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Non-Locality and Contextuality

Thought / believed to be:

• Distinctively non-classical features of QM.
• Providing key resource for quantum computation,

as suggested by recent examples:

• Raussendorf 2013;
• Howard, Wallman, Veith, and Emerson 2014.

We want a theory-independent, structural, high-level formalism.
Several approaches:

• Graph-theoretic: Cabello-Severini-Winter.
• Operational: Spekkens.
• “Contextuality by Default”: Dzhafarov.
• Sheaf-theoretic: Abramsky-Brandenburger.
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Outline

Three parts:
1 Illustrate that non-locality, and contextuality in general,

consist in “local consistency + global inconsistency”.
2 Formulate this idea using

topological and sheaf-theoretic terminology.
3 Demonstrate what this formulation can do.

The high-level formalism will show
• Ubiquity of contextuality:

Phenomena formally isomorphic to contextuality
can be found in various other fields.

• Many mathematical faces of contextuality:
It admits applications of
logic, algebraic topology, combinatorics, etc.
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Part I. Bell Non-Locality
• Review the concepts of Bell non-locality and no-signalling,
• Massage their definitions and Fine’s theorem, and
• Arrive at the idea that non-locality is like
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Bell Non-Locality

Bell-type setup. Input-output box for (2, 2, 2) scenario:

prep

meas meas

a0 or a1 b0 or b1

0 or 1 0 or 1

Distribution p(oA, oB | ai, bj) for each context {ai, bj}.

So a probability table:

(0, 0) (0, 1) (1, 0) (1, 1)
(a0, b0) 1/2 0 0 1/2
(a0, b1) 3/8 1/8 1/8 3/8
(a1, b0) 3/8 1/8 1/8 3/8
(a1, b1) 1/8 3/8 3/8 1/8
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oA oB

ai bj

λ

Locality (local causality)
There is a model with a “local hidden variable” λ s.th.

p(oA, oB | ai, bj) =
∑
λ

p(oA | ai, λ) p(oB | bj, λ) p(λ).

Violated by the Bell table:

(0, 0) (0, 1) (1, 0) (1, 1)
(a0, b0) 1/2 0 0 1/2
(a0, b1) 3/8 1/8 1/8 3/8
(a1, b0) 3/8 1/8 1/8 3/8
(a1, b1) 1/8 3/8 3/8 1/8
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oA oB

ai bj

No-signalling
p(oA | ai) is independent of bj:

p(oA | ai) =

p(oA | ai, b0)

= p(oA | ai, b1)
= p(oA, 0 | ai, b0)
+ p(oA, 1 | ai, b0)
= p(oA, 0 | ai, b0)
+ p(oA, 1 | ai, b0)
= p(oA, 0 | ai, b0)
+ p(oA, 1 | ai, b0)

Satisfied by the Bell table:

(0, 0) (0, 1) (1, 0) (1, 1)
(a0, b0) 1/2 0 0 1/2
(a0, b1) 3/8 1/8 1/8 3/8
(a1, b0) 3/8 1/8 1/8 3/8
(a1, b1) 1/8 3/8 3/8 1/8
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p(oA, oB | ai, bj) =
∑
λ

p(oA | ai, λ) p(oB | bj, λ) p(λ)Locality

p(oA | ai) = p(oA | ai, b0) = p(oA | ai, b1)No-signalling

Our Target

No-Signalling

Local Non-Local

Quantum

. . . beyond “2 parties, 2 inputs, 2 outputs”.
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Convex combination mixes probability tables:

α1

p1(oA, oB | ai, bj)

+

· · ·

+ αn

pn(oA, oB | ai, bj)

for α1, . . . , αn ⩾ 0 and α1 + · · · + αn = 1.

α



00 01 10 11
a0b0 · · · ·
a0b1 · x · ·
a1b0 · · · ·
a1b1 · · · ·

00 01 10 11
a0b0 · · · ·
a0b1 · x · ·
a1b0 · · · ·
a1b1 · · · ·

 + (1 − α)



00 01 10 11
a0b0 · · · ·
a0b1 · 2 · ·
a1b0 · · · ·
a1b1 · · · ·

00 01 10 11
a0b0 · · · ·
a0b1 · 2 · ·
a1b0 · · · ·
a1b1 · · · ·


=



00 01 10 11
a0b0 · · · ·
a0b1 · αx + (1 − α)2 · ·
a1b0 · · · ·
a1b1 · · · ·

00 01 10 11
a0b0 · · · ·
a0b1 · αx + (1 − α)2 · ·
a1b0 · · · ·
a1b1 · · · ·


•
p1

•
p2

•
αp1 + (1 − α)p21 − α

α
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Deterministic tables

(0, 0) (0, 1) (1, 0) (1, 1)
(a0, b0) 1 0 0 0
(a0, b1) 0 1 0 0
(a1, b0) 1 0 0 0
(a1, b1) 0 1 0 0

λ(0,0,0,1)

0, 0 0, 1

0, 0 0, 1a0 b1

0 1

This describes the assignment

(a0, a1, b0, b1) 7→ (0, 0, 0, 1).

• Instruction set + choosing and reading bit registers.
• State of a classical system.

A deterministic table cannot be a mixture of other tables.
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“Deterministic
hidden variable” models

(0, 0) (0, 1) (1, 0) (1, 1)
(a0, b0) 1/2 0 0 1/2
(a0, b1) 1/2 0 0 1/2
(a1, b0) 1/2 0 0 1/2
(a1, b1) 1/2 0 0 1/2

λ(0,0,0,0)

0, 0 0, 0

0, 0 0, 0a0 b1

0 0

= 1/2


00 01 10 11

a0b0 1 0 0 0
a0b1 1 0 0 0
a1b0 1 0 0 0
a1b1 1 0 0 0

 + 1/2


00 01 10 11

a0b0 0 0 0 1
a0b1 0 0 0 1
a1b0 0 0 0 1
a1b1 0 0 0 1


(0, 0, 0, 0) w/ prob. 1/2 + (1, 1, 1, 1) w/ prob. 1/2

marginals

(0, 0, 0, 0) (0, 0, 0, 1) · · · (1, 1, 1, 0) (1, 1, 1, 1)
(a0, a1, b0, b1) 1/2 0 · · · 0 1/2
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Tables that admit deterministic hidden variable models
form a polytope (within R16 for (2, 2, 2)),
whose edges are exactly the deterministic tables:

00 01 10 11
a0b0 1 0 0 0
a0b1 1 0 0 0
a1b0 1 0 0 0
a1b1 1 0 0 0

00 01 10 11
a0b0 0 0 0 1
a0b1 0 0 0 1
a1b0 0 0 0 1
a1b1 0 0 0 1

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

1/2 0 0 1/2
a1b0

1/2 0 0 1/2
a1b1

1/2 0 0 1/2

Admits a deterministic hidden variable model

Local =def Admits a hidden variable model

=⇒

=
⇒
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Theorem (Fine 1982 for (2, 2, 2);
Abramsky-Brandenburger 2011 beyond (2, 2, 2)).

A probability table p( · | ai, bj)i,j∈{0,1} is local iff

• it is a convex combination of deterministic tables,

i.e.,
• there is a distribution p( · | a0, a1, b0, b1) over assignments

(a0, a1, b0, b1) 7→ (h, i, j, k)

that gives each p( · | ai, bj) as a marginal.

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

1/2 0 0 1/2
a1b0

1/2 0 0 1/2
a1b1

1/2 0 0 1/2

= 1/2

00 01 10 11
a0b0 1 0 0 0
a0b1 1 0 0 0
a1b0 1 0 0 0
a1b1

(0, 0, 0, 0)
1 0 0 0

+ 1/2

00 01 10 11
a0b0 0 0 0 1
a0b1 0 0 0 1
a1b0 0 0 0 1
a1b1

(1, 1, 1, 1)
0 0 0 1

(0, 0, 0, 0) (0, 0, 0, 1) · · · (1, 1, 1, 0) (1, 1, 1, 1)
(a0, a1, b0, b1) 1/2 0 · · · 0 1/2
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Fine’s theorem:
A family p( · | ai, bj)i,j∈{0,1} is local iff
it is given by some single p( · | a0, a1, b0, b1).

Conceptual upshot. A set of empirical data may be
• no-signalling:

“locally consistent”,

able to assign probabilities consistently
to the family of contexts {ai, bj};

• non-local:

“globally inconsistent”,

not able to extend the same
to the entire set {a0, a1, b0, b1} of all measurements.

This is a sort of thing sheaf theory is good at dealing with.
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Part II. Topological Model for Contextuality
• The idea of “local consistency + global inconsistency”

is a topological one;
• Formalize it in topological, sheaf-theoretic terms;
• And in a form highly independent of the QM formalism,

applicable also to, e.g. relational database;
• It shows non-locality as a special case of contextuality;
• And naturally characterizes degrees of contextuality

in ways capturing the structure of the probability polytope.

14



A nice diagram

. . . Look, there’s a functor! It’s a presheaf!
• No-signalling: “7→” marginals, any colliding pair agrees.
• Locality: An extension over {a0, a1, b0, b1} exists.

{a0} {b0} {b1} {a1}

{a0, b0} {a0, b1} {a1, b0} {a1, b1}

{a0, a1, b0, b1}

p( · | a0) p( · | b0) p( · | b1) p( · | a1)

p( · | a0, b0) p( · | a0, b1) p( · | a1, b0) p( · | a1, b1)

p( · | a0, a1, b0, b1)

PXop

Sets

F

U

dist(2U)

∈

∈

15
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Def. A sheaf is a presheaf in which
any matching family has a unique amalgamation.

What is a sheaf like?
Over a topological space X, a sheaf is just

. . .

a presheaf F that has the form of a “bundle” π : E → X.

U VUU ∩ V

X

E

π

OX

Sets

F

U

FU

V

FV
−↾U

W

FW
−↾V

U V W

FU FV FW

U ∩ V U ∩W V ∩W

U ∪ V ∪W

FU∩V FU∩W FV∩W

FU∪V∪W
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{a0} {b0} {b1} {a1}

{a0, b0} {a0, b1} {a1, b0} {a1, b1}

Def. An (abstract) simplicial complex C (on a set X) is
a ⊆-downward closed family of finite subsets of X.

This approximates a space:
• x ∈ X are vertices,
• {x, 2} edges, {x, 2, z} triangles, {x, 2, z,4} tetrahedra, . . . .

•a0

•a1

• b0

• b1

•a0

•
b0

• a1

•
b1

“Simplices” U ∈ C are local regions, whereas X is global.
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Topological Models for Contextuality

Spaces of variables and of their values:
• measurements + outcomes
• attributes + data values
• sentences + truth values
• questions + answers

For each variable x,
a dependent type

Ax of values.

Bundle
∑
x∈X

Ax

= { (x, 3) | x ∈ X, 3 ∈ Ax }
x 2 z

Ax

A2 Az

X

Sets

A

X

∑
x∈X

Ax

π

Sets/X ≃ SetsX.
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We may get to make a query concerning
some set U ⊆ X of variables at once, but not others V ⊆ X:

• V has too many variables to deal with feasibly.
• A database schema has no table encompassing all the

attributes in V .
• In QM, e.g.

•a0

•
b0

• a1

•
b1

but not just the spatially separated, Bell setting.

Write C for the simplicial complex of contexts U ⊆ X.
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When we ask several questions, answers may obey constraints:

• laws of physics, e.g. Charles’s law
• laws of logic
• rows of a table in

a relational database

φ ¬φ ¬¬φ

tt

ff

3 t

A3
At

Distinguish good and bad ways of connecting dots in bundles
. . . just like continuous sections!

WriteA for the set of good combinations of answers;
this makes

∑
x∈X

Ax another simplicial complex.
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Def. A global section is a function 1 : X → Σ, i.e.
• an assignment of answers to all the questions,
• that satisfies all the constraints, i.e.

1[U] ∈ A for all U ∈ C.

E.g.
• Models of classical logic.

x is consistent ⇐⇒
(x 7→ tt) extends to

a global section.

• States of
a physical system?

. . . Classically yes,

. . .

but no in QM!

x 2 z

Ax

A2 Az

X

∑
x∈X

Ax

1

21



Def. A global section is a function 1 : X → Σ, i.e.
• an assignment of answers to all the questions,

• that satisfies all the constraints, i.e.
1[U] ∈ A for all U ∈ C.

E.g.
• Models of classical logic.

x is consistent ⇐⇒
(x 7→ tt) extends to

a global section.

• States of
a physical system?

. . . Classically yes,

. . .

but no in QM!

x 2 z

Ax

A2 Az

X

∑
x∈X

Ax

1

21



Def. A global section is a function 1 : X → Σ, i.e.
• an assignment of answers to all the questions,
• that satisfies all the constraints, i.e.

1[U] ∈ A for all U ∈ C.

E.g.
• Models of classical logic.

x is consistent ⇐⇒
(x 7→ tt) extends to

a global section.

• States of
a physical system?

. . . Classically yes,

. . .

but no in QM!

x 2 z

Ax

A2 Az

X

∑
x∈X

Ax

1

21



Def. A global section is a function 1 : X → Σ, i.e.
• an assignment of answers to all the questions,
• that satisfies all the constraints, i.e.

1[U] ∈ A for all U ∈ C.

E.g.
• Models of classical logic.

x is consistent ⇐⇒
(x 7→ tt) extends to

a global section.

• States of
a physical system?

. . . Classically yes,

. . .

but no in QM!

x 2 z

Ax

A2 Az

X

∑
x∈X

Ax

1

21



Def. A global section is a function 1 : X → Σ, i.e.
• an assignment of answers to all the questions,
• that satisfies all the constraints, i.e.

1[U] ∈ A for all U ∈ C.

E.g.
• Models of classical logic.

x is consistent ⇐⇒
(x 7→ tt) extends to

a global section.

• States of
a physical system?

. . . Classically yes,

. . .

but no in QM!

x 2 z

Ax

A2 Az

X

∑
x∈X

Ax

1

21



Def. A global section is a function 1 : X → Σ, i.e.
• an assignment of answers to all the questions,
• that satisfies all the constraints, i.e.

1[U] ∈ A for all U ∈ C.

E.g.
• Models of classical logic.

x is consistent ⇐⇒
(x 7→ tt) extends to

a global section.

• States of
a physical system?

. . . Classically yes,

. . .

but no in QM!

x 2 z

Ax

A2 Az

X

∑
x∈X

Ax

1

21



Def. A global section is a function 1 : X → Σ, i.e.
• an assignment of answers to all the questions,
• that satisfies all the constraints, i.e.

1[U] ∈ A for all U ∈ C.

E.g.
• Models of classical logic.

x is consistent ⇐⇒
(x 7→ tt) extends to

a global section.

• States of
a physical system?

. . . Classically yes,

. . .

but no in QM! x 2 z

Ax

A2 Az

X

∑
x∈X

Ax

1

21



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency

22



Hardy 1993:

00 01 10 11
a0b0

a0b1 0
a1b0 0
a1b1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

Logical contextuality: Not all sections extend to global ones.

Contextuality = local consistency + global inconsistency
22



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.

23



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.

23



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.

23



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.

23



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.

23



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.

23



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.

23



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.

23



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.

23



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.

23



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.

23



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.
23



Hardy:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

Specker triangle:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

•a
• b

•c

•0

•1

• 0

• 1

•

•

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.

Strongly contextual =⇒ Logically contextual.
23



Bell vs. Hardy

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

3/8 1/8 1/8 3/8
a1b0

3/8 1/8 1/8 3/8
a1b1

1/8 3/8 3/8 1/8

•a0

•
b0

• a1

•b1

1/2

1/2

•

• •

•

•

•

•

•0

1

1

0

1

0

Bell local =⇒ Logically non-contextual,
Logically contextual =⇒ Bell non-local,

⇐=/

24



Bell vs. Hardy

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

3/8 1/8 1/8 3/8
a1b0

3/8 1/8 1/8 3/8
a1b1

1/8 3/8 3/8 1/8

•a0

•
b0

• a1

•b1

1/2

1/2

•

• •

•

•

•

•

•0

1

1

0

1

0

Bell local =⇒ Logically non-contextual,
Logically contextual =⇒ Bell non-local,

⇐=/

24



Bell vs. Hardy

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

3/8 1/8 1/8 3/8
a1b0

3/8 1/8 1/8 3/8
a1b1

1/8 3/8 3/8 1/8

•a0

•
b0

• a1

•b1

1/2

1/2

•

• •

•

•

•

•

•

0

1

1

0

1

0

Bell local =⇒ Logically non-contextual,
Logically contextual =⇒ Bell non-local,

⇐=/

24



Bell vs. Hardy

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

1/2 0 0 1/2
a1b0

1/2 0 0 1/2
a1b1

1/2 0 0 1/2

•a0

•
b0

• a1

•b1

1/2

1/2

•

• •

•

•

•

•

•

0

1

1

0

1

0

Bell local =⇒ Logically non-contextual,
Logically contextual =⇒ Bell non-local,

⇐=/

24



Bell vs. Hardy

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

1/2 0 0 1/2
a1b0

1/2 0 0 1/2
a1b1

1/2 0 0 1/2

•a0

•
b0

• a1

•b1

1/2

1/2

•

• •

•

•

•

•

•

0

1

1

0

1

0

Bell local =⇒ Logically non-contextual,
Logically contextual =⇒ Bell non-local,

⇐=/

24



Bell vs. Hardy

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

1/2 0 0 1/2
a1b0

1/2 0 0 1/2
a1b1

1/2 0 0 1/2

•a0

•
b0

• a1

•b1

1/2

1/2

•

• •

•

•

•

•

•

0

1

1

0

1

0

Bell local =⇒ Logically non-contextual,
Logically contextual =⇒ Bell non-local,

⇐=/

24



Bell vs. Hardy

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

1/2 0 0 1/2
a1b0

1/2 0 0 1/2
a1b1

1/2 0 0 1/2

•a0

•
b0

• a1

•b1

1/2

1/2

•

• •

•

•

•

•

•

0

1

1

0

1

0

Bell local =⇒ Logically non-contextual,
Logically contextual =⇒ Bell non-local,

⇐=/

24



Bell vs. Hardy

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

1/2 0 0 1/2
a1b0

1/2 0 0 1/2
a1b1

1/2 0 0 1/2

•a0

•
b0

• a1

•b1

1/2

1/2

•

• •

•

•

•

•

•0

1

1

0

1

0

Bell local =⇒ Logically non-contextual,
Logically contextual =⇒ Bell non-local,

⇐=/

24



Bell vs. Hardy

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

1/2 0 0 1/2
a1b0

1/2 0 0 1/2
a1b1

1/2 0 0 1/2

•a0

•
b0

• a1

•b1

1/2

1/2

•

• •

•

•

•

•

•0

1

1

0

1

0

Bell local =⇒ Logically non-contextual,
Logically contextual =⇒ Bell non-local,

⇐=/

24



Bell vs. Hardy

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

3/8 1/8 1/8 3/8
a1b0

3/8 1/8 1/8 3/8
a1b1

1/8 3/8 3/8 1/8

•a0

•
b0

• a1

•b1

1/2

1/2

•

• •

•

•

•

•

•

0

1

1

0

1

0

Bell local =⇒ Logically non-contextual,
Logically contextual =⇒ Bell non-local,

⇐=/

24



Bell vs. Hardy

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

3/8 1/8 1/8 3/8
a1b0

3/8 1/8 1/8 3/8
a1b1

1/8 3/8 3/8 1/8

•a0

•
b0

• a1

•b1

1/2

1/2

•

• •

•

•

•

•

•0

1

1

0

1

0

Bell local =⇒ Logically non-contextual,
Logically contextual =⇒ Bell non-local,

⇐=/

24



Bell vs. Hardy

00 01 10 11
a0b0

1/2 0 0 1/2
a0b1

3/8 1/8 1/8 3/8
a1b0

3/8 1/8 1/8 3/8
a1b1

1/8 3/8 3/8 1/8

•a0

•
b0

• a1

•b1

1/2

1/2

•

• •

•

•

•

•

•0

1

1

0

1

0

Bell local =⇒ Logically non-contextual,
Logically contextual =⇒ Bell non-local,

⇐=/

24



Hieararchy of contextuality:

Bell / Probabilistic Logical Strong contextuality⊋ ⊋

Polytope of (2, 2, 2) no-signalling tables:

2

4

CHSH

2
√

2

L

Q
NS

•
PR box
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To define models formally,

two equivalent formulations:

•
•

•
•

•

• •

•

•

•

•

•

X

Σ

π

Cop

Sets

A

1 Map / bundle of
simplicial complexes

π :
∑
x∈X

Ax → X;

s ∈ A implies π[s] ∈ C.

2 Presheaf
A : Cop → Sets,

AU = { s ∈ A | π[s] = U }.

Def. A simplicial map π : A → C is called non-degenerate
if π↾s is 1-1 for every s ∈ A.

Fact. The cat of non-degenerate simplicial bundles over C
≃ the cat of “separated” presheaves over C.
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Def. A presheaf is
a sheaf if every matching family has a unique amalgamation;

separated if every matching family has at most one amalg’n.

Fact. A presheaf A on a simplicial complex C ⊆ PX is

•
•

•
•

•
• •

•

•
•

•
•

a sheaf iff AU =
∏

x∈U Ax for all U ∈ C;

separated
iff it is a subpresheaf of a sheaf,

i.e. iff AU ⊆
∏

x∈U Ax for all U ∈ C.

So, a separated presheaf on C
assigns a relation AU on (Ax)x∈U

to each U ∈ C.

Cf. Given relations (AU)U∈C, their natural join,
▷◁A = { 1 :

∏
x∈X Ax | 1↾U ∈ AU for all U ∈ C },

is the set of global sections.

27
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Def. A separated presheaf A is no-signalling
if

each restriction AU⊆V : AV → AU is onto, i.e.,
if s ∈ AU and U ⊆ V ∈ C imply

s = t↾U for some t ∈ AV .

E.g.
• Relativity-ish principle

in QM.

• In a relational database,
consistency among tables

• Coherence of the presheaf
as a semantic model

•a0

•
b0

• a1

•b1

•

• •

•

•

•

•

•

0

1

1

0

1

0
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Part III. Contextuality Arguments
After seeing a new formalism, a natural question is
“So what can we do using it?”
E.g. two families of contextuality argument:

• Logical methods (incl. equational, algebraic ones);
• Algebraic-topological method using cohomology;
• And some structural connection between the two families.

29



Logical Argument for Contextuality

Using presheaves as
semantic models, e.g.:

(0, 0) ⊨ x ⊕ 2 = 0
(0, 1) ⊨ x ⊕ 2 = 1
(1, 0) ⊨ x ⊕ 2 = 1
(1, 1) ⊨ x ⊕ 2 = 0

a0 ⊕ b0 = 0
a0 ⊕ b1 = 0
a1 ⊕ b0 = 0
a1 ⊕ b1 = 1

⊕
LHS’s =

⊕
RHS’s

•a0

•
b0

• a1

•
b1

•0

•1
• 0

• 1

• 0

• 1

•

•

The equations are inconsistent,
i.e. no global assignment consistent with the constraints,
i.e. strongly contextual!
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“All vs nothing” argument in QM
can be formuated the same way.

• GHZ state (Mermin’s 1990 original):

a0 · b0 · c0 = +1

a0 ⊕ b0 ⊕ c0 = 0

a0 · b1 · c1 = −1

a0 ⊕ b1 ⊕ c1 = 1

a1 · b0 · c1 = −1

a1 ⊕ b0 ⊕ c1 = 1

a1 · b1 · c0 = −1

a1 ⊕ b1 ⊕ c0 = 1⊕
LHS’s = 0 , 1 =

⊕
RHS’s

• Kochen-Specker-type:
18 variables, each occurs twice, so

⊕
LHS’s = 0;

9 equations, all of parity 1, so
⊕

RHS’s = 1.

• etc., etc. . . .
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Beyond QM, some NS tables suggest generalization.

• E.g., “Box 25” of Pironio-Bancal-Scarani 2011
admits no parity argument, but satisfies

a0 + 2b0 ≡ 0 mod 3 a1 + 2c0 ≡ 0 mod 3
a0 + b1 + c0 ≡ 2 mod 3 a0 + b1 + c1 ≡ 2 mod 3
a1 + b0 + c1 ≡ 2 mod 3 a1 + b1 + c1 ≡ 2 mod 3

∑
LHS’s ≡ 0 mod 3

∑
RHS’s ≡ 2 mod 3

Generalized all-vs-nothing argument uses
any commutative ring R (e.g. Zn) instead of Z2:

• k0x0 + · · · + kmxm = p for k0, . . . , km, p ∈ R.
• Equations are inconsistent if a subset of them is s.th.

• coefficients k of each variable x add up to 0,
• parities p do not.
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• Can use other vocabulary

• Can work for
logical contextuality, too

a1 ∨ b1

¬(a0 ∧ b1)
¬(a1 ∧ b0)

a0 ∧ b0

∴ ⊥

a1 ∨ b1

¬(a0 ∧ b1)
¬(a1 ∧ b0)
∴¬(a0 ∧ b0) •a0

•
b0

• a1

•
b1

•

•

••0

•1
•

1

• 0

• 1

No global assignment (consistent with
the other constrants) satisfies a0 ∧ b0,

i.e. logically contextual!
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No-signalling as semantic coherence
A formula φ can be “in context U” if free-var(φ) ⊆ U, and
a model A satisfies φ by AU ⊆ ⟦φ⟧.
• A satisfies ¬a0 ∨ ¬b0

• A satisfies a1 ⊕ b1 = 1

When A fails no-signalling,

• Does A satisfy ¬b0?

A{a1,b0} ⊆ ⟦¬b0⟧,
A{b0} ⊈ ⟦¬b0⟧,

A{a0,b0} ⊈ ⟦¬b0⟧.

For U ⊆ V ∈ C,

•a0

•
b0

• a1

•
b1

•

•

••tt

•ff
•
ff

• tt

• ff

AU ⊆ ⟦φ⟧ AV ⊆ ⟦φ⟧=⇒
A is a presheaf

⇐=
A is no-signalling
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It’s really a global-inconsistency argument. . .

•
a0 •

b0

•
a1

•
b1

•
• •

•

•
•

•
•

a0 ⊕ b0 = 0
a0 ⊕ b1 = 0
a1 ⊕ b0 = 0

∴

a1 ⊕ b1 = 1
∴ ⊥

Γ ⊢ ⊥

does NOT mean
“no model satisfies Γ”,

but “no global section satisfies Γ”.

Γ ⊢ φ does NOT mean “models satisfying Γ also satisfy φ”,
but “global sections satisfying Γ also satisfy φ”.

All-vs-nothing argument is NOT sound w.r.t. contextual models.

—Logic of contextual models? See arXiv:1605.08949.
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Cohomological Argument for Contextuality

This sort of situation can be analyzed with cohomology.

Cf. Penrose 1991, “On the Cohomology of Impossible Figures”.

36



Basic, basic ingredients of cohomology. . .

1 Family C of contexts U ∈ C.

2 List “NC1” of intersecting pairs of contexts:

U,V ∈ C s.th. U ∩ V , ∅.

•
•

•

•

(We are now treating U ∈ C like vertices,
(U,V) ∈ NC1 like edges

in a new simplicial complex. . . .)
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3 Given a model A, we want to add and subtract its sections;
so generate a free Abelian group F(U) on each AU.

Then F(U) contains

U• •

+2−1= 0

• •

U• •

•

•

•

•

F is a presheaf w/ restriction ρV
U : F(V)→ F(U),

V•U •

+1•

+1

•

V•U •

•

•

+1

0

•

•
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4 As a very first approximation to a global section,
pick ωU ∈ F(U) for

each (nonempty) U ∈ C.

Such a family

ω ∈
∏

U∈C,U,∅
F(U)

is called a “0-cochain”.

C0(C,F) :=
∏

U∈C,U,∅
F(U)

forms a group.

•
•

•
•

•

• •

•

•

•

•

•0

+2

•+3

• •

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•
+2

•

5 Also take the group of “1-cochains”,

C1(C,F) :=
∏

U,V∈C,U∩V,∅

F(U ∩ V).

39
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6 The point is to take a group homomorphism
called a “0-coboundary map”,

δ0 : C0(C,F)→ C1(C,F),

δ0(ω)(U,V) = ρ
U
U∩V(ωU) − ρV

U∩V(ωV).

ω s.th. δ0(ω) = 0 is
• called a “0-cocycle”,
• our approximation

to a global section.

Caveat:

global section

0-cocycle

⊆

⊈

The group of 0-cocycles is
written Ȟ0(C,F).

•
•

•

•

• •

•

•

•

•

ωU

+1

ωV
+1

•

+1 −1 = 0

•

•
•

•
•

•0

• 0
•
0

•
•

•

•

•
•

40
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0 Z1(C,FŪ) Z1(C,F) Z1(C,F|U) 0
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γ

•
0

•
0

•
0

•
•

•
•

41
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0 C0(C,FŪ) C0(C,F) C0(C,F|U) 0
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Cohomological test for contextuality:

Each section s ∈ AU ⊆ F(U) has the “obstruction” γ(s):

s extends to a cocycle γ(s) = 0.⇐⇒

s extends to global

⇒ ⇍

• False positives,
e.g. in Hardy model:

• Works for many cases;
e.g. PR box:
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In fact, this cohomological test works for
GHZ, Kochen-Specker, etc.

“Strongly contextual by AvN argument”
=⇒ “Strongly contextual by cohomology”:

Theorem (Abramsky et al. 2015).
LetM be a model over (X,C). Then
• M admits a generalized AvN argument in a ring R

implies
• Cohomology (using R) has γ(s) = 0 for no section s inM.

Hieararchy of strong contextuality:

AvN gen. AvN cohom. SC SC⊊ ⊊ ⊊
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Conclusion

• Contextuality—local consistency, global inconsistency—
is topological in nature, expressed nicely with bundles.

• Applying cohomology shows that contextuality is
a topological invariant of these bundles.

• Our topological models also serve as semantic models
underlying the all-vs-Nothing argument in QM or even
more general ones.

• On the other hand, our general formalism makes it clear
that contextuality is a ubiquitous phenomenon.

• We expect contextuality to form a new juncture
to which, from which, and through which
techniques and insights from various fields are transported.
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Contextuality in Logical Paradoxes

•
•

•
•

•
••

“West is true”

“South is true”

“East is true”

“North is false”
“Right is true”

“Left is false”
“This sentence is false”

•tt

•ff •

•
ff

• tt

• ff

•

•
•tt

•

•
ff

•tt

•
ff

n = 4
4 = s
s = e
e = ¬n

Read bundles π :
∑

x∈X A(x)→ X in logic terms:
x ∈ X are sentences,

tt, ff ∈ A(x) are truth values.

• AvN argument read as Boolean equations.
• Paths capture our inference deriving contradiction.
• Logical paradoxes have the same topology as

“paradoxes” of (strong) contextuality.
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