Operational Theories of Physics as Categories

Sean Tull

University of Oxford

sean.tull@cs.ox.ac.uk

Quantum Physics and Logic 2016

The Plan

Find connections between:

- General probabilistic theories
- Categorical approaches, particularly effectus theory.

The Plan

Find connections between:

- General probabilistic theories
- Categorical approaches, particularly effectus theory.

Formalise operational theories of physics, and study them categorically.

Composable systems and events	Symmetric monoidal category
Tests, classical data	Coproducts
Causality	Discard maps / Terminal object

The Plan

Find connections between:

- General probabilistic theories
- Categorical approaches, particularly effectus theory.

Formalise operational theories of physics, and study them categorically.

Composable systems and events	Symmetric monoidal category
Tests, classical data	Coproducts
Causality	Discard maps / Terminal object

Establish correspondence between operational categories and theories.

An operational theory with control (OTC) Θ :

An operational theory with control (OTC) Θ :

► Systems A, B, C, ...

An operational theory with control (OTC) Θ :

- Systems A, B, C, \ldots
- Events $f: A \rightarrow B$,

An operational theory with control (OTC) Θ :

- ▶ Systems *A*, *B*, *C*, ...
- ► Events f: A → B, composition A ⊗ B, g ∘ f, f ⊗ g, trivial system I. i.e. forming a symmetric monoidal category:

An operational theory with control (OTC) Θ :

- ▶ Systems *A*, *B*, *C*, ...
- ► Events f: A → B, composition A ⊗ B, g ∘ f, f ⊗ g, trivial system I. i.e. forming a symmetric monoidal category:

• Tests ${f_x : A \to B_x}_{x \in X}$, X = finite outcome set

An operational theory with control (OTC) Θ :

- ▶ Systems *A*, *B*, *C*, . . .
- ► Events f: A → B, composition A ⊗ B, g ∘ f, f ⊗ g, trivial system I. i.e. forming a symmetric monoidal category:

► Tests {f_x: A → B_x}_{x∈X}, X = finite outcome set Call subsets {f_y}_{y∈Y} ⊆ {f_x}_{x∈X} partial tests.

An operational theory with control (OTC) Θ :

- ▶ Systems *A*, *B*, *C*, . . .
- ► Events f: A → B, composition A ⊗ B, g ∘ f, f ⊗ g, trivial system I. i.e. forming a symmetric monoidal category:

- ► Tests {f_x: A → B_x}_{x∈X}, X = finite outcome set Call subsets {f_y}_{y∈Y} ⊆ {f_x}_{x∈X} partial tests.
- ► Coarse-graining: Partial 'addition' $f \odot g : A \to B$ on events. $\{f_x : A \to B\}_{x \in X} \cup \{g_y\}_{y \in Y} \implies \{\bigcup_{x \in X} f_x\} \cup \{g_y\}_{y \in Y}$

Impossible events: zero arrows $0_{A,B}$: $A \to B$ with $f \otimes 0 = f$.

Impossible events: zero arrows $0_{A,B}$: $A \to B$ with $f \otimes 0 = f$.

Control: when $\{f_x \colon A \to B_x\}_{x \in X}$ and $\{g(x, y) \colon B_x \to C_{x,y}\}_{y \in Y_x}$ for $x \in X$ are tests, so is

$$\left\{ A \xrightarrow{f_x} B_x \xrightarrow{g(x,y)} C_{x,y} \right\}_{x \in X, y \in Y_x}$$

Impossible events: zero arrows $0_{A,B}$: $A \to B$ with $f \otimes 0 = f$.

Control: when $\{f_x \colon A \to B_x\}_{x \in X}$ and $\{g(x, y) \colon B_x \to C_{x,y}\}_{y \in Y_x}$ for $x \in X$ are tests, so is

$$\left\{ A \xrightarrow{f_x} B_x \xrightarrow{g(x,y)} C_{x,y} \right\}_{x \in X, y \in Y_x}$$

Causality: unique *deterministic* effect $\doteqdot_A : A \to I$, i.e. $\{\doteqdot_A\}$ a test.

Impossible events: zero arrows $0_{A,B}$: $A \to B$ with $f \otimes 0 = f$.

Control: when $\{f_x \colon A \to B_x\}_{x \in X}$ and $\{g(x, y) \colon B_x \to C_{x,y}\}_{y \in Y_x}$ for $x \in X$ are tests, so is

$$\left\{ A \xrightarrow{f_x} B_x \xrightarrow{g(x,y)} C_{x,y} \right\}_{x \in X, y \in Y_x}$$

Causality: unique *deterministic* effect $\ddagger_A : A \to I$, i.e. $\{\ddagger_A\}$ a test. Every event f has unique effect e with $\{f, e\}$ a test.

Impossible events: zero arrows $0_{A,B}$: $A \to B$ with $f \otimes 0 = f$.

Control: when $\{f_x \colon A \to B_x\}_{x \in X}$ and $\{g(x, y) \colon B_x \to C_{x,y}\}_{y \in Y_x}$ for $x \in X$ are tests, so is

$$\left\{ A \xrightarrow{f_x} B_x \xrightarrow{g(x,y)} C_{x,y} \right\}_{x \in X, y \in Y_x}$$

Causality: unique *deterministic* effect $\ddagger_A : A \to I$, i.e. $\{\ddagger_A\}$ a test. Every event f has unique effect e with $\{f, e\}$ a test.

Don't assume scalars $p: I \rightarrow I$ are probabilitites $p \in [0, 1]$.

Impossible events: zero arrows $0_{A,B}$: $A \to B$ with $f \otimes 0 = f$.

Control: when $\{f_x \colon A \to B_x\}_{x \in X}$ and $\{g(x, y) \colon B_x \to C_{x,y}\}_{y \in Y_x}$ for $x \in X$ are tests, so is

$$\left\{ A \xrightarrow{f_x} B_x \xrightarrow{g(x,y)} C_{x,y} \right\}_{x \in X, y \in Y_x}$$

Causality: unique *deterministic* effect $\doteqdot_A : A \to I$, i.e. $\{\doteqdot_A\}$ a test. Every event f has unique effect e with $\{f, e\}$ a test.

Don't assume scalars $p: I \rightarrow I$ are probabilitites $p \in [0, 1]$.

Examples

Many! Classical: deterministic or probabilistic. Quantum: Hilbert spaces or C*-algebras and c.p. sub-unital maps.

Encode outcome sets X 'in the systems'.

Encode outcome sets X 'in the systems'.

 Θ has direct sums when $\forall \{B_x\}_{x \in X} \exists \text{ test } \{\triangleright_x \colon B \to B_x\}_{x \in X} \text{ s.t:}$

Encode outcome sets X 'in the systems'.

 Θ has direct sums when $\forall \{B_x\}_{x \in X} \exists \text{ test } \{\triangleright_x \colon B \to B_x\}_{x \in X} \text{ s.t:}$

partial tests $\{f_x \colon A \to B_x\}_{x \in X}$ $f \colon A \to B$ with $\triangleright_x \circ f = f_x$

Encode outcome sets X 'in the systems'.

 Θ has direct sums when $\forall \{B_x\}_{x \in X} \exists \text{ test } \{\triangleright_x \colon B \to B_x\}_{x \in X} \text{ s.t:}$

$$\frac{\text{partial tests } \{f_x \colon A \to B_x\}_{x \in X}}{f \colon A \to B \text{ with } \triangleright_x \circ f = f_x} \qquad B = "\bigoplus_{x \in X} B_x"$$

Encode outcome sets X 'in the systems'.

 Θ has direct sums when $\forall \{B_x\}_{x \in X} \exists \text{ test } \{\triangleright_x \colon B \to B_x\}_{x \in X} \text{ s.t:}$

$$\frac{\text{partial tests } \{f_x \colon A \to B_x\}_{x \in X}}{f \colon A \to B \text{ with } \triangleright_x \circ f = f_x} \qquad B = "\bigoplus_{x \in X} B_x"$$

Direct sum completion Θ^+ has **Event** $_{\Theta^+} =$ **ParTest** (Θ) :

Encode outcome sets X 'in the systems'.

 Θ has direct sums when $\forall \{B_x\}_{x \in X} \exists \text{ test } \{\triangleright_x \colon B \to B_x\}_{x \in X} \text{ s.t:}$

$$\frac{\text{partial tests } \{f_x \colon A \to B_x\}_{x \in X}}{f \colon A \to B \text{ with } \triangleright_x \circ f = f_x} \qquad B = "\bigoplus_{x \in X} B_x"$$

Direct sum completion Θ^+ has $Event_{\Theta^+} = ParTest(\Theta)$:

• systems
$$(A_x)_{x \in X}$$

▶ events $M: (A_x)_{x \in X} \to (B_y)_{y \in Y}$ are X-indexed partial tests { $M(x, y): A_x \to B_y$ }_{y \in Y}

Encode outcome sets X 'in the systems'.

 Θ has direct sums when $\forall \{B_x\}_{x \in X} \exists \text{ test } \{\triangleright_x \colon B \to B_x\}_{x \in X} \text{ s.t:}$

$$\frac{\text{partial tests } \{f_x \colon A \to B_x\}_{x \in X}}{f \colon A \to B \text{ with } \triangleright_x \circ f = f_x} \qquad B = "\bigoplus_{x \in X} B_x"$$

Direct sum completion Θ^+ has **Event** $_{\Theta^+} =$ **ParTest** (Θ) :

- systems $(A_x)_{x \in X}$
- ▶ events $M: (A_x)_{x \in X} \to (B_y)_{y \in Y}$ are X-indexed partial tests { $M(x, y): A_x \to B_y$ }_{y \in Y}

Categorically, direct sums are finite coproducts (+, 0):

$$B_i \xrightarrow{\kappa_i} B_1 + \ldots + B_n = \bigoplus_{k=1}^n B_k \xrightarrow{\rhd_j} B_j , \quad \bowtie_j \circ \kappa_i = \begin{cases} \text{id} & i=j \\ 0 & i \neq j \end{cases}$$

 $\text{Partial tests: } \{f_i \colon A \to B_i\}_{i=1}^n \iff f \colon A \to B_1 + \ldots + B_n \text{ s.t. } \triangleright_i \circ f = f_i.$

Partial tests: $\{f_i \colon A \to B_i\}_{i=1}^n \iff f \colon A \to B_1 + \ldots + B_n \text{ s.t. } \triangleright_i \circ f = f_i$. Tests: when f is causal/total, meaning $\Rightarrow \circ f = \Rightarrow$.

Partial tests: $\{f_i \colon A \to B_i\}_{i=1}^n \iff f \colon A \to B_1 + \ldots + B_n \text{ s.t. } \triangleright_i \circ f = f_i.$ Tests: when f is causal/total, meaning $\triangleq \circ f = \triangleq$. Coarse-graining: $\bigotimes_{i=1}^n f_i = A \xrightarrow{f} B + \ldots + B \xrightarrow{\nabla} B$

Partial tests: $\{f_i \colon A \to B_i\}_{i=1}^n \iff f \colon A \to B_1 + \ldots + B_n \text{ s.t. } \triangleright_i \circ f = f_i.$ Tests: when f is causal/total, meaning $\triangleq \circ f = \triangleq$. Coarse-graining: $\bigotimes_{i=1}^n f_i = A \xrightarrow{f} B + \ldots + B \xrightarrow{\nabla} B$

Theorem

 $OTC \Theta$ with direct sums \iff operational category in partial form (\mathbf{C}, \neq) :

Partial tests: $\{f_i \colon A \to B_i\}_{i=1}^n \iff f \colon A \to B_1 + \ldots + B_n \text{ s.t. } \triangleright_i \circ f = f_i.$ Tests: when f is causal/total, meaning $\triangleq \circ f = \triangleq$. Coarse-graining: $\bigotimes_{i=1}^n f_i = A \xrightarrow{f} B + \ldots + B \xrightarrow{\nabla} B$

Theorem

 $OTC \Theta$ with direct sums \iff operational category in partial form (\mathbf{C}, \neq) :

SMC (\mathbf{C}, \otimes) with finite coproducts, zero object and family $\doteqdot_A : A \to I$ s.t:

Partial tests: $\{f_i \colon A \to B_i\}_{i=1}^n \iff f \colon A \to B_1 + \ldots + B_n \text{ s.t. } \triangleright_i \circ f = f_i.$ Tests: when f is causal/total, meaning $\triangleq \circ f = \triangleq$. Coarse-graining: $\bigotimes_{i=1}^n f_i = A \xrightarrow{f} B + \ldots + B \xrightarrow{\nabla} B$

Theorem

 $OTC \Theta$ with direct sums \iff operational category in partial form (\mathbf{C}, \neq) :

SMC (\mathbf{C}, \otimes) with finite coproducts, zero object and family $\stackrel{\bullet}{=}_A : A \to I$ s.t: $\triangleright_i : A_1 + ... + A_n \to A_i$ jointly monic

Partial tests: $\{f_i \colon A \to B_i\}_{i=1}^n \iff f \colon A \to B_1 + \ldots + B_n \text{ s.t. } \triangleright_i \circ f = f_i.$ Tests: when f is causal/total, meaning $\triangleq \circ f = \triangleq$. Coarse-graining: $\bigotimes_{i=1}^n f_i = A \xrightarrow{f} B + \ldots + B \xrightarrow{\nabla} B$

Theorem

 $OTC \Theta$ with direct sums \iff operational category in partial form (\mathbf{C}, \neq) :

SMC (\mathbf{C}, \otimes) with finite coproducts, zero object and family $\doteqdot_A : A \to I$ s.t:

- ▶ \triangleright_i : $A_1 + ... + A_n \rightarrow A_i$ jointly monic
- ▶ $\forall f : A \rightarrow B \exists ! \text{ total } g : A \rightarrow B + I \text{ with } f = \triangleright_1 \circ g$

Partial tests: $\{f_i \colon A \to B_i\}_{i=1}^n \iff f \colon A \to B_1 + \ldots + B_n \text{ s.t. } \triangleright_i \circ f = f_i.$ Tests: when f is causal/total, meaning $\triangleq \circ f = \triangleq$. Coarse-graining: $\bigotimes_{i=1}^n f_i = A \xrightarrow{f} B + \ldots + B \xrightarrow{\nabla} B$

Theorem

 $OTC \Theta$ with direct sums \iff operational category in partial form (\mathbf{C}, \neq) :

SMC (\mathbf{C}, \otimes) with finite coproducts, zero object and family $\doteqdot_A : A \to I$ s.t:

▶
$$\triangleright_i$$
: $A_1 + ... + A_n \rightarrow A_i$ jointly monic

- ▶ $\forall f : A \to B \exists ! \text{ total } g : A \to B + I \text{ with } f = \triangleright_1 \circ g$
- \blacktriangleright \otimes distributes over +

$$\blacktriangleright \doteqdot_{A+B} = [\doteqdot_A, \doteqdot_B], \doteqdot_I = \mathrm{id}, \doteqdot_{A\otimes B} = \lambda \circ (\doteqdot_A \otimes \doteqdot_B)$$

So Θ^+ is determined by $\mathbf{C} = \mathbf{ParTest}(\Theta) = \mathbf{Event}_{\Theta^+}$. In fact, $\mathbf{B} = \mathbf{Test}(\Theta) = \mathbf{C}_{\mathsf{total}}$ suffices.

So Θ^+ is determined by $\mathbf{C} = \mathbf{ParTest}(\Theta) = \mathbf{Event}_{\Theta^+}$. In fact, $\mathbf{B} = \mathbf{Test}(\Theta) = \mathbf{C}_{\mathsf{total}}$ suffices.

An operational category in total form **B** is an SMC with finite coproducts (+, 0) distributed over by \otimes , s.t. *I* is a *terminal object* 1 and:

So Θ^+ is determined by $\mathbf{C} = \mathbf{ParTest}(\Theta) = \mathbf{Event}_{\Theta^+}$. In fact, $\mathbf{B} = \mathbf{Test}(\Theta) = \mathbf{C}_{\mathsf{total}}$ suffices.

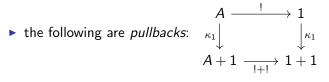
An operational category in total form **B** is an SMC with finite coproducts (+, 0) distributed over by \otimes , s.t. *I* is a *terminal object* 1 and:

▶ the canonical maps $(A_1 + ... + A_n) + 1 \rightarrow A_i + 1$ are jointly monic

So Θ^+ is determined by $\mathbf{C} = \mathbf{ParTest}(\Theta) = \mathbf{Event}_{\Theta^+}$. In fact, $\mathbf{B} = \mathbf{Test}(\Theta) = \mathbf{C}_{\mathsf{total}}$ suffices.

An operational category in total form **B** is an SMC with finite coproducts (+, 0) distributed over by \otimes , s.t. *I* is a *terminal object* 1 and:

▶ the canonical maps $(A_1 + ... + A_n) + 1 \rightarrow A_i + 1$ are jointly monic



So Θ^+ is determined by $\mathbf{C} = \mathbf{ParTest}(\Theta) = \mathbf{Event}_{\Theta^+}$. In fact, $\mathbf{B} = \mathbf{Test}(\Theta) = \mathbf{C}_{\mathsf{total}}$ suffices.

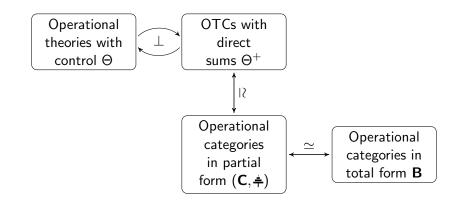
An operational category in total form **B** is an SMC with finite coproducts (+, 0) distributed over by \otimes , s.t. *I* is a *terminal object* 1 and:

▶ the canonical maps $(A_1 + \ldots + A_n) + 1 \rightarrow A_i + 1$ are jointly monic

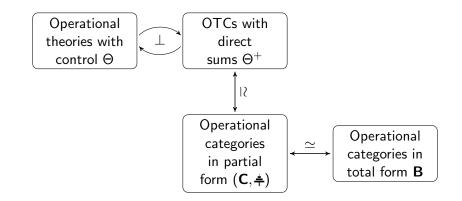
► the following are *pullbacks*: $A \xrightarrow{!} 1$ $\kappa_1 \downarrow \qquad \qquad \downarrow \kappa_1$ $A + 1 \xrightarrow{!+!} 1 + 1$

Weakening of notion of monoidal effectus (Jacobs et al.).

Summary



Summary



Examples

Θ	В	С
Classical	Set	PFun
Quantum	$CStar^{\mathrm{op}}_{cpu}$	$CStar^{\mathrm{op}}_{cpsu}$

Operational interpretation of effectus theory.

Operational interpretation of effectus theory.

Connections: categorical quantum mechanics \leftrightarrow GPTs.

Operational interpretation of effectus theory.

Connections: categorical quantum mechanics \leftrightarrow GPTs.

Separate the 'layers' of operational theories:

- Composition $(\circ, \otimes) \sim$ symmetric monoidal categories;
- Control ({*f_x*}_{x∈X}, ∅) ~ operational categories;
- Probabilities.

Operational interpretation of effectus theory.

Connections: categorical quantum mechanics \leftrightarrow GPTs.

Separate the 'layers' of operational theories:

- Composition $(\circ, \otimes) \sim$ symmetric monoidal categories;
- ► Control ({f_x}_{x∈X}, ∅) ~ operational categories;
- Probabilities.

Next: translate quantum reconstruction theorems into categorical form.

Operational interpretation of effectus theory.

Connections: categorical quantum mechanics \leftrightarrow GPTs.

Separate the 'layers' of operational theories:

- Composition $(\circ, \otimes) \sim$ symmetric monoidal categories;
- ► Control ({f_x}_{x∈X}, ∅) ~ operational categories;
- Probabilities.

Next: translate quantum reconstruction theorems into categorical form.

Thanks!