
Quantum Programs as Kleisli Maps

Abraham Westerbaan

Radboud University Nijmegen

2016-06-09

https://bram.westerbaan.name/kleisli.pdf

Kleisli Maps

phd
8/24

//

16/24
P

P

P

P

P

''P
P

P

P

P

sleep

work

Kleisli Maps

phd
8/24

//

16/24
P

P

P

P

P

''P
P

P

P

P

sleep

prof 24/24 // work

Kleisli Maps

phd
8/24

//

8/24
P

P

P

P

P

P

''P
P

P

P

P

sleep

prof 24/24 // work

Kleisli Maps

Substochastic map:

phd
8/24

//

8/24
P

P

P

P

P

P

''P
P

P

P

P

sleep

prof 24/24 // work

Kleisli Maps

Substochastic map:

phd // 8/24 |sleep〉 + 8/24 |work〉

prof // |work〉

Kleisli Maps

X
substochastic // Y

======================

X
(“sharp”) map

// S(Y)

Here S(Y) is the set of subdistributions on Y .

Kleisli Maps

X
substochastic // Y

======================

X
(“sharp”) map

// S(Y)

Here S(Y) is the set of subdistributions on Y .

In fact, the category of sets and substochastic maps is isomorphic
to the Kleisli category of the subdistribution monad S.

Kleisli Maps

X
substochastic // Y

======================

X
(“sharp”) map

// S(Y)

Here S(Y) is the set of subdistributions on Y .

In fact, the category of sets and substochastic maps is isomorphic
to the Kleisli category of the subdistribution monad S.

So substochastic maps are “Kleisli maps”.

What about quantum processes?

What about quantum processes?

A
quantum process

// B
=========================

A
“sharp” quantum process

// Q(B)

?

What about quantum processes?

A
quantum process

// B
=========================

A
“sharp” quantum process

// Q(B)

?

It depends . . .

What about quantum processes?

A
quantum process

// B
=========================

A
“sharp” quantum process

// Q(B)

?

It depends (on the exact definitions),

What about quantum processes?

A
quantum process

// B
=========================

A
“sharp” quantum process

// Q(B)

?

It depends (on the exact definitions), but I would say:

NO! when A, B , and Q(B) are to have finite dimension,

What about quantum processes?

A
quantum process

// B
=========================

A
“sharp” quantum process

// Q(B)

?

It depends (on the exact definitions), but I would say:

NO! when A, B , and Q(B) are to have finite dimension,

YES! when A, B , and Q(B) may have infinite dimension.

“Exact” definitions

“Exact” definitions

1. A finite-dim. quantum datatype is a ‘ring’ of matrices:

M2 ⊕M3 ⊕ C
2 .

“Exact” definitions

1. A finite-dim. quantum datatype is a ‘ring’ of matrices:

M2 ⊕M3 ⊕ C
2 ⊆ M7 .

“Exact” definitions

1. A finite-dim. quantum datatype is a ‘ring’ of matrices:

M2 ⊕M3 ⊕ C
2 ⊆ M7 ≡ B(C7).

“Exact” definitions

1. A finite-dim. quantum datatype is a ‘ring’ of matrices:

M2 ⊕M3 ⊕ C
2 ⊆ M7 ≡ B(C7).

2. A quantum datatype is a von Neumann algebra, that is, a
‘ring’ of bounded operators on some Hilbert space H ,

A ⊆ B(H),

“Exact” definitions

1. A finite-dim. quantum datatype is a ‘ring’ of matrices:

M2 ⊕M3 ⊕ C
2 ⊆ M7 ≡ B(C7).

2. A quantum datatype is a von Neumann algebra, that is, a
‘ring’ of bounded operators on some Hilbert space H ,

A ⊆ B(H),

which is closed in a suitable topology on B(H).

“Exact” definitions

1. A finite-dim. quantum datatype is a ‘ring’ of matrices:

M2 ⊕M3 ⊕ C
2 ⊆ M7 ≡ B(C7).

2. A quantum datatype is a von Neumann algebra, that is, a
‘ring’ of bounded operators on some Hilbert space H ,

A ⊆ B(H),

which is closed in a suitable topology on B(H).

3. vNCPsU is the category of von Neumann algebras and normal,
completely positive, subunital linear maps.

“Exact” definitions

1. A finite-dim. quantum datatype is a ‘ring’ of matrices:

M2 ⊕M3 ⊕ C
2 ⊆ M7 ≡ B(C7).

2. A quantum datatype is a von Neumann algebra, that is, a
‘ring’ of bounded operators on some Hilbert space H ,

A ⊆ B(H),

which is closed in a suitable topology on B(H).

3. vNCPsU is the category of von Neumann algebras and normal,
completely positive, subunital linear maps.
(A CPsU // B is a quantum process from B to A .)

“Exact” definitions

1. A finite-dim. quantum datatype is a ‘ring’ of matrices:

M2 ⊕M3 ⊕ C
2 ⊆ M7 ≡ B(C7).

2. A quantum datatype is a von Neumann algebra, that is, a
‘ring’ of bounded operators on some Hilbert space H ,

A ⊆ B(H),

which is closed in a suitable topology on B(H).

3. vNCPsU is the category of von Neumann algebras and normal,
completely positive, subunital linear maps.
(A CPsU // B is a quantum process from B to A .)

4. vN ⊆ vNCPsU is the (wide) subcategory of multiplicative
unital maps — the “sharp” quantum processes.

Main Theorem

vN
op
CPsU is isomorphic to the Kleisli category of a monad on vNop.

Main Theorem

vN
op
CPsU is isomorphic to the Kleisli category of a monad on vNop.

Proof sketch.

Main Theorem

vN
op
CPsU is isomorphic to the Kleisli category of a monad on vNop.

Proof sketch.
Since vN and vNCPsU have the same objects,
we need only prove that vN → vNCPsU has a left adjoint.

Main Theorem

vN
op
CPsU is isomorphic to the Kleisli category of a monad on vNop.

Proof sketch.
Since vN and vNCPsU have the same objects,
we need only prove that vN → vNCPsU has a left adjoint.

By the Adjoint Functor Theorem it suffices to show that

1. vN has all limits, and vN → vNCPsU preserves them, and

2. vN → vNCPsU satisfies the solution set condition.

Main Theorem

vN
op
CPsU is isomorphic to the Kleisli category of a monad on vNop.

Proof sketch.
Since vN and vNCPsU have the same objects,
we need only prove that vN → vNCPsU has a left adjoint.

By the Adjoint Functor Theorem it suffices to show that

1. vN has all limits, and vN → vNCPsU preserves them, and

2. vN → vNCPsU satisfies the solution set condition.

Point 1 follows without without tricks.

Main Theorem

vN
op
CPsU is isomorphic to the Kleisli category of a monad on vNop.

Proof sketch.
Since vN and vNCPsU have the same objects,
we need only prove that vN → vNCPsU has a left adjoint.

By the Adjoint Functor Theorem it suffices to show that

1. vN has all limits, and vN → vNCPsU preserves them, and

2. vN → vNCPsU satisfies the solution set condition.

Point 1 follows without without tricks.

Point 2 follows from this: if B is a von Neumann subalgebra
generated by a subset X of a von Neumann algebra, then

#B ≤ 22
#C ·#X

.

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

2. F(C) = C [0, 1]

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

2. F(C) = C [0, 1]∗∗

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

2. F(C) = C [0, 1]∗∗

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

2. F(C) = C [0, 1]∗∗

C
CPsU // C [0, 1]

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

2. F(C) = C [0, 1]∗∗

C
CPsU //

CPsU
**❱❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱ C [0, 1]

A

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

2. F(C) = C [0, 1]∗∗

C
CPsU //

CPsU
**❱❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱ C [0, 1]

MIU
��
✤

✤

✤

A

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

2. F(C) = C [0, 1]∗∗

C
λ7→λid //

CPsU
**❱❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱ C [0, 1]

MIU
��
✤

✤

✤

A

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

2. F(C) = C [0, 1]∗∗

C
λ7→λid //

λ7→λa
**❱❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱ C [0, 1]

MIU
��
✤

✤

✤

A

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

2. F(C) = C [0, 1]∗∗

C
λ7→λid //

λ7→λa
**❱❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱ C [0, 1]

f 7→f (a)
��
✤

✤

✤

A

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

2. F(C) = C [0, 1]∗∗

C
λ7→λîd //

λ7→λa
**❱❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱ C [0, 1]∗∗

f 7→f (a)
��
✤

✤

✤

A

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

2. F(C) = C [0, 1]∗∗

C
λ7→λîd //

λ7→λa
**❱❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱ C [0, 1]∗∗

f 7→f (a)
��
✤

✤

✤

A

3. F(C2) = ??

Ok,. . . but what is this left adjoint F : vN → vNCPsU,

concretely?

1. F({0}) = {0}, because {0} is final.

2. F(C) = C [0, 1]∗∗

C
λ7→λîd //

λ7→λa
**❱❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱ C [0, 1]∗∗

f 7→f (a)
��
✤

✤

✤

A

3. F(C2) = ??

At least F(C2) is not commutative (because f (1, 0) and
f (0, 1) might not commute for a CPsU-map f : C2 → A).

An Application

An Application

A model of the Quantum Lambda Calculus:

Set

ℓ∞
++

⊥ vNop

vN(· ,C)

kk

%

�

J
,,

⊥ vN
op
CPsU

F

ll

An Application

A model of the Quantum Lambda Calculus:

Set

ℓ∞
++

⊥ vNop

vN(· ,C)

kk

%

�

J
,,

⊥ vN
op
CPsU

F

ll

This is the subject of the next talk!

An Application

A model of the Quantum Lambda Calculus:

Set

ℓ∞
++

⊥ vNop

vN(· ,C)

kk

%

�

J
,,

⊥ vN
op
CPsU

F

ll

This is the subject of the next talk!

Teaser:

J!AK = ℓ∞(vN(JAK,C)) JA⊸ BK = (FJ JBK)∗JAK

where (−)∗JAK is the Kornell’s free exponential.

An Application

A model of the Quantum Lambda Calculus:

Set

ℓ∞
++

⊥ vNop

vN(· ,C)

kk

%

�

J
,,

⊥ vN
op
CPsU

F

ll

This is the subject of the next talk!

Teaser:

J!AK = ℓ∞(vN(JAK,C)) JA⊸ BK = (FJ JBK)∗JAK

where (−)∗JAK is the Kornell’s free exponential.

Questions?

