Postquantum steering

<u>Ana Belén Sainz</u>, Nicolas Brunner, Daniel Cavalcanti Paul Skrzypczyk and Tamás Vértesi

Phys. Rev. Lett. 115, 190403 (2015)

Entanglement

 $\rho_{\rm AB}$

Nonlocality

- Quantum teleportation
- Quantum Key Distribution

- Device Independent QKD
- Randomness

Entanglement

 ρ_{AB}

Nonlocality

- Quantum teleportation
- Quantum Key Distribution

- Device Independent QKD
- Randomness

Fix $y \longrightarrow$ ensemble: $\{\sigma_{b|y}^{A}\}_{b}$, $p(b|y) = tr(\sigma_{b|y}^{A})$, $\rho_{A} = \sum_{b} \sigma_{b|y}^{A}$ Assemblage: $\{\sigma_{b|y}^{A}\}_{b,y}$.

Fix $y \longrightarrow$ ensemble: $\{\sigma_{b|y}^{A}\}_{b}$, $p(b|y) = tr(\sigma_{b|y}^{A})$, $\rho_{A} = \sum_{b} \sigma_{b|y}^{A}$ Assemblage: $\{\sigma_{b|y}^{A}\}_{b,y}$.

Quantum: $\sigma_{b|y}^{A} = \operatorname{tr}_{B} \left(\mathbb{1}_{A} \otimes M_{b|y} \rho_{AB} \right)$

Given an assemblage, could it have a classical explanation?

Here:

Given an assemblage, could it have a quantum explanation?

Bipartite steering

Given
$$\{\sigma_{b|y}^{A}\}_{b,y}$$
, $\rho_{A} = \sum_{b} \sigma_{b|y}^{A}$, $\operatorname{tr}(\rho_{A}) = 1$
 $\exists \rho_{AB}$, $\{M_{b|y}\}_{b,y}$ st $\sigma_{b|y}^{A} = \operatorname{tr}_{B}(\mathbb{1}_{A} \otimes M_{b|y} \rho_{AB})$

 $^{^1}N.$ Gisin, Helvetica Physica Acta 62, 363 (1989). L. P. Hughston, R. Jozsa and W. K. Wootters, Phys. Lett. A 183, 14 (1993).

Bipartite steering

Given
$$\{\sigma_{b|y}^{A}\}_{b,y}$$
, $\rho_{A} = \sum_{b} \sigma_{b|y}^{A}$, $\operatorname{tr}(\rho_{A}) = 1$

 $\exists \rho_{AB}, \{M_{b|y}\}_{b,y} \text{ st } \sigma_{b|y}^{A} = \operatorname{tr}_{B} \left(\mathbbm{1}_{A} \otimes M_{b|y} \rho_{AB}\right)$

• Alice and Bob: Yes ! GHJW theorem¹

• Multipartite scenarios?

¹N. Gisin, Helvetica Physica Acta 62, 363 (1989).

L. P. Hughston, R. Jozsa and W. K. Wootters, Phys. Lett. A 183, 14 (1993).

 $\begin{array}{ll} \mathsf{Fix} \; y, z \;, \; \mathsf{ensemble:} \; \{\sigma^{\mathrm{A}}_{bc|yz}\}_{b,c} \;, \quad p(bc|yz) = \mathrm{tr} \left(\sigma^{\mathrm{A}}_{bc|yz}\right) \;, \quad \rho_{\mathrm{A}} = \sum_{b,c} \sigma^{\mathrm{A}}_{bc|yz} \\ \mathsf{Assemblage:} \; \{\sigma^{\mathrm{A}}_{bc|yz}\}_{b,y,c,z} \;. \end{array}$

$$\begin{split} \text{Fix } y, z \,, \text{ ensemble: } \{\sigma^{\text{A}}_{bc|yz}\}_{b,c} \,, \quad p(bc|yz) = \text{tr} \left(\sigma^{\text{A}}_{bc|yz}\right) \,, \quad \rho_{\text{A}} = \sum_{b,c} \sigma^{\text{A}}_{bc|yz} \end{split}$$
 $\begin{aligned} \text{Assemblage: } \{\sigma^{\text{A}}_{bc|yz}\}_{b,y,c,z}. \end{split}$

No Signalling: $\sum_{b} \sigma^{A}_{bc|yz} = \sum_{b} \sigma^{A}_{bc|y'z}$, $\sum_{c} \sigma^{A}_{bc|yz} = \sum_{c} \sigma^{A}_{bc|yz'}$

 $\begin{array}{ll} \mathsf{Fix} \; y, z \;, \; \mathsf{ensemble:} \; \{\sigma^{\mathrm{A}}_{bc|yz}\}_{b,c} \;, \quad p(bc|yz) = \mathrm{tr} \left(\sigma^{\mathrm{A}}_{bc|yz}\right) \;, \quad \rho_{\mathrm{A}} = \sum_{b,c} \sigma^{\mathrm{A}}_{bc|yz} \\ \mathsf{Assemblage:} \; \{\sigma^{\mathrm{A}}_{bc|yz}\}_{b,y,c,z} \;. \end{array}$

No Signalling:
$$\sum_{b} \sigma^{A}_{bc|yz} = \sum_{b} \sigma^{A}_{bc|y'z}$$
, $\sum_{c} \sigma^{A}_{bc|yz} = \sum_{c} \sigma^{A}_{bc|yz'}$

 $\exists \rho_{ABC}, \ \{M_{b|y}\}_{b,y}, \ \{M_{c|z}\}_{c,z} \quad \text{st} \quad \sigma^{A}_{bc|yz} = \operatorname{tr}_{B} \left(\mathbbm{1}_{A} \otimes M_{b|y} \otimes M_{c|z} \rho_{ABC}\right)$

•
$$(y, z) = (0, 0), (0, 1), (1, 0):$$

 $\sigma^{A}_{bc|yz} = \begin{cases} \frac{1}{4}, & \text{if } b = c, \\ 0, & \text{if } b \neq c, \end{cases}$

• (y, z) = (1, 1): $\sigma^{A}_{bc|yz} = \begin{cases} 0, & \text{if } b = c, \\ \frac{1}{4}, & \text{if } b \neq c, \end{cases}$ $\sum_{b} \sigma^{A}_{bc|yz} = \frac{1}{4}, \quad \sum_{c} \sigma^{A}_{bc|yz} = \frac{1}{4}$

•
$$(y, z) = (0, 0), (0, 1), (1, 0):$$

 $\sigma^{A}_{bc|yz} = \begin{cases} \frac{1}{4}, & \text{if } b = c, \\ 0, & \text{if } b \neq c, \end{cases}$

$$p(bc|yz) = \operatorname{tr} \left(\sigma_{bc|yz}^{\mathrm{A}} \right)$$

$$\stackrel{quantum}{=} \operatorname{tr}_{\mathrm{BC}} \left(M_{b|y} \otimes M_{c|z} \rho_{\mathrm{BC}} \right)$$

•
$$(y, z) = (1, 1)$$
:
 $\sigma^{A}_{bc|yz} = \begin{cases} 0, & \text{if } b = c, \\ \frac{1}{4}, & \text{if } b \neq c, \end{cases}$
 $\sum_{b} \sigma^{A}_{bc|yz} = \frac{1}{4}, \quad \sum_{c} \sigma^{A}_{bc|yz} = \frac{1}{4}$

•
$$(y, z) = (0, 0), (0, 1), (1, 0):$$

 $\sigma^{A}_{bc|yz} = \begin{cases} \frac{1}{4}, & \text{if } b = c, \\ 0, & \text{if } b \neq c, \end{cases}$

•
$$(y, z) = (1, 1)$$
:
 $\sigma^{A}_{bc|yz} = \begin{cases} 0, & \text{if } b = c, \\ \frac{1}{4}, & \text{if } b \neq c, \end{cases}$
 $\sum_{b} \sigma^{A}_{bc|yz} = \frac{1}{4}, \quad \sum_{c} \sigma^{A}_{bc|yz} = \frac{1}{4}$

$$p(bc|yz) = \operatorname{tr} \left(\sigma_{bc|yz}^{\mathrm{A}} \right)$$

$$\stackrel{quantum}{=} \operatorname{tr}_{\mathrm{BC}} \left(M_{b|y} \otimes M_{c|z} \rho_{\mathrm{BC}} \right)$$

$$p(bc|yz) = \begin{cases} \frac{1}{2}, & \text{if } b \oplus c = yz, \\ 0, & \text{otherwise.} \end{cases}$$

No quantum realisation for the assemblage

Postquantum steering without postquantum NL

(1) Postquantum assemblage $\left\{\sigma_{bc|yz}^{A}\right\}_{b,y,c,z}$

(2) Quantum correlations for every measurement by Alice:

 $p(abc|xyz) = \operatorname{tr}\left(M_{a|x}\,\sigma^{\mathrm{A}}_{bc|yz}\right)$

Steering inequality: F_{bcyz}

$$S({\sigma_{bc|yz}^{A}}) := \operatorname{tr} \sum_{bcyz} F_{bcyz} \sigma_{bc|yz}^{A}$$

Steering inequality: F_{bcyz}

$$S(\{\sigma_{bc|yz}^{A}\}) := \operatorname{tr} \sum_{bcyz} F_{bcyz} \sigma_{bc|yz}^{A} \le \beta_{Q}$$

Steering inequality: F_{bcyz}

$$S(\{\sigma_{bc|yz}^{A}\}) := \operatorname{tr} \sum_{bcyz} F_{bcyz} \sigma_{bc|yz}^{A} \leq \beta_{Q}$$

How to compute
$$\beta_Q$$
? \rightarrow upper bound

Almost quantum assemblages: $\widetilde{\mathrm{Q}} \supset \mathrm{Q}$

$$\max_{\{\sigma_{bc|yz}^{\mathrm{A}}\}\in\widetilde{\mathrm{Q}}} S(\{\sigma_{bc|yz}^{\mathrm{A}}\}) =: \beta_{\widetilde{\mathrm{Q}}} \ge \beta_{\mathrm{Q}}$$

Steering inequality: F_{bcyz}

$$S(\{\sigma_{bc|yz}^{A}\}) := \operatorname{tr} \sum_{bcyz} F_{bcyz} \sigma_{bc|yz}^{A} \leq \beta_{Q}$$

How to compute
$$\beta_Q$$
? \rightarrow upper bound

Almost quantum assemblages: $\widetilde{\mathrm{Q}} \supset \mathrm{Q}$

$$\max_{\{\sigma_{bc|yz}^{\mathrm{A}}\}\in\widetilde{\mathrm{Q}}} S(\{\sigma_{bc|yz}^{\mathrm{A}}\}) =: \beta_{\widetilde{\mathrm{Q}}} \geq \beta_{\mathrm{Q}}$$

$$S({\sigma^{A}_{bc|yz}}) > \beta_{\widetilde{Q}} \quad \Rightarrow \quad \sigma^{A}_{bc|yz} \text{ is postquantum}$$

(1) Postquantum assemblage $\left\{\sigma_{bc|yz}^{A}\right\}_{b,y,c,z}$

(2) Quantum correlations for every measurement by Alice:

 $p(abc|xyz) = tr(M_{a|x}\sigma^{A}_{bc|yz})$

(2) Quantum correlations *p*(*abc*|*xyz*)

(i) p(abc|xyz) is local

(ii) Qubit assemblage (real): local for all projective measurements by Alice

(iii) Qutrit assemblage, local for all POVMs².

²F. Hirsch, M. T. Quintino, J. Bowles and N. Brunner, Phys. Rev. Lett, 111, 160402 (2013).

(2) Quantum correlations p(abc|xyz)

(i) p(abc|xyz) is local

- (ii) Qubit assemblage (real): local for all projective measurements by Alice $\sigma^{A}_{bc|yz}$ local for $\{x_1, \ldots, x_m\} \iff \sigma^{A}_{bc|yz}(\mu)$ local $\forall \Pi_{a|x}$
- (iii) Qutrit assemblage, local for all POVMs².

²F. Hirsch, M. T. Quintino, J. Bowles and N. Brunner, Phys. Rev. Lett, 111, 160402 (2013).

(ii) Qubit assemblage (real): local for all projective measurements by Alice.

(ii)
$$\{\sigma_{bc|yz}^*\}$$

 $z^{2}: \begin{cases} - \text{ it is postquantum,} \\ - p(abc|xyz) \text{ is local for every} \\ \text{projective measurement by Alice.} \end{cases}$

(ii) $\{\sigma_{bc|yz}^*\}$: $\begin{cases} -p(abc|xyz) \text{ is local for every} \\ \text{projective measurement by Alice.} \end{cases}$

(iii)
$$\tilde{\sigma}_{bc|yz}^* = \frac{1}{3} \sigma_{bc|yz}^* + \frac{2}{3} \operatorname{tr} \left(\sigma_{bc|yz}^* \right) |2\rangle \langle 2|$$

 $\{\tilde{\sigma}_{bc|yz}^*\}$ is a postquantum qutrit assemblage that always gives quantum correlations for POVMs

Summary and open questions

 $\bullet~$ Steering beyond quantum theory $\rightarrow~$ multipartite scenarios

• Genuinely new effect

 \rightarrow postquantum steering $\not\Rightarrow$ postquantum nonlocality

• Fundamental difference between bipartite and multipartite scenarios

Summary and open questions

 $\bullet~$ Steering beyond quantum theory $\rightarrow~$ multipartite scenarios

• Genuinely new effect

 \rightarrow postquantum steering $\not\Rightarrow$ postquantum nonlocality

• Fundamental difference between bipartite and multipartite scenarios

• Insight on the characterisation of quantum phenomena

General framework for non-signalling assemblages
 → quantify postquantumness

• Information-theoretic applications of postquantum steering

Thanks !!!

- $\bullet~$ Steering beyond quantum theory $\rightarrow~$ multipartite scenarios
- Genuinely new effect
 - \rightarrow postquantum steering $\not\Rightarrow$ postquantum nonlocality
- Fundamental difference between bipartite and multipartite scenarios

- Insight on the characterisation of quantum phenomena
- General framework for non-signalling assemblages \rightarrow quantify postquantumness
- Information-theoretic applications of postquantum steering

Ana Belén Sainz, Nicolas Brunner, Daniel Cavalcanti, Paul Skrzypczyk, Tamás Vértesi

Phys. Rev. Lett. 115, 190403 (2015)

 $\Pi_{\mathsf{a}|x}(\mu) = \mu \,\Pi_{\mathsf{a}|x} + (1-\mu) \,\mathbb{1}/2, \quad \sigma^{\mathrm{A}}_{bc|yz}(\mu) = \mu \,\sigma^{\mathrm{A}}_{bc|yz} + (1-\mu) \,\mathrm{tr}\left(\sigma^{\mathrm{A}}_{bc|yz}\right) \,\mathbb{1}/2$

•
$$p(abc|xyz) = tr_A \left(\prod_{a|x}(\mu) \sigma_{bc|yz}^A \right) = tr_A \left(\prod_{a|x} \sigma_{bc|yz}^A(\mu) \right)$$

• Noisy measurements are linear combinations of (finite number) PVMs.

$$\Pi_{a|x}(\mu) = \mu \,\Pi_{a|x} + (1-\mu) \,\mathbb{1}/2, \quad \sigma^{\rm A}_{bc|yz}(\mu) = \mu \,\sigma^{\rm A}_{bc|yz} + (1-\mu) \,\mathrm{tr}\left(\sigma^{\rm A}_{bc|yz}\right) \,\mathbb{1}/2$$

•
$$p(abc|xyz) = tr_A \left(\prod_{a|x}(\mu) \sigma_{bc|yz}^A \right) = tr_A \left(\prod_{a|x} \sigma_{bc|yz}^A(\mu) \right)$$

• Noisy measurements are linear combinations of (finite number) PVMs.

 $\sigma^{\mathrm{A}}_{bc|yz}$ local for $\{x_1, \ldots, x_m\}$

 $\Pi_{\mathsf{a}|x}(\mu) = \mu \,\Pi_{\mathsf{a}|x} + (1-\mu) \,\mathbb{1}/2, \quad \sigma^{\mathrm{A}}_{bc|yz}(\mu) = \mu \,\sigma^{\mathrm{A}}_{bc|yz} + (1-\mu) \,\mathrm{tr}\left(\sigma^{\mathrm{A}}_{bc|yz}\right) \,\mathbb{1}/2$

•
$$p(abc|xyz) = tr_A \left(\prod_{a|x}(\mu) \sigma_{bc|yz}^A \right) = tr_A \left(\prod_{a|x} \sigma_{bc|yz}^A(\mu) \right)$$

Noisy measurements are linear combinations of (finite number) PVMs.

$$\Pi_{a|x}(\mu) = \mu \,\Pi_{a|x} + (1-\mu) \,\mathbb{1}/2, \quad \sigma^{\rm A}_{bc|yz}(\mu) = \mu \,\sigma^{\rm A}_{bc|yz} + (1-\mu) \,{\rm tr}\left(\sigma^{\rm A}_{bc|yz}\right) \,\mathbb{1}/2$$

•
$$p(abc|xyz) = tr_A \left(\prod_{a|x}(\mu) \sigma_{bc|yz}^A \right) = tr_A \left(\prod_{a|x} \sigma_{bc|yz}^A(\mu) \right)$$

Noisy measurements are linear combinations of (finite number) PVMs.

 $\Pi_{a|x}(\mu) = \mu \,\Pi_{a|x} + (1-\mu) \,\mathbb{1}/2, \quad \sigma^{\mathrm{A}}_{bc|yz}(\mu) = \mu \,\sigma^{\mathrm{A}}_{bc|yz} + (1-\mu) \,\mathrm{tr}\left(\sigma^{\mathrm{A}}_{bc|yz}\right) \,\mathbb{1}/2$