Cohomology of effect algebras

Frank Roumen Radboud University Nijmegen

QPL, June 10th, 2016

Alice and Bob select one of two binary measurements. Alice's measurements: a, a' with possible outcomes 0, 1 Bob's measurements: b, b' with possible outcomes 0, 1 Probabilities of joint outcomes:

	(0,0)	(0, 1)	(1, 0)	(1, 1)
(a, b)	1/2	0	0	1/2
(a, b')	3/8	1/8	1/8	3/8
(a', b)	3/8	1/8	1/8	3/8
(a',b')	1/8	3/8	3/8	1/8

Alice and Bob select one of two binary measurements. Alice's measurements: a, a' with possible outcomes 0, 1 Bob's measurements: b, b' with possible outcomes 0, 1 Probabilities of joint outcomes:

	(0,0)	(0, 1)	(1, 0)	(1, 1)
(a, b)	1/2	0	0	1/2
(a, b')	3/8	1/8	1/8	3/8
(a', b)	3/8	1/8	1/8	3/8
(a',b')	1/8	3/8	3/8	1/8

- This setup is quantum mechanically realizable.
- It is not classically realizable.

Goal: develop systematic techniques to study realizability.

- Bell-type scenarios can be described using topology of measurement covers. (Abramsky, Brandenburger)
- Using topological cohomology theory, one obtains a criterion for classical realizability. (Abramsky, Mansfield, Soares Barbosa)
- Bell-type scenarios can also be described using effect algebras. (Staton, Uijlen)
- Can we define cohomology of effect algebras?

- Effect algebras
- Ochomology
- O Applications to Bell-type scenarios

Key feature of quantum logic: Partiality

- A = "The particle *P* is at position x_0 ."
- B = "The particle P has momentum p_0 ."

Conjunction $A \wedge B$ is not defined in this case

Effect algebras

Definition

An effect algebra consists of:

- A set A
- A partial binary operation \oplus on A
- Constants $0, 1 \in A$
- An orthocomplement operation $(-)^{\perp}: A \rightarrow A$

such that

- $\bullet\,$ The operation \oplus is commutative and associative and has 0 as neutral element
- For every $a \in A$, a^{\perp} is the unique element for which $a \oplus a^{\perp} = 1$
- $0^{\perp} = 1$
- If $a \oplus 1$ is defined, then a = 0

Examples

- The unit interval [0,1] is an effect algebra, with addition as \oplus and $a^{\perp} = 1 a$.
- Let H be a Hilbert space. Then

$$\mathcal{E}f(H) = \{A : H \to H \mid 0 \le A \le I\}$$

forms an effect algebra with the same operations.

- Any Boolean algebra is an effect algebra. a ⊕ b is defined whenever a ∧ b = 0, and in that case a ⊕ b = a ∨ b.
- Similarly, any orthomodular poset is an effect algebra.

Effects represent measurements on a physical system. To each effect algebra we associate a state space representing the corresponding states.

$$\mathsf{St}(A) = \left\{ \sigma : A \to [0,1] \; \left| \begin{array}{c} \sigma(a \oplus b) = \sigma(a) + \sigma(b) \\ \sigma(1) = 1 \end{array} \right. \right\}$$

$$\mathsf{St}(A) = \left\{ \sigma : A \to [0,1] \; \left| \begin{array}{c} \sigma(a \oplus b) = \sigma(a) + \sigma(b) \\ \sigma(1) = 1 \end{array} \right\} \right\}$$

Example

The state space of $\mathcal{P}(n)$ consists of $a_1, \ldots, a_n \in [0, 1]$ such that $a_1 + \cdots + a_n = 1$.

$$\mathsf{St}(A) = \left\{ \sigma : A \to [0,1] \; \left| \begin{array}{c} \sigma(a \oplus b) = \sigma(a) + \sigma(b) \\ \sigma(1) = 1 \end{array} \right\} \right\}$$

Example

The state space of $\mathcal{E}f(H)$ is the set of density matrices on H, i.e. all positive $\rho: H \to H$ for which $tr(\rho) = 1$.

$$\mathsf{St}(A) = \left\{ \sigma : A \to [0,1] \; \left| \begin{array}{c} \sigma(a \oplus b) = \sigma(a) + \sigma(b) \\ \sigma(1) = 1 \end{array} \right\} \right\}$$

The state space always forms a compact convex space: if σ, τ are states and $\lambda \in [0, 1]$, then

$$\lambda \sigma + (1 - \lambda) \tau$$

is again a state.

Bell's experiment using effect algebras

Measurements and probabilities can be modeled by effect algebras.

Bell's experiment using effect algebras

Measurements and probabilities can be modeled by effect algebras.

Bell's experiment using effect algebras

Measurements and probabilities can be modeled by effect algebras.

Theorem (Staton, Uijlen)

 σ classically realizable $\iff \sigma$ factors through E_{CM}

Functors H^0, H^1, H^2, \ldots : **TopSp** \rightarrow **AbGrp**

Functors H^0, H^1, H^2, \ldots : **TopSp** \rightarrow **AbGrp**

Functors H^0, H^1, H^2, \ldots : **TopSp** \rightarrow **AbGrp**

Functors H^0, H^1, H^2, \ldots : **TopSp** \rightarrow **AbGrp**

In effect algebra theory:

Functors H^0, H^1, H^2, \ldots : EffAlg \rightarrow AbGrp

 $H^n(A)$ provides information about states and state extensions.

We modify Connes' definition of cyclic cohomology.

1 Tests on an effect algebra *A*:

$$T_n(A) = \{(a_0,\ldots,a_n) \mid a_0 \oplus \cdots \oplus a_n = 1\}$$

We modify Connes' definition of cyclic cohomology.

• Tests on an effect algebra A:

$$T_n(A) = \{(a_0,\ldots,a_n) \mid a_0 \oplus \cdots \oplus a_n = 1\}$$

Operations on tests:

$$d_i: \quad T_n(A) \to T_{n-1}(A)$$

$$d_0: (a_0, \dots, a_n) \mapsto (a_0 \oplus a_1, a_2, \dots, a_n)$$

$$d_1: (a_0, \dots, a_n) \mapsto (a_0, a_1 \oplus a_2, a_3, \dots, a_n)$$

$$\vdots$$

$$d_n: (a_0, \dots, a_n) \mapsto (a_n \oplus a_0, a_1, \dots, a_n)$$

$$T_n(A) = \{(a_0,\ldots,a_n) \mid a_0 \oplus \cdots \oplus a_n = 1\}$$

Occycles:

$$\mathcal{C}^{n}(A) = \left\{ \varphi : T_{n}(A) \to \mathbb{R} \mid \begin{array}{c} \varphi(a_{n}, a_{0}, \dots, a_{n-1}) \\ = (-1)^{n} \varphi(a_{0}, \dots, a_{n}) \end{array} \right\}$$

$$T_n(A) = \{(a_0,\ldots,a_n) \mid a_0 \oplus \cdots \oplus a_n = 1\}$$

Ocycles:

$$\mathcal{C}^{n}(A) = \left\{ \varphi : T_{n}(A) \to \mathbb{R} \mid \begin{array}{c} \varphi(a_{n}, a_{0}, \dots, a_{n-1}) \\ = (-1)^{n} \varphi(a_{0}, \dots, a_{n}) \end{array} \right\}$$

Example

For n = 1:

$$\varphi(a, b) = -\varphi(b, a)$$

$$T_n(A) = \{(a_0,\ldots,a_n) \mid a_0 \oplus \cdots \oplus a_n = 1\}$$

Ocycles:

$$\mathcal{C}^{n}(A) = \left\{ \varphi : T_{n}(A) \to \mathbb{R} \mid \begin{array}{c} \varphi(a_{n}, a_{0}, \dots, a_{n-1}) \\ = (-1)^{n} \varphi(a_{0}, \dots, a_{n}) \end{array} \right\}$$

Example

For n = 1:

$$\varphi(\mathbf{a}, \mathbf{a}^{\perp}) = -\varphi(\mathbf{a}^{\perp}, \mathbf{a})$$

$$T_n(A) = \{(a_0,\ldots,a_n) \mid a_0 \oplus \cdots \oplus a_n = 1\}$$

Occycles:

$$\mathcal{C}^{n}(A) = \left\{ \varphi : T_{n}(A) \to \mathbb{R} \mid \begin{array}{c} \varphi(a_{n}, a_{0}, \dots, a_{n-1}) \\ = (-1)^{n} \varphi(a_{0}, \dots, a_{n}) \end{array} \right\}$$

Operations on cocycles:

$$d^{i}: C^{n-1}(A) \to C^{n}(A)$$
$$d^{i}\varphi = \left(T_{n}(A) \xrightarrow{d_{i}} T_{n-1}(A) \xrightarrow{\varphi} \mathbb{R}\right)$$

$$T_n(A) = \{(a_0, \dots, a_n) \mid a_0 \oplus \dots \oplus a_n = 1\}$$
$$\mathcal{C}^n(A) = \left\{ \varphi : T_n(A) \to \mathbb{R} \mid \begin{array}{l} \varphi(a_n, a_0, \dots, a_{n-1}) \\ = (-1)^n \varphi(a_0, \dots, a_n) \end{array} \right\}$$

Ochain complex:

$$\mathcal{C}^{0}(A) \xrightarrow[-d^{1}]{-} d^{0} \xrightarrow[]{\rightarrow} \mathcal{C}^{1}(A) \xrightarrow[-d^{1}]{-} d^{0} \xrightarrow[]{\rightarrow} \mathcal{C}^{2}(A) \xrightarrow[-d^{2}]{-} d^{0} \xrightarrow[]{\rightarrow} \cdots$$

$$T_n(A) = \{(a_0, \dots, a_n) \mid a_0 \oplus \dots \oplus a_n = 1\}$$
$$\mathcal{C}^n(A) = \left\{ \varphi : T_n(A) \to \mathbb{R} \mid \begin{array}{c} \varphi(a_n, a_0, \dots, a_{n-1}) \\ = (-1)^n \varphi(a_0, \dots, a_n) \end{array} \right\}$$

Ochain complex:

$$\mathcal{C}^{0}(A) \xrightarrow{-d^{0} \rightarrow} \mathcal{C}^{1}(A) \xrightarrow{-d^{0} \rightarrow} \mathcal{C}^{2}(A) \xrightarrow{-d^{0} \rightarrow} \overset{-d^{0} \rightarrow}{-d^{1} \rightarrow} \mathcal{C}^{2}(A) \xrightarrow{-d^{1} \rightarrow} \overset{-d^{1} \rightarrow}{-d^{2} \rightarrow} \cdots$$
$$\xrightarrow{-d^{2} \rightarrow} \overset{-d^{2} \rightarrow}{-d^{3} \rightarrow} \cdots$$
$$\delta^{n} = d^{0} - d^{1} + d^{2} - \cdots \pm d^{n}$$

$$T_n(A) = \{(a_0, \dots, a_n) \mid a_0 \oplus \dots \oplus a_n = 1\}$$
$$\mathcal{C}^n(A) = \left\{ \varphi : T_n(A) \to \mathbb{R} \mid \begin{array}{l} \varphi(a_n, a_0, \dots, a_{n-1}) \\ = (-1)^n \varphi(a_0, \dots, a_n) \end{array} \right\}$$

6 Cochain complex:

$$\mathcal{C}^{0}(A) \xrightarrow{\delta^{1}} \mathcal{C}^{1}(A) \xrightarrow{\delta^{2}} \mathcal{C}^{2}(A) \xrightarrow{\delta^{3}} \cdots$$

$$\delta^n = d^0 - d^1 + d^2 - \dots \pm d^n$$

$$T_n(A) = \{(a_0, \dots, a_n) \mid a_0 \oplus \dots \oplus a_n = 1\}$$
$$\mathcal{C}^n(A) = \left\{ \varphi : T_n(A) \to \mathbb{R} \mid \begin{array}{l} \varphi(a_n, a_0, \dots, a_{n-1}) \\ = (-1)^n \varphi(a_0, \dots, a_n) \end{array} \right\}$$

O Cochain complex:

$$\mathcal{C}^{0}(A) \xrightarrow{\delta^{1}} \mathcal{C}^{1}(A) \xrightarrow{\delta^{2}} \mathcal{C}^{2}(A) \xrightarrow{\delta^{3}} \cdots$$

$$\delta^n = d^0 - d^1 + d^2 - \cdots \pm d^n$$

•
$$H^n(A) = \ker(\delta^{n+1}) / \operatorname{im}(\delta^n)$$

Examples

• Cohomology of the unit interval [0, 1]:

$$H^0([0,1]) = \mathbb{R}$$

 $H^n([0,1]) = 0$ for $n > 0$

• Cohomology of the Boolean algebra $\mathcal{P}(m)$:

$$H^n(\mathcal{P}(m)) = \mathbb{R}^{\binom{m-1}{n}}$$

The first cohomology group is related to the state space. The state space is always a compact convex space. Every convex space can be embedded in an \mathbb{R} -vector space. In fact, there is a smallest vector space in which it embeds:

The first cohomology group is related to the state space. The state space is always a compact convex space. Every convex space can be embedded in an $\mathbb{R}\text{-vector space}$. In fact, there is a smallest vector space in which it embeds:

Theorem

Let A be a finite effect algebra that has enough states. Then $H^{1}(A)$ is the smallest vector space in which St(A) can be embedded:

"A has enough states" means: if $\sigma(a) = \sigma(b)$ for all states σ , then a = b. Let $\sigma: A \to [0,1]$ be a state on an effect algebra A, for instance the Bell state. Then:

$$\sigma \text{ classically realizable} \longleftrightarrow \sigma \text{ factors through} \\ a \text{ Boolean algebra } B$$

Let $\sigma: A \to [0,1]$ be a state on an effect algebra A, for instance the Bell state. Then:

$$\sigma \text{ classically realizable} \longleftrightarrow \sigma \text{ factors through} a \text{ Boolean algebra } B$$

$$\begin{array}{ccc} \mathsf{St}(A) & \stackrel{i}{\longrightarrow} & H^1(A) & \stackrel{\partial}{\longrightarrow} & H^2(B,A) \\ \sigma & \longmapsto & \partial(i(\sigma)) \end{array}$$

Let $\sigma:A\to [0,1]$ be a state on an effect algebra A, for instance the Bell state. Then:

How to get rid of false positives?

$$\mathcal{C}^{n}(A) = \left\{ \varphi : T_{n}(A) \to \mathbb{R} \mid \begin{array}{c} \varphi(a_{n}, a_{0}, \dots, a_{n-1}) \\ = (-1)^{n} \varphi(a_{0}, \dots, a_{n}) \end{array} \right\}$$

$$\mathcal{C}^{n}_{\leq}(A) = \left\{ \left(\begin{array}{c} \varphi : T_{n}(A) \to \mathbb{R}, \\ \psi : T_{n-1}(A) \to \mathbb{R} \end{array} \right) \middle| \varphi \geq \delta \psi \right\}$$

$$\mathcal{C}^{n}_{\leq}(A) = \left\{ \left(\begin{array}{c} \varphi : T_{n}(A) \to \mathbb{R}, \\ \psi : T_{n-1}(A) \to \mathbb{R} \end{array} \right) \middle| \varphi \geq \delta \psi \right\}$$

$$\mathcal{C}^{n}_{\leq}(A) = \left\{ \left(\begin{array}{c} \varphi : T_{n}(A) \to \mathbb{R}, \\ \psi : T_{n-1}(A) \to \mathbb{R} \end{array} \right) \middle| \varphi \geq \delta \psi \right\}$$

- Effect algebras can be used to model contextuality scenarios.
- Cohomology of effect algebras is relatively easy to compute, and contains information about states and classical realizability.
- Order cohomology provides a criterion for classical realizability without false positives, but is more difficult to compute.