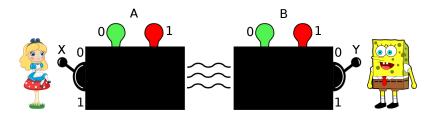
Rigidity of quantum steering and 1sDI verifiable quantum computation [arXiv:1512.07401]

Alexandru Gheorghiu, Petros Wallden, Elham Kashefi

8 June 2016

QPL 2016, Glasgow

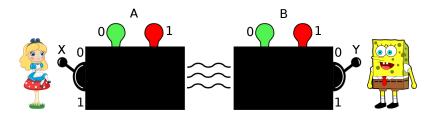
Nonlocal correlations



$$p(a, b|x, y) \neq \sum_{\lambda} p(a|x, \lambda)p(b|y, \lambda)p(\lambda)$$

 $S = |\langle A_0B_0
angle + \langle A_0B_1
angle + \langle A_1B_0
angle - \langle A_1B_1
angle | \geq 2$

Nonlocal correlations



$$p(a, b|x, y)
eq \sum_{\lambda} p(a|x, \lambda) p(b|y, \lambda) p(\lambda)$$

 $\delta = |\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle| \geq 2$

Tsirelson's theorem (1980)

 $S = 2\sqrt{2}$ is the maximum that can be achieved by QM. E.g. by having Alice and Bob share $|\phi_+\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$ and measure:

$$A_0 = X$$
, $A_1 = Z$, $B_0 = (X + Z)/\sqrt{2}$, $B_1 = (X - Z)/\sqrt{2}$

Reichardt Unger Vazirani [RUV] (2012)

Robust converse of Tsirelson's theorem is also true.

Reichardt Unger Vazirani [RUV] (2012)

Robust converse of Tsirelson's theorem is also true.

$$S = |\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle | \ge 2\sqrt{2} - \epsilon$$

 ρ_{AB} is the shared state of Alice and Bob

Reichardt Unger Vazirani [RUV] (2012)

Robust converse of Tsirelson's theorem is also true.

$$S = |\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle| \ge 2\sqrt{2} - \epsilon$$

 ρ_{AB} is the shared state of Alice and Bob

There exists a local isometry $\Phi = \Phi_A \otimes \Phi_B$

Reichardt Unger Vazirani [RUV] (2012)

Robust converse of Tsirelson's theorem is also true.

$$S = |\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle| \ge 2\sqrt{2} - \epsilon$$

 ρ_{AB} is the shared state of Alice and Bob There exists a local isometry $\Phi = \Phi_A \otimes \Phi_B$

$$\Phi(\rho_{AB}) \approx |\phi_{+}\rangle \otimes |\phi_{+}\rangle \otimes ... \otimes |\phi_{+}\rangle \otimes |junk\rangle$$

Reichardt Unger Vazirani [RUV] (2012)

Robust converse of Tsirelson's theorem is also true.

$$S = |\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle| \ge 2\sqrt{2} - \epsilon$$

 ρ_{AB} is the shared state of Alice and Bob There exists a local isometry $\Phi = \Phi_A \otimes \Phi_B$

$$\Phi(\rho_{AB}) \approx |\phi_{+}\rangle \otimes |\phi_{+}\rangle \otimes ... \otimes |\phi_{+}\rangle \otimes |junk\rangle$$

 $\Phi(A_0) \approx X$ $\Phi(A_1) \approx Z$ $\Phi(B_0) \approx (X+Z)/\sqrt{2}$ $\Phi(B_1) \approx (X-Z)/\sqrt{2}$

Reichardt Unger Vazirani [RUV] (2012)

Robust converse of Tsirelson's theorem is also true.

$$S = |\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle| \ge 2\sqrt{2} - \epsilon$$

 ρ_{AB} is the shared state of Alice and Bob There exists a local isometry $\Phi = \Phi_A \otimes \Phi_B$

$$\Phi(\rho_{AB}) \approx |\phi_{+}\rangle \otimes |\phi_{+}\rangle \otimes ... \otimes |\phi_{+}\rangle \otimes |junk\rangle$$

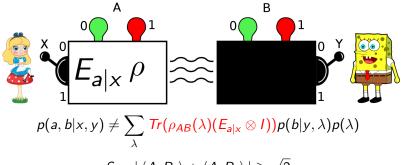
 $\Phi(A_0)\approx X \qquad \Phi(A_1)\approx Z$

$$\Phi(B_0) \approx (X+Z)/\sqrt{2}$$
 $\Phi(B_1) \approx (X-Z)/\sqrt{2}$

Saturating nonlocal correlations determines state and strategy!

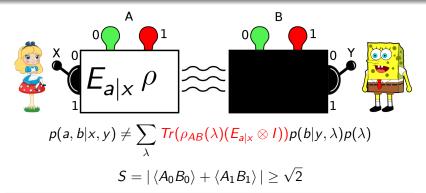
Alexandru Gheorghiu, Petros Wallden, Elham Kashefi

Steering correlations



 $S = |\langle A_0 B_0 \rangle + \langle A_1 B_1 \rangle| \ge \sqrt{2}$

Steering correlations

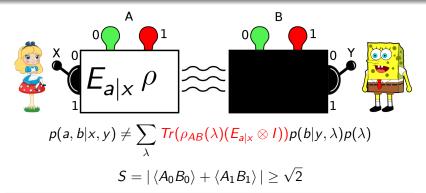


Theorem

S=2 is the maximum that can be achieved. E.g. by having Alice and Bob share $|\phi_+\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$ and measure:

$$A_0 = X$$
, $A_1 = Z$, $B_0 = X$, $B_1 = Z$

Steering correlations



Theorem

S = 2 is the maximum that can be achieved. E.g. by having Alice and Bob share $|\phi_+\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$ and measure:

$$A_0 = X$$
, $A_1 = Z$, $B_0 = X$, $B_1 = Z$

Our main result: Converse is also true!

• Quantum mechanics is true/correct (no supra-quantum correlations)

Assumptions

- Quantum mechanics is true/correct (no supra-quantum correlations)
- Alice is trusted to measure anticommuting A₀ and A₁ (e.g. A₀ = X, A₁ = Z)

Assumptions

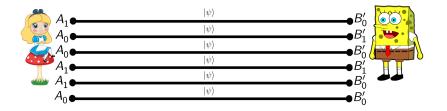
- Quantum mechanics is true/correct (no supra-quantum correlations)
- Alice is trusted to measure anticommuting A₀ and A₁ (e.g. A₀ = X, A₁ = Z)
- Bob is untrusted. Measures B_0' and B_1'

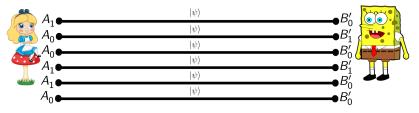
Assumptions

- Quantum mechanics is true/correct (no supra-quantum correlations)
- Alice is trusted to measure anticommuting A₀ and A₁ (e.g. A₀ = X, A₁ = Z)
- Bob is untrusted. Measures B'_0 and B'_1
- \bullet Observables have 2 outcomes ± 1 and are also unitary

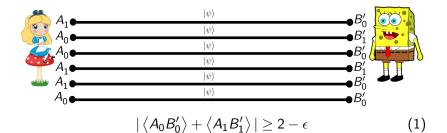
- Quantum mechanics is true/correct (no supra-quantum correlations)
- Alice is trusted to measure anticommuting A₀ and A₁ (e.g. A₀ = X, A₁ = Z)
- Bob is untrusted. Measures B'_0 and B'_1
- \bullet Observables have 2 outcomes ± 1 and are also unitary
- Shared state ρ_{AB} , prepared by Bob (untrusted)

- Quantum mechanics is true/correct (no supra-quantum correlations)
- Alice is trusted to measure anticommuting A₀ and A₁ (e.g. A₀ = X, A₁ = Z)
- Bob is untrusted. Measures B'_0 and B'_1
- \bullet Observables have 2 outcomes ± 1 and are also unitary
- Shared state ρ_{AB} , prepared by Bob (untrusted)
- In each round Alice and Bob measure the same state $|\psi
 angle$ (i.i.d.)



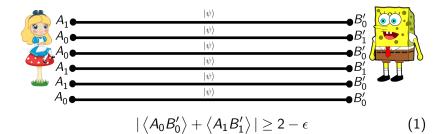


 $|\langle A_0 B_0' \rangle + \langle A_1 B_1' \rangle| \ge 2 - \epsilon \tag{1}$



l.i.d. self-testing theorem

If inequality 1 is satisfied, then there exists a local isometry $\Phi = I \otimes \Phi_B$ such that, for all $M_A \in \{I, A_0, A_1\}$, $N'_B \in \{I, B'_0, B'_1\}$: $||\Phi(M_A N'_B |\psi\rangle) - |junk\rangle M_A N_B |\phi_+\rangle || \le O(\sqrt{\epsilon})$



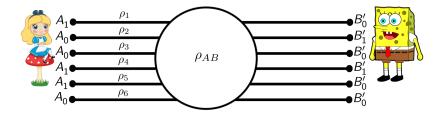
l.i.d. self-testing theorem

If inequality 1 is satisfied, then there exists a local isometry $\Phi = I \otimes \Phi_B$ such that, for all $M_A \in \{I, A_0, A_1\}$, $N'_B \in \{I, B'_0, B'_1\}$:

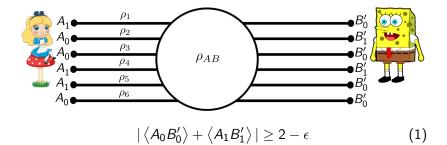
 $||\Phi(M_A N'_B |\psi\rangle) - |junk\rangle M_A N_B |\phi_+\rangle|| \le O(\sqrt{\epsilon})$

Cannot do better than $O(\sqrt{\epsilon})!$

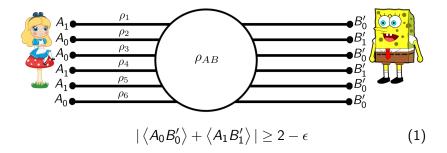
Removing i.i.d.



Removing i.i.d.



Removing i.i.d.



Non-i.i.d. self-testing theorem

If inequality 1 is satisfied, then there exists a local isometry $\Phi = I \otimes \Phi_B$ such that, for $\mathcal{E}_{AB'}$ having the role of M_A , N'_B from before, we have for a randomly chosen ρ_i :

$$||\Phi(\mathcal{E}_{AB'}(
ho_i)) - \mathcal{E}_{AB}(|\phi_+
angle \langle \phi_+|)|| \leq O(\epsilon^{1/6})$$

Suppose we do K rounds of measurement to certify one Bell state.

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Not implicitly, because of overlap/adaptiveness!

• $S_{real} = (\rho_{AB}, \mathcal{E}_A, \mathcal{E}'_B)$ denotes the <u>real</u> strategy

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Not implicitly, because of overlap/adaptiveness!

• $S_{real} = (\rho_{AB}, \mathcal{E}_A, \mathcal{E}'_B)$ denotes the <u>real</u> strategy

• $S_{ideal} = (\ket{\phi_+} \otimes ... \otimes \ket{\phi_+}, \mathcal{E}_A, \mathcal{E}_B)$ denotes the <u>ideal</u> strategy

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

- $S_{real} = (\rho_{AB}, \mathcal{E}_A, \mathcal{E}'_B)$ denotes the <u>real</u> strategy
- $S_{ideal} = (\ket{\phi_+} \otimes ... \otimes \ket{\phi_+}, \mathcal{E}_A, \mathcal{E}_B)$ denotes the <u>ideal</u> strategy
- $S_{guess} = (\rho_{AB}, \mathcal{E}_A, \mathcal{G}_B)$ denotes a guessing strategy

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

- $S_{real} = (\rho_{AB}, \mathcal{E}_A, \mathcal{E}'_B)$ denotes the <u>real</u> strategy
- $S_{ideal} = (\ket{\phi_+} \otimes ... \otimes \ket{\phi_+}, \mathcal{E}_A, \mathcal{E}_B)$ denotes the <u>ideal</u> strategy
- $S_{guess} = (\rho_{AB}, \mathcal{E}_A, \mathcal{G}_B)$ denotes a guessing strategy
- $S'_{guess} = (|\phi_+\rangle \otimes ... \otimes |\phi_+\rangle, \mathcal{E}_A, \mathcal{G}_B)$ second <u>guessing</u> strategy

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

- $S_{real} = (\rho_{AB}, \mathcal{E}_A, \mathcal{E}'_B)$ denotes the <u>real</u> strategy
- $\mathcal{S}_{ideal} = (\ket{\phi_+} \otimes ... \otimes \ket{\phi_+}, \mathcal{E}_A, \mathcal{E}_B)$ denotes the <u>ideal</u> strategy
- $S_{guess} = (\rho_{AB}, \mathcal{E}_A, \mathcal{G}_B)$ denotes a guessing strategy
- $S'_{guess} = (|\phi_+\rangle \otimes ... \otimes |\phi_+\rangle, \mathcal{E}_A, \mathcal{G}_B)$ second <u>guessing</u> strategy
- S is <u> ϵ -structured</u> \leftrightarrow observed correlation is greater than 2ϵ

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

- $S_{real} = (\rho_{AB}, \mathcal{E}_A, \mathcal{E}'_B)$ denotes the <u>real</u> strategy
- $\mathcal{S}_{ideal} = (\ket{\phi_+} \otimes ... \otimes \ket{\phi_+}, \mathcal{E}_A, \mathcal{E}_B)$ denotes the <u>ideal</u> strategy
- $S_{guess} = (\rho_{AB}, \mathcal{E}_A, \mathcal{G}_B)$ denotes a guessing strategy
- $S'_{guess} = (|\phi_+\rangle \otimes ... \otimes |\phi_+\rangle, \mathcal{E}_A, \mathcal{G}_B)$ second <u>guessing</u> strategy
- S is $\underline{\epsilon}$ -structured \leftrightarrow observed correlation is greater than 2 ϵ

•
$$S_1 \approx S_2 \leftrightarrow \rho_1 \approx \rho_2$$
, $\mathcal{E}_{A,1} \approx \mathcal{E}_{A,2}$, $\mathcal{E}_{B,1} \approx \mathcal{E}_{B,2}$

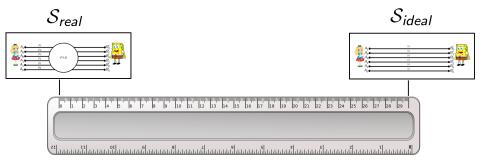
Suppose we do K rounds of measurement to certify one Bell state.

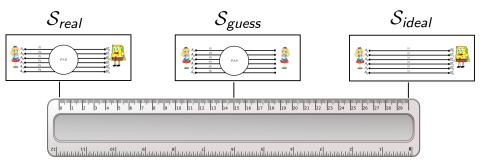
Do NK rounds of measurement certify N states?

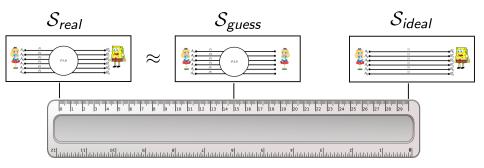
- $S_{real} = (\rho_{AB}, \mathcal{E}_A, \mathcal{E}'_B)$ denotes the <u>real</u> strategy
- $\mathcal{S}_{ideal} = (\ket{\phi_+} \otimes ... \otimes \ket{\phi_+}, \mathcal{E}_A, \mathcal{E}_B)$ denotes the <u>ideal</u> strategy
- $S_{guess} = (\rho_{AB}, \mathcal{E}_A, \mathcal{G}_B)$ denotes a guessing strategy
- $S'_{guess} = (\ket{\phi_+} \otimes ... \otimes \ket{\phi_+}, \mathcal{E}_A, \mathcal{G}_B)$ second <u>guessing</u> strategy
- \mathcal{S} is ϵ -structured \leftrightarrow observed correlation is greater than $2-\epsilon$

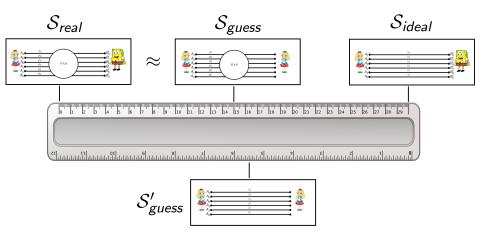
•
$$S_1 \approx S_2 \leftrightarrow \rho_1 \approx \rho_2$$
, $\mathcal{E}_{A,1} \approx \mathcal{E}_{A,2}$, $\mathcal{E}_{B,1} \approx \mathcal{E}_{B,2}$

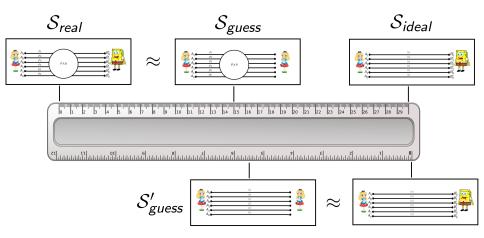
Objective:
$$S_{real} \approx S_{ideal}$$

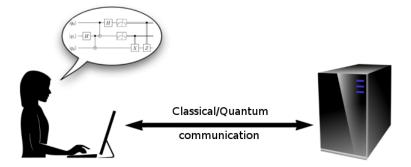


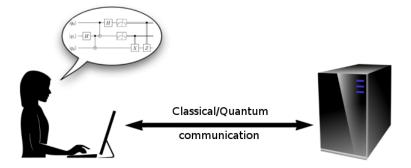




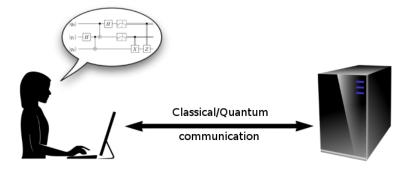




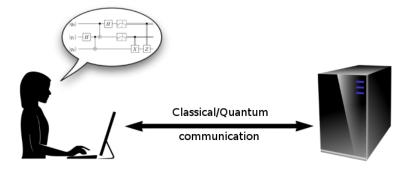




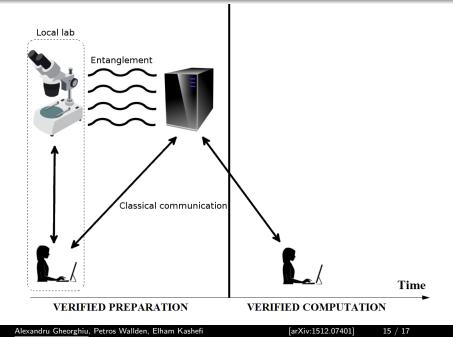
• Computationally limited, trusted verifier



- Computationally limited, trusted verifier
- Powerful, <u>untrusted</u> quantum server(s)



- Computationally limited, trusted verifier
- Powerful, <u>untrusted</u> quantum server(s)
- Alice = verifier, Bob = server



- $\bullet\,$ Saturating correlations $\leftrightarrow\,$ ideal states and measurements
- \bullet I.i.d. self-testing \rightarrow Non-i.i.d. self-testing \rightarrow Rigidity
- Lower bounded $\Omega(\sqrt{\epsilon})$ closeness
- Tight bounds for non-i.i.d. and rigidity?
- Most natural application is quantum verification

Presentation based primarily on this work: [Gheorghiu, Kashefi, Wallden, '15] - arXiv:1512.07401

Related works on **self-testing** and **rigidity**: [Hoban, Šupić '16] - arXiv:1601.01552 [Bancal, Navascués, Scarani, Vértesi, Yang '13] - arXiv:1307.7053 [Reichardt, Unger, Vazirani '12] - arXiv:1209.0448 [McKague, Yang, Scarani '12] - arXiv:1203.2976

Related works on **verification**: [Gheorghiu, Kashefi, Wallden '15] - arXiv:1502.02571 [Kashefi, Wallden '15] - arXiv:1510.07408 [McKague '15] - arXiv:1309.5675

Thank you!