

JNIVERSITY OF

07/06/2016

John Selby

Imperial College London

The Structure of Quantum Computation from Physical Principles

John H. Selby & Ciarán M. Lee arXiv: 1510.04699, 1604.03118

- Quantum departures from classicality
 - Non-locality
 - Contextuality
 - Computational speed-up

- Non-locality
- Contextuality
- Computational speed-up

- Non-locality
- Contextuality
- Computational speed-up
- What provides the quantum speed-up?

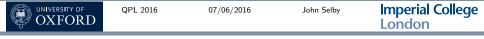
- Non-locality
- Contextuality
- Computational speed-up
- What provides the quantum speed-up?
- Why is there not more of a speed-up?

- Non-locality
- Contextuality
- Computational speed-up
- What provides the quantum speed-up?
- Why is there not more of a speed-up?
- How can we design optimal algorithms?

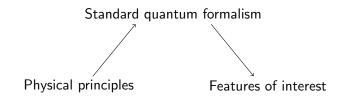
"...from physical principles."

"...from physical principles." Internal perspective:

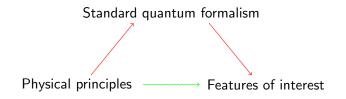
Standard quantum formalism Features of interest



"...from physical principles." Reconstruction perspective:



"...from physical principles." External perspective:

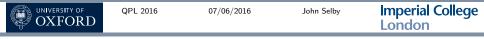


Why are quantum correlations non-local?

- Why are quantum correlations non-local?
- Why are quantum correlations not more non-local?

- Why are quantum correlations non-local?
- Why are quantum correlations not more non-local?
- Information causality and Tsirelson's bound

- Why are quantum correlations non-local?
- Why are quantum correlations not more non-local?
- Information causality and Tsirelson's bound
- Device independent key distribution



Outline

Physical principles

Components of computation

Grover's algorithm

QPL 2016	07/06/2016	John Selby	Imperial College London

Causality

Causality

Purification and purity preservation

Causality

- Purification and purity preservation
- Strong symmetry and pure and perfectly distinguishable states

Physical principle 1: Causality

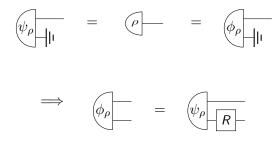
-f | = -h

Physical principle 2: Purification and purity preservation

 $\left(\rho \right) = \left(\psi_{\rho} \right)$

Physical principle 2: Purification and purity preservation

Physical principle 2: Purification and purity preservation



There exists

$$\left\{ (i) - \right\}_{i=0}^{n}$$
 and $\left\{ -(j) \right\}_{j=0}^{n}$

There exists

$$\left\{ \overbrace{i}_{i=0}^{n} \text{ and } \left\{ -\overbrace{j}_{j=0}^{n} \right\}_{j=0}^{n}$$

such that

$$(i-j) = \delta_{ij}$$

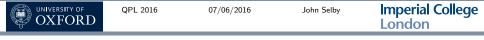
There exists
$$\left\{ (i-) \right\}_{i=0}^{n}$$
 and $\left\{ -(j) \right\}_{j=0}^{n}$ such that

$$(i-j) = \delta_{ij}$$

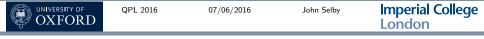
Where

$$\left\{ (i-) \right\}_{i=0}^{n}$$
 and $\left\{ (i-) \right\}_{i=0}^{n}$

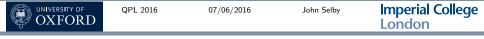
There exists
$$\left\{ \begin{array}{c} (i-) \\ i=0 \end{array}^n \text{ and } \left\{ -j \right\}_{j=0}^n \end{array}\right\}_{j=0}^n$$
such that
$$(i-) \\ i=0 \\ \text{Where} \\ \left\{ \begin{array}{c} (i-) \\ i=0 \end{array}^n \text{ and } \left\{ \begin{array}{c} (i-) \\ i=0 \end{array}^n \right\}_{i=0}^n \\ \text{are related by} \end{array}\right.$$



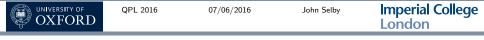
Real and fermionic quantum theory



- Real and fermionic quantum theory
- Higher order interference



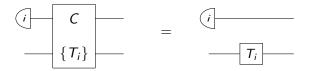
- Real and fermionic quantum theory
- Higher order interference



- Real and fermionic quantum theory
- Higher order interference

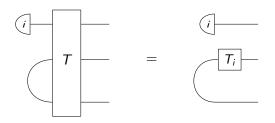
Component 1: Reversible controlled transformations

Component 1: Reversible controlled transformations

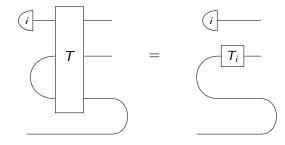


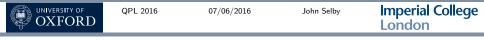
	QPL 2016	07/06/2016	John Selby	Imperial College London
/	(/		

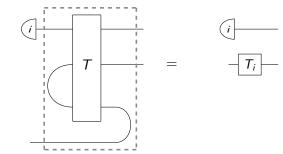
QPL 2016	07/06/2016	John Selby	Imperial College London
(



QPL 2016	07/06/2016	John Selby	Imperial College London







Component 2: Reversible phase transformations

 $-\mathcal{P}-i$ = -i

Component 3: Phase kick-back algorithm

Important quantum algorithm

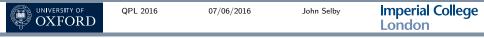
- Important quantum algorithm
- Provable advantage

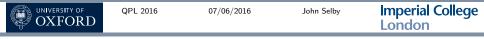
- Important quantum algorithm
- Provable advantage
- Provably optimal

- Important quantum algorithm
- Provable advantage
- Provably optimal
- Oracle problem

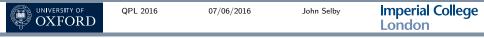
The search problem

"Given an N element unstructured list with a unknown marked item x. Then given an oracle \mathcal{O}_x how many queries of \mathcal{O}_x are needed to find x with high probability?"

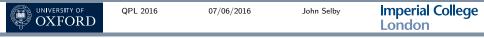




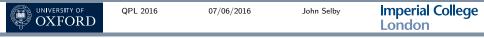
$$U_{x}\left|i
ight
angle\left|j
ight
angle=\left|i
ight
angle\left|j\oplus\delta_{ix}
ight
angle$$

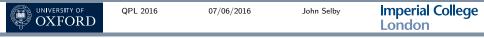


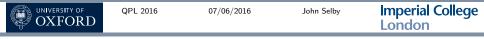
$$U_{x} \ket{i} \ket{j} = \ket{i} \ket{j \oplus \delta_{ix}}$$
 $U_{x} = -\begin{bmatrix} C \\ -\{X^{\delta_{ix}}\} \end{bmatrix}$



$$\mathcal{O}_{x} \ket{i} = (-1)^{\delta_{xi}} \ket{i}$$

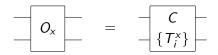




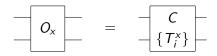


Controlled transformation

Controlled transformation

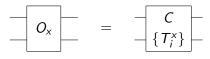


Controlled transformation

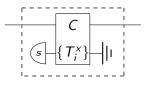


Phase transformation

Controlled transformation



Phase transformation



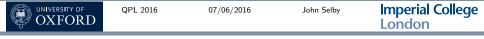
The lower bound

• Classical computers: O(N) queries

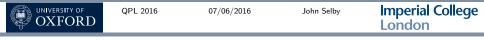
The lower bound

- Classical computers: O(N) queries
- Quantum computers: $O(\sqrt{N})$ queries

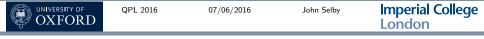
 UNIVERSITY OF OXFORD
 QPL 2016
 07/06/2016
 John Selby
 Imperial College London



Quantum interference provides the speed up?

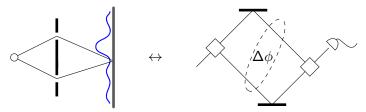


- Quantum interference provides the speed up?
- More interference gives more of a speed up, e.g. $O(N^{\frac{1}{h}})$?



- Quantum interference provides the speed up?
- More interference gives more of a speed up, e.g. $O(N^{\frac{1}{h}})$?
- Interference and phases

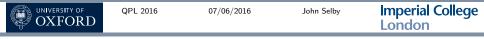
- Quantum interference provides the speed up?
- More interference gives more of a speed up, e.g. $O(N^{\frac{1}{h}})$?
- Interference and phases

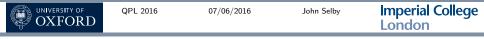


Our result

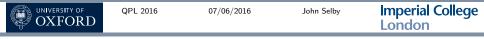
- Classical computers: O(N) queries
- Quantum computers: $O(\sqrt{N})$ queries

- Classical computers: O(N) queries
- Quantum computers: $O(\sqrt{N})$ queries
- Computers satisfying our principles: $\Omega(\sqrt{N/h})$ queries





Physical principles



- Physical principles
 - $\rightarrow\,$ elementary components of computation

- Physical principles
 - $\rightarrow\,$ elementary components of computation
 - $\rightarrow\,$ the quantum lower bound

- Physical principles
 - $\rightarrow\,$ elementary components of computation
 - $\rightarrow\,$ the quantum lower bound
- Do we need all of these principles?

- Physical principles
 - $\rightarrow\,$ elementary components of computation
 - ightarrow the quantum lower bound
- Do we need all of these principles?
- Can we reach this lower bound?

- Physical principles
 - $\rightarrow\,$ elementary components of computation
 - ightarrow the quantum lower bound
- Do we need all of these principles?
- Can we reach this lower bound?
- Practical applications?