and it is also easy to see that the enforcer prefers every other move to c′. Therefore, we
can assume without loss of generality that c′ will be the last cell played; since it is the enforcer who plays
last, this game is equivalent to the one that we started with.

3 Paintbucket on bipartite graphs

The game of Paintbucket on graphs was defined in the introduction. We now give an equivalent description
where every connected component of a color is contracted to a single vertex.

The game is played on a connected bipartite graph (Vb, Vw, E), where Vb and Vw are finite sets of vertices
that we call black and white vertices, respectively, and E ⊆ Vb ×Vw is a set of edges, each of which connects
a black vertex to a white one.
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1 2 3 k

G

· · ·

Figure 2: A bipartite graph with k black leaves attached to a white vertex.

A move by Black consists of choosing one white vertex v, coloring it black, and then immediately
merging it with all of its (necessarily black) neighbors. More precisely, by “merging”, we mean that all of
the neighbors w1, . . . , wk of v are deleted from the graph, and new edges are added between v and all the
(necessarily white) neighbors of w1, . . . , wk. The resulting graph is again bipartite and connected. A move
by White is defined dually. The game ends when the graph consists of a single vertex. Black wins if and
only if the final vertex is black. Equivalently, the winner is the player who made the last move.

It is easy to see that this description of Paintbucket using bipartite graphs is equivalent to the game
of Paintbucket on graphs described in the introduction. For example, Figure 1(c) shows the same game as
Figure 1(a) and (b), played in this setting. From now on, when we refer to Paintbucket, we mean Paintbucket
on bipartite graphs, unless otherwise stated.

The following lemmas state some properties of Paintbucket that will be useful to us later.

Lemma 3.1. Consider Paintbucket played on a bipartite graph G with a distinguished white vertex v to
which k black leaves are attached, as in Figure 2. Let m be the number of white vertices of G. Then
if m 6 k, Black has a first-player winning strategy. Moreover, if m < k, Black has a winning strategy
regardless of who goes first.

Proof. Black’s strategy is to play anywhere except v, unless v is the only remaining white vertex. Therefore,
each time Black plays,m decreases by exactly 1. Each time White plays, k decreases by at most 1. Therefore,
when m = 1 and it is Black’s turn, there is still at least one black leaf and Black wins by playing v.

Lemma 3.2. In Paintbucket on a bipartite graph, if n vertices have the same set of neighbors and a player
plays at one of the n vertices, the remaining ones become leaves that share the same neighbor.

Proof. Suppose that v1, . . . , vn are black vertices that have the same neighbors u1, . . . , uk, and suppose
White plays at v1. Then v1 and u1, . . . , uk are all contracted into a single vertex u, which becomes the
unique neighbor of each of v2, . . . , vn in the resulting graph. So they all become leaves sharing the same
neighbor u.

Lemma 3.3. Consider Paintbucket played on the complete bipartite graph Km,n, i.e., the bipartite graph
with m black vertices, n white vertices, and all possible edges. Then:

(a) If m,n > 1, the position is a second-player win.

(b) If m > 1 and n = 1, the position is winning for Black, no matter who goes first.

(c) If m = 1 and n > 1, the position is winning for White, no matter who goes first.

(d) If m = n = 1, the position is a first-player win.

Proof. (d) is obvious, and (b) and (c) follow by Lemma 3.1 and its dual. To prove (a), note that if Black
plays first, Black collapses all black vertices and leaves n−1 white vertices remaining. White wins by playing
at the only remaining black vertex. If White plays first, the situation is dual.
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4 Paintbucket is PSPACE-complete

4.1 Statement of the main result

The decision problem for Paintbucket on bipartite graphs is the following: Given a connected bipartite
graph and a player to move, determine whether Black has a winning strategy. For concreteness, we consider
the problem size to be the number n of vertices of the graph. Note that it would be equally valid to use
the number of edges, because the number of edges in a connected graph is between n − 1 and n2, which is
polynomial in n. We will prove the following theorem:

Theorem 4.1. The decision problem for Paintbucket on bipartite graphs is PSPACE-complete.

4.2 Translation from avoider-enforcer games to Paintbucket

We prove the theorem by reducing the avoider-enforcer game to Paintbucket. Given a position (C,A) of
the avoider-enforcer game and a natural number K, we will define a connected bipartite graph GK(C,A) as
follows.

Let I = |C| and enumerate the cells as C = {c1, . . . , cI}. Also let A = (Aj)j∈{1,...,J}. From now on,
unless otherwise specified, the indices i, j, and k will always range over the sets {1, . . . , I}, {1, . . . , J},
{1, . . . ,K}, respectively. The graph GK(C,A) will have vertices vi, ui, wk, tj,k, r, and s. We assume all of
these vertices to be distinct. We refer to these vertices as being of type v, u, w, t, r, and s, respectively. We
define GK(C,A) = (Vb, Vw, E), where

Vb = {vi} ∪ {wk} ∪ {r},
Vw = {ui} ∪ {tj,k} ∪ {s},
E = {(r, ui)}

∪ {(vi, ui)}
∪ {(vi, s)}
∪ {(tj,k, r)}
∪ {(s, r)}
∪ {(tj,k, wk)}
∪ {(s, wk)}
∪ {(vi, tj,k) | ci ∈ Aj}.

The graph is shown schematically in Figure 3. In words, it can be described as follows: for each cell ci of the
avoider-enforcer game, we have a pair of a black vertex vi and a white vertex ui, connected to each other by
an edge. We also have a cluster of K black vertices w1, . . . , wK . For each avoider set Aj , we have a cluster
of K white vertices tj,1 . . . , tj,K , which are connected to those vi such that ci ∈ Aj . All of the vertices wk

and tj,k form a complete bipartite graph. Finally, there is a universal black vertex r which is connected to
all white vertices, and a universal white vertex s which is connected to all black vertices (including r).

4.3 Intended play, shenanigans, and simulation

Our eventual goal is to show that whoever wins the game (C,A) also wins the corresponding game GK(C,A).
To do so, we consider the following notion of “intended play” for the Paintbucket game. Note that there are
I pairs of vertices {ui, vi}. The intended play is that the first I moves of the game occur on these vertices,
with each pair being played in exactly once. The players are not obliged to play in the intended way, but
we will show that any player who deviates from the intended play will lose the game immediately. This is
proved in the next two lemmas. When a player deviates from intended play, we call it a shenanigan by that
player.

Lemma 4.2 (White shenanigans). Assume K > |C|+ 2, and suppose it is White’s turn in the Paintbucket
game on the graph GK(C,A). If White’s next move is not at a vertex of type v, White loses.

4



r w1 . . . wK

t1,1 . . . t1,k t2,1 . . . t2,K tJ,1 . . . tJ,K

· · ·
s

A1: A2: AJ :

u1 v1

u2 v2

u3 v3

uI vI

...

Figure 3: The graph GK(C,A). Here, we have assumed that A1 = {c1, c2}, A2 = {c2, c3}, and AJ = {c3, cI}.

Proof. There are two cases. Case 1: White’s move is at the universal vertex r, then all white vertices will
be contracted into a single vertex, while at least w1, . . . , wK remain as black vertices. Then Black wins on
the next move by playing the remaining white vertex. Case 2: White’s move is at a vertex of type w, say at
wk. Since all of the vertices of types t and s are neighbors of wk, they all get contracted into a single white
vertex, which we may still call s. This turns all of the wk′ where k′ 6= k into leaves by Lemma 3.2. Hence,
the resulting graph has at least K − 1 black leaves attached to the single vertex s. Also note that there are
at most I +1 white vertices remaining in the graph, namely u1, . . . , uI and s. By assumption, K > |C|+2,
so I + 1 6 K − 1. Then Black wins by Lemma 3.1.

Lemma 4.3 (Black shenanigans). Assume K > |C| + 2 and A 6= ∅. Suppose it is Black’s turn in the
Paintbucket game on the graph GK(C,A). If Black’s next move is not at a vertex of type u, Black loses.

Proof. By assumption, A is non-empty, so let j be an index of some avoider set Aj ∈ A. There are two
cases. Case 1: Black’s move is at the universal vertex s, then all black vertices will be contracted into a
single vertex, while at least K white vertices remain, namely tj,1, . . . , tj,K . Then White wins on the next
move by playing at the remaining black vertex. This leaves the case where Black’s move is at a vertex of
type t, say at tj,k. Since all of w1, . . . , wK and r are neighbors of tj,k, they will all be contracted into a single
vertex, which we may still call r. Because tj,1, . . . , tj,K all had the same neighbors before Black’s move, by
Lemma 3.2, the remaining K − 1 of them turn into leaves which share r as a common neighbor. Moreover,
the resulting graph has at most I + 1 black vertices remaining, namely v1, . . . , vI and r. By assumption,
K > |C|+ 2, so I + 1 6 K − 1. Therefore, White wins by the dual of Lemma 3.1.

Lemma 4.4 (Simulation). Consider a position (C,A) of the avoider-enforcer game and let K be a natural
number. In the game of Paintbucket on the graph GK(C,A), if Black moves at ui, the resulting graph is
isomorphic to GK(C′,A′), where

C′ = C \ {c} and A′ = (Aj \ {c})j∈J

Similarly, if White moves at vi, the resulting graph is isomorphic to GK(C′,A′), where

C′′ = C \ {c} and A′′ = (Aj)j∈J, c 6∈Aj
.

In other words, following Remark 2.2, these moves of Black and White exactly mirror the corresponding
moves at ci in (C,A) by the avoider and enforcer, respectively.
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Avoider-enforcer game: Paintbucket:

(C,A) GK(C,A)

(C′,A′) GK(C′,A′)

(C′′,A′′) GK(C′′,A′′)

|C| is even:

|C′| is odd:

|C′′| is even:

Black loses

White loses

Avoider
loses

Avoider
wins

Black
loses

Black
winsBase case:

Avoider moves

at ci

Black moves

at ui

Black moves

elsewhere

Enforcer moves

at ci′

White moves

at vi′

White moves

elsewhere

∼

∼

∼

...
...

A = ∅
A 6= ∅,
C = ∅ A = ∅

A 6= ∅,
C = ∅

Figure 4: Schematic representation of the proof of Proposition 4.5

Proof. First, consider the Black move at ui. The vertex ui has exactly two neighbors, namely r and vi. By
the definition of Paintbucket on bipartite graphs, the result of the move is to delete ui and merge vi into r.
Note that, since r is a universal vertex, all of the neighbors of vi are already neighbors of r, so r gains no
new neighbors. The move is effectively equivalent to deleting the pair of vertices ui, vi from the graph, along
with all of their incident edges. This is exactly equivalent to removing the cell c from C and all avoider sets.

Second, consider the White move at vi. The vertex vi has several neighbors, namely ui, s, and for each
avoider set Aj that contains ci, all of the tj,k. The effect of moving at vi is to delete vi and merge all of its
neighbors into a single vertex, which we may still call s. Since s is universal, it already has all black vertices
as neighbors, and therefore gains no new neighbors. Thus, White’s move is equivalent to simply deleting vi,
ui, and all the clusters {tj,k} corresponding to avoider sets Aj that contain ci. This is exactly equivalent to
removing the cell c from C and removing all avoider sets containing c from A.

4.4 Proof of the main result

The PSPACE-completeness of Paintbucket is a consequence of the following proposition, which relates the
winner of GK(C,A) to that of (C,A).

Proposition 4.5. Consider a position (C,A) of the avoider-enforcer game, and assume that K > |C|+ 2.

(a) If |C| is even, Black has a first-player winning strategy in the Paintbucket game GK(C,A) if and only
if the avoider has a first-player winning strategy in (C,A).

(b) If |C| is odd, Black has a second-player winning strategy in the Paintbucket game GK(C,A) if and
only if the avoider has a second-player winning strategy in (C,A).

Proof. We prove properties (a) and (b) by simultaneous induction on |C|. We consider three cases. See also
Figure 4.

Case 1. A = ∅. Since there are no avoider sets, the avoider wins the avoider-enforcer game no matter how
the players play. We must show that Black has a winning strategy in the Paintbucket game on GK(C,A).
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Since A = ∅, there are no vertices of type t. Therefore, w1, . . . , wK have s as their only neighbor, so there
are at least K black leaves attached to a single vertex. Also, the graph has at most I + 1 white vertices,
namely u1, . . . , uI and s. We assumed K > |C| + 2 = I + 2, therefore I + 1 < K. Then Black wins by
Lemma 3.1, no matter whose turn it is.

Case 2. A 6= ∅ and C = ∅. Then (b) is vacuously true. To prove (a), first note that the avoider-enforcer
game is already finished and has been won by the enforcer (since there is an avoider set, which is necessarily
empty, and of which the avoider has therefore claimed all members). So we must show that Black loses the
game GK(C,A), moving first. But since C = ∅, there are no vertices of types u. Black loses by Lemma 4.3.

Case 3. |C| > 0 and |A| > 0. To prove (a), assume |C| is even. By Lemma 4.3, Black has no possible
winning moves in the Paintbucket game except at vertices of type u. We claim that ui is a winning move for
Black in the Paintbucket game GK(C,A) if and only if ci is a winning move for the avoider in the avoider-
enforcer game (C,A). Indeed, this follows from the simulation lemma and the induction hypothesis. Namely,
if the avoider’s move at ci results in the position (C′,A′), then Black’s move at ui results in a position that
is isomorphic to GK(C′,A′). The move at ui is winning if and only if Black has a second-player winning
strategy in GK(C′,A′), which, by the induction hypothesis and the fact that |C′| is odd, is the case if and
only if the avoider has a second-player winning strategy in (C′,A′), which is the case if and only if the move
at ci was winning. The proof of (b) is analogous but dual.

We can now prove the main theorem, i.e., the PSPACE-completeness of Paintbucket on graphs.

Proof of Theorem 4.1. It is easy to see that Paintbucket is in PSPACE. To show PSPACE-hardness, consider
any position (C,A) of the avoider-enforcer game. As noted in Remark 2.3, we can assume without loss of
generality that |C| is even and that the player to move is the avoider. We construct a position of Paintbucket
as follows. Let K = |C| + 2 and consider Paintbucket on the graph GK(C,A). Note that the size of this
graph is polynomial in the size of the avoider-enforcer instance. Then by Proposition 4.5, any algorithm
that can determine the winner of the game GK(C,A) can also determine the winner of (C,A); it follows
that the decision problem for Paintbucket is at least as hard as the decision problem for the avoider-enforcer
game. Therefore, it is PSPACE-hard.

5 Conclusion

We showed that the game of Paintbucket on graphs is PSPACE-complete. The obvious open question is
whether the original version of Paintbucket, played on a square grid, is also PSPACE-complete. Our current
method does not shed any light on this question, but it would be fun to figure it out in future work.
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