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Introduction

Heisenberg’s Uncertainty Principle (informally)

The measurement of one quantum observable introduces an
irreversible disturbance into any complementary observable property
of the system.

It is crucial to make the distinction between two forms of uncertainty
relations:

Preparation Uncertainty Relations: ∆x̂∆p̂x ≥ ~
2 , etc.

Tradeoff between the accuracy of x̂ and p̂x values with which a
state can be prepared

Measurement Uncertainty Relations: N(M, x̂)D(M, p̂x) ≥ ~
2

Tradeoff between the accuracy of x̂ measurement and associated
disturbance of p̂x for a measurement M

Different measures of noise and disturbance are possible

Entropic measures
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Definitions1

Let A,B be discrete observables and M = {Mm}m an instrument.

Noise – N(M, A)

N(M, A) is the uncertainty in the outcome of the measurement M
for a randomly prepared eigenstate |a〉: N(M, A) = H(A|M).

Disturbance – D(M, B)

D(M, B) is the uncertainty in a measurement of B following the
measurement of M on a randomly prepared state |b〉 and the possible
application of a correction E : D(M, B) = minE H(B|B′).

ρ = |a〉〈a| M
Mm(ρ)

m

A M

ρ = |b〉〈b| M

Mm(ρ)

m

B b′

B B′

1
F. Buscemi, M. J. W. Hall, M. Ozawa & M. W. Wilde. PRL 112, 050401, 2014.
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Noise-Noise & Noise-Disturbance Tradeoffs

There are two separate tradeoffs of interest:

Joint-measurement noise (noise-noise): how accurately can one
measure both A and B?

Noise-disturbance: how does the accuracy of M with respect to
A affect its disturbance with respect to B?

It is known that for all A,B,M we have both

N(M, A) +N(M, B), N(M, A) +D(M, B) ≥ log max
a,b
|〈a|b〉|2.

These relations are generally not tight

We wish to characterise precisely the sets of obtainable
noise-noise and noise-disturbance values

and thus extract tight relations

We focus on qubits, the simplest possible systems

A. A. Abbott & C. Branciard Noise and Disturbance for Qubit Measurements



Noise-Noise & Noise-Disturbance Tradeoffs

There are two separate tradeoffs of interest:

Joint-measurement noise (noise-noise): how accurately can one
measure both A and B?

Noise-disturbance: how does the accuracy of M with respect to
A affect its disturbance with respect to B?

It is known that for all A,B,M we have both

N(M, A) +N(M, B), N(M, A) +D(M, B) ≥ log max
a,b
|〈a|b〉|2.

These relations are generally not tight

We wish to characterise precisely the sets of obtainable
noise-noise and noise-disturbance values

and thus extract tight relations

We focus on qubits, the simplest possible systems

A. A. Abbott & C. Branciard Noise and Disturbance for Qubit Measurements



Noise-Noise Uncertainty Relations

For qubits, the set of obtainable
(
N(M, A), N(M, B)

)
values is

conv {(H(A|ρ), H(B|ρ)) | ρ is any qubit density matrix} .

This is simply the convex hull of the “entropic preparation
uncertainty region” for A and B, for which a tight
characterisation was recently proved2

For A = σz, B = σx we have:

g
(
H(σz|ρ)

)2
+ g
(
H(σx|ρ)

)2 ≤ 1

where g is the inverse of

h(x) = − 1+x
2

log
(
1+x
2

)
− 1−x

2
log

(
1−x
2

)
.

We thus have:

N(M, σz) +N(M, σx) ≥ 1 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

2
A. A. Abbott, P.-L. Alzieu, M. J. W. Hall & C. Branciard. Mathematics 4, p. 8, 2016.
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Noise-Noise Uncertainty Relations

Let A = a · σ, B = b · σ. Generally, we have two cases:
For |a · b| & 0.391, the entropic uncertainty region is convex:

g (N(M, A))2 + g (N(M, B))2− 2|a · b| g (N(M, A)) g (N(M, B)) ≤ 1− (a · b)2

Two-outcome measurements are optimal

For |a · b| . 0.391, the entropic uncertainty region is concave
No analytic relation, can numerically calculate optimal bound
Four-outcome measurements are needed to saturate bound

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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Noise-Disturbance Uncertainty Relations

Understanding the noise-disturbance tradeoff requires taking into
account the transformation on the state due to M

The following bound was conjectured recently3 for a · b = 0:

g (N(M, σz))
2 + g (D(M, σx))2 ≤ 1

We prove this bound to be tight under
certain conditions:

If the measurement M has only 2
outcomes

Can be extended to any a, b

If the state is transformed according
to the “square-root dynamics” and
no correction is applied

ρ
M−−−−−→

∑
m

√
Mmρ

√
Mm

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

3
Sulyok et al., PRL 115, 030401, 2015.
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Tightening the Noise-Disturbance Relation

Is this bound tight generally, or can we violate it?

We find a class of 3-outcome measurements that violate it

Non-trivial corrections needed

Numerically, appears to be tight for
arbitrary M (even with 4 or more
outcomes)

Doesn’t appear to give a nice
relation; parametrically (0 ≤ θ ≤ π

2
):

(N(M, σz), D(M, σx)) =
(

cos θ+h(sin θ)
1+cos θ

, h(cos θ)
1+cos θ

)
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Note that the set of obtainable values is non-convex, and that
three-outcome measurements are optimal (cf. noise-noise case)
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Conclusions and Future Work

Tight joint-measurement uncertainty relations for qubits

Four-outcome POVMs needed for “optimal” measurements

Can readily generalise to 3 or more observables

Conjectured tight characterisation of noise-disturbance region

Three-outcome measurements with non-trivial corrections or
measurement dynamics needed for “optimal” measurements

Several points remain to explore:

Noise-disturbance for non-orthogonal Pauli measurements

Measurements that are optimal with respect to both tradeoffs

Relation to other notions of noise/disturbance

Further information:

Forthcoming paper

Abbott et al. Mathematics 4, p. 8 (arXiv:1512.02383)
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Saturating Noise-Noise Bound

Any point
(
N(M, A), N(M, B)

)
in {(H(A|ρ), H(B|ρ))|ρ} can

be obtained by a POVM projecting onto ρ, i.e.,

{12(1 + r · σ), 1
2(1− r · σ)}

Let (u1, v1) and (u2, v2) be two points obtained by projections
onto ρ1 and ρ2

For any q ∈ [0, 1] the POVM

{ q2(1 + r1 · σ), q
2(1− r1 · σ), 1−q2 (1 + r2 · σ), 1−q

2 (1− r2 · σ)}

gives(
N(M, A), N(M, B)

)
= q(u1, v1) + (1− q)(u2, v2)
= (qu1 + (1− q)u2, qv1 + (1− q)v2)
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Improved Noise-Disturbance Bound

Consider the POVM M = {M1,M2,M3} where
Mi = αi(1 + ni · σ)

For it to be valid, need
∑
αi = 1 and

∑
αini = 0

Pictorially, the vectors αinm must form a triangle

For θ ∈ [0, π/2] take the following arrangement:

n1

n2

n3

θ

Following measurement outcome m, the system is in state with
Bloch-vector nm

Perform the correction mapping n2,n3 → x and leaving
n1 = −x unchanged

A. A. Abbott & C. Branciard Noise and Disturbance for Qubit Measurements
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