Infinite-dimensional Categorical Quantum Mechanics

arXiv:1605.04305

Stefano Gogioso and Fabrizio Genovese

Quantum Group, University of Oxford

QPL 2016

- Hilb has no unital *†*-Frobenius algebras¹
 - NO group algebras
 - NO Fourier sampling

- Hilb has no unital *†*-Frobenius algebras¹
 - NO group algebras
 - NO Fourier sampling
- Hilb is not †-compact
 - NO traces, cups or caps
 - NO operator-state duality

- Hilb has no unital *†*-Frobenius algebras¹
 - NO group algebras
 - NO Fourier sampling
- Hilb is not †-compact
 - NO traces, cups or caps
 - NO operator-state duality
- Hilb lacks other useful gadgets
 - NO plane-waves or delta functions
 - NO unbounded operators

- Hilb has no unital *†*-Frobenius algebras¹
 - NO group algebras
 - NO Fourier sampling
- Hilb is not †-compact
 - NO traces, cups or caps
 - NO operator-state duality
- Hilb lacks other useful gadgets
 - NO plane-waves or delta functions
 - NO unbounded operators

Can we recover all of this (using non-standard analysis)?

¹Although there is a characterisation of orthonormal bases in terms of H^* algebras.

- Hilb has no unital *†*-Frobenius algebras¹
 - NO group algebras
 - NO Fourier sampling
- Hilb is not †-compact
 - NO traces, cups or caps
 - NO operator-state duality
- Hilb lacks other useful gadgets
 - NO plane-waves or delta functions
 - NO unbounded operators

Can we recover all of this (using non-standard analysis)? YES, WE CAN.

- (a) Natural numbers are unbounded, and hence:
 - (i) infinite non-standard natural numbers exist
 - (ii) any sequence has an non-standard extension to infinite natural indices

- (a) Natural numbers are unbounded, and hence:
 - (i) infinite non-standard natural numbers exist
 - (ii) any sequence has an non-standard extension to infinite natural indices
- (b) Algebraic manipulation of series (without taking limits):
 - (i) consider a sequence of partial sums $a_n := \sum_{j=1}^n b_j$
 - (ii) extend it to obtain infinite sums $\sum_{j=1}^{\nu} b_j$, where ν is infinite natural

- (a) Natural numbers are unbounded, and hence:
 - (i) infinite non-standard natural numbers exist
 - (ii) any sequence has an non-standard extension to infinite natural indices
- (b) Algebraic manipulation of series (without taking limits):
 - (i) consider a sequence of partial sums $a_n := \sum_{j=1}^n b_j$
 - (ii) extend it to obtain infinite sums $\sum_{j=1}^{\nu} b_j$, where ν is infinite natural

(c) Some *genuinely new* finite vectors arise in non-standard Hilbert spaces:

e.g.
$$\frac{1}{\sqrt{\nu}}\sum_{n=1}^{\nu}|e_n\rangle$$
, where $\begin{cases} |e_n\rangle \text{ form an orthonormal basis}\\ \nu \text{ is an infinite natural} \end{cases}$

Objects are pairs $\mathcal{H} := (V, |e_n\rangle_{n=1}^{\kappa})$ specified by the following data:

 2 And we work with the non-standard extension of the orthonormal basis.

Objects are pairs $\mathcal{H}:=(V,|e_n\rangle_{n=1}^\kappa)$ specified by the following data:

(i) a standard separable Hilbert space V

 $^{2}\mbox{And}$ we work with the non-standard extension of the orthonormal basis.

Objects are pairs $\mathcal{H}:=(V,|e_n\rangle_{n=1}^\kappa)$ specified by the following data:

- (i) a standard separable Hilbert space V
- (ii) a standard orthonormal basis $|e_n\rangle_{n=1}^{\dim V}$ for V

²And we work with the non-standard extension of the orthonormal basis.

Objects are pairs $\mathcal{H}:=(V,|e_n\rangle_{n=1}^\kappa)$ specified by the following data:

- (i) a standard separable Hilbert space V
- (ii) a standard orthonormal basis $|e_n\rangle_{n=1}^{\dim V}$ for V
- (iii) a non-standard natural number κ (the dimension of \mathcal{H}):
 - V is finite-dim $\Rightarrow \kappa$ is the finite natural dim V
 - V is ∞ -dim $\Rightarrow \kappa$ is some infinite natural²

²And we work with the non-standard extension of the orthonormal basis.

Morphisms $F: (V, |e_n\rangle_{n=1}^{\nu}) \to (W, |e'_m\rangle_{m=1}^{\mu})$ in *Hilb are uniquely determined by $\mu \times \nu$ matrices (like in finite dimensions):

$$F = \sum_{m=1}^{\mu} \sum_{n=1}^{\nu} |e'_m\rangle F_{mn}\langle e_n|$$

Morphisms $F : (V, |e_n\rangle_{n=1}^{\nu}) \to (W, |e'_m\rangle_{m=1}^{\mu})$ in *Hilb are uniquely determined by $\mu \times \nu$ matrices (like in finite dimensions):

$$F = \sum_{m=1}^{\mu} \sum_{n=1}^{\nu} |e'_m\rangle F_{mn}\langle e_n|$$

In particular, the identity on $(V, |e_n\rangle_{n=1}^{\kappa})$ is given as follows:

$$id = \sum_{n=1}^{\kappa} |e_n\rangle\langle e_n|$$

Morphisms $F : (V, |e_n\rangle_{n=1}^{\nu}) \to (W, |e'_m\rangle_{m=1}^{\mu})$ in *Hilb are uniquely determined by $\mu \times \nu$ matrices (like in finite dimensions):

$${m F} = \sum_{m=1}^{\mu} \sum_{n=1}^{
u} |e_m'
angle {m F}_{mn}\langle e_n|$$

In particular, the identity on $(V, |e_n\rangle_{n=1}^{\kappa})$ is given as follows:

$$\mathit{id} = \sum_{n=1}^{\kappa} |e_n\rangle\langle e_n|$$

Equipped with matrix composition, tensor, adjoint and addition, *Hilb is an enriched \dagger -symmetric monoidal category, with * \mathbb{C} as its field of scalars.

Theorem (Classical structures)

The following co-multiplication and co-unit define a unital special commutative \dagger -Frobenius algebra on any object $(V, |e_n\rangle_{n=1}^{\kappa})$ of *Hilb:

$$\bigcirc := \sum_{n=1}^{\kappa} |e_n\rangle \otimes |e_n\rangle \langle e_n| \qquad \bigcirc := \sum_{n=1}^{\kappa} \langle e_n|$$

Theorem (Classical structures)

The following co-multiplication and co-unit define a unital special commutative \dagger -Frobenius algebra on any object $(V, |e_n\rangle_{n=1}^{\kappa})$ of *Hilb:

$$\bigcirc := \sum_{n=1}^{\kappa} |e_n\rangle \otimes |e_n\rangle \langle e_n| \qquad \bigcirc := \sum_{n=1}^{\kappa} \langle e_n|$$

Corollary (Compact closure)

*Hilb is \dagger -compact, with the following cup and cap on object $(V, |e_n\rangle_{n=1}^{\kappa})$:

Theorem (Classical structures)

The following co-multiplication and co-unit define a unital special commutative \dagger -Frobenius algebra on any object $(V, |e_n\rangle_{n=1}^{\kappa})$ of *Hilb:

$$\bigcirc := \sum_{n=1}^{\kappa} |e_n\rangle \otimes |e_n\rangle \langle e_n| \qquad \bigcirc := \sum_{n=1}^{\kappa} \langle e_n|$$

Corollary (Compact closure)

*Hilb is \dagger -compact, with the following cup and cap on object $(V, |e_n\rangle_{n=1}^{\kappa})$:

The \dagger -compact structure gives rise to a trace, and we have $Tr[id] = \kappa$.

Case study: wavefunctions on a 1-dim space with periodic boundary.

Case study: wavefunctions on a 1-dim space with periodic boundary. (i) standard separable Hilbert space $L^2[\mathbb{R}/(L\mathbb{Z})]$

(ii) standard orthonormal basis of momentum eigenstates:

$$\left(\frac{1}{\sqrt{L}}|\chi_{n\hbar}\rangle\right)_{n\in\mathbb{Z}}, \text{ where } \chi_{n\hbar} := x \mapsto e^{-i(2\pi/L)nx}$$

(iii) dimension $\kappa := 2\omega + 1$, where ω is some infinite natural

Case study: wavefunctions on a 1-dim space with periodic boundary. (i) standard separable Hilbert space $L^2[\mathbb{R}/(L\mathbb{Z})]$

(ii) standard orthonormal basis of momentum eigenstates:

$$\left(\frac{1}{\sqrt{L}}|\chi_{n\hbar}\rangle\right)_{n\in\mathbb{Z}}, \text{ where } \chi_{n\hbar} := x \mapsto e^{-i(2\pi/L)nx}$$

(iii) dimension $\kappa := 2\omega + 1$, where ω is some infinite natural Classical structure corresponding to the momentum observable:

$$\bigvee := \sum_{n=-\omega}^{+\omega} |\chi_{n\hbar}\rangle \otimes |\chi_{n\hbar}\rangle \langle \chi_{n\hbar}| \qquad \bigcirc := \sum_{n=-\omega}^{+\omega} \langle \chi_{n\hbar}|$$

Theorem (Position Eigenstates)

The following states act as position eigenstates, in the sense that for all standard smooth $f \in L^2[\mathbb{R}/(L\mathbb{Z})]$ we have $\langle \delta_{x_0} | f \rangle \simeq f(x_0)$:

$$|\delta_{x_0}
angle := rac{1}{\sqrt{L}}\sum_{n=-\omega}^{+\omega} e^{i(2\pi/L)nx_0}rac{1}{\sqrt{L}}|\chi_{n\hbar}
angle$$

Theorem (Position Eigenstates)

The following states act as position eigenstates, in the sense that for all standard smooth $f \in L^2[\mathbb{R}/(L\mathbb{Z})]$ we have $\langle \delta_{x_0} | f \rangle \simeq f(x_0)$:

$$|\delta_{x_0}\rangle := rac{1}{\sqrt{L}} \sum_{n=-\omega}^{+\omega} e^{i(2\pi/L)nx_0} rac{1}{\sqrt{L}} |\chi_{n\hbar}
angle$$

In the categorical framework, the relationship between momenta and space translation symmetry is witnessed by the following group algebra:

$$\left(\left\{\sqrt{L}|\delta_x\rangle \ \middle| \ x \in \mathbb{R}/(L\mathbb{Z})\right\}, \ \diamondsuit, \ \flat \right) \cong \left(\mathbb{R}/(L\mathbb{Z}), +, 0\right)$$

Opposite approaches when constructing position/momentum observables:

- $\bullet\,$ Momentum: observable \rightarrow group algebra for space translation
- Position: group algebra for boosts \rightarrow observable

Opposite approaches when constructing position/momentum observables:

- $\bullet\,$ Momentum: observable \rightarrow group algebra for space translation
- Position: group algebra for boosts \rightarrow observable

Theorem (Position Observable)

The following multiplication and unit define a unital quasi-special commutative *†*-Frobenius algebra, the group algebra for boosts:

$$\bullet := \frac{1}{\sqrt{L^3}} \sum_{n=-\omega}^{+\omega} \sum_{m=-\omega}^{+\omega} |\chi_{(n\oplus m)\hbar}\rangle \langle \chi_{n\hbar}| \otimes \langle \chi_{m\hbar}| \qquad \bullet := \frac{1}{\sqrt{L}} |\chi_0\rangle$$

This algebra is strongly complementary to the momentum observable, and copies the (re-scaled) position eigenstates $\sqrt{L}|\delta_{x_0}\rangle$.

• A more general definition of *Hilb, allowing for non-standard bases

- A more general definition of *Hilb, allowing for non-standard bases
- CPM[*Hilb] and infinite-dimensional quantum-classical formalism

- A more general definition of *Hilb, allowing for non-standard bases
- CPM[*Hilb] and infinite-dimensional quantum-classical formalism
- Wavefunctions with other compact abelian symmetry groups
 - e.g. flat homogeneous underlying spaces

- A more general definition of *Hilb, allowing for non-standard bases
- CPM[*Hilb] and infinite-dimensional quantum-classical formalism
- Wavefunctions with other compact abelian symmetry groups
 - e.g. flat homogeneous underlying spaces
- Wavefunctions with compact non-abelian symmetry groups
 - e.g. non-flat homogeneous underlying spaces

- A more general definition of *Hilb, allowing for non-standard bases
- CPM[*Hilb] and infinite-dimensional quantum-classical formalism
- Wavefunctions with other compact abelian symmetry groups
 - e.g. flat homogeneous underlying spaces
- Wavefunctions with compact non-abelian symmetry groups
 - e.g. non-flat homogeneous underlying spaces
- Wavefunctions with locally compact abelian symmetry groups
 - e.g. the traditional case of $L^2[\mathbb{R}^n]$.

- A more general definition of *Hilb, allowing for non-standard bases
- CPM[*Hilb] and infinite-dimensional quantum-classical formalism
- Wavefunctions with other compact abelian symmetry groups
 - e.g. flat homogeneous underlying spaces
- Wavefunctions with compact non-abelian symmetry groups
 - e.g. non-flat homogeneous underlying spaces
- Wavefunctions with locally compact abelian symmetry groups
 - e.g. the traditional case of $L^2[\mathbb{R}^n]$.
- Non-separable spaces and quantum field theory

Thanks for Your Attention!

Any Questions?

S Gogioso, F Genovese. Infinite-dimensional Categorical Quantum Mechanics. arXiv:1605.04305 S Abramsky, C Heunen. *H*-algebras and nonunital Frobenius algebras*. arXiv:1011.6123 A Robinson. *Non-standard analysis*. Princeton University Press, 1974