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Yet, signaling between space-like separated locations is impossible.  

Quantum	theory	challenges	classical	no<ons	of	causality		

A more general, genuinely quantum, notion of causality may be needed?   

(QT respects the causal structure of space-time) 



Quantum	theory	challenges	classical	no<ons	of	causality		

The order of operations could depend on a variable in a quantum superposition: 
 
                                       (indefinite causal structures?)  

quantum SWITCH 

Chiribella, D’Ariano, Perinotti, and Valiron, PRA 88, 022318 (2013),  arXiv:0912.0195 (2009)  



Quantum	theory	challenges	classical	no<ons	of	causality		

More generally, in a quantum theory of gravity, we expect scenarios with 
  
indefinite causal structure (Hardy, http://arxiv.org/abs/gr-qc/0509120). 

Can we generalize quantum theory such that a predefined causal structure 
is not assumed? 
 
 
What new possibilities would follow from such a generalization?   

Questions:  



Outline	

•  Quantum theory as an operational probabilistic theory in the circuit framework 

•  The axiom of causality and its meaning 

•   The process matrix framework for local operations without global causal structure 

      - causal inequality violations 
 
      - causal versus causally separable processes 
 
      - dynamical causal relations 
 
•  A time-symmetric operational approach    

•  Quantum theory without any predefined causal structure  
  



Opera<onal	Approach	

Ludwig (1983, 1985)  



Opera<onal	Approach	

 from Hardy arXiv:quant-ph/0101012 (2001) 

A theory prescribes probabilities for the outcomes of operations.  

Hardy (2001), Barrett (2005), Dakic and Brukner (2009), Massanes and Mülelr (2010),  
Hardy (2009), Chiribella, D’Ariano, and Perinotti (2009, 2010), Hardy (2011), Barnum, Mülelr, Udedec (2014)… 



The	circuit	framework	for	opera<onal	
probabilis<c	theories	

Operation (test): one use of a device with an input and an output system:  
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Hardy, PIRSA:09060015;   
Chiribella, D’Ariano, Perinotti, PRA 81, 062348 (2010) [arXiv 2009],  
Chiribella, D’Ariano, Perinotti, PRA 84, 012311 (2011);  
Hardy, arXiv:1005.5164. 
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a set of possible events 



Preparations (the input system is the trivial system I ):  

Measurements (the output system is the trivial system I ):  
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The	circuit	framework	for	opera<onal	
probabilis<c	theories	
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Sequential composition:  
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The	circuit	framework	for	opera<onal	
probabilis<c	theories	

Operations can be composed in sequence and in parallel without forming loops:   

A 

For foundations of compositional theories: see, e.g., Abramsky and Coecke, Quantum Logic and  
Quantum Structures, vol II (2008). Coecke, Contemporary Physics 51, 59 (2010). 
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Parallel composition:  

For foundations of compositional theories: see, e.g., Abramsky and Coecke, Quantum Logic and  
Quantum Structures, vol II (2008). Coecke, Contemporary Physics 51, 59 (2010). 
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The	circuit	framework	for	opera<onal	
probabilis<c	theories	

Circuit (an acyclic composition of operations with no open wires):  



p(i, j, k, l| circuit) 

Joint probabilities 

p(i, j, k, l| circuit)¸ 0 
  
∑ijkl p (i, j, k, l|circuit)=1 
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The	circuit	framework	for	opera<onal	
probabilis<c	theories	

Circuit (an acyclic composition of operations with no open wires):  

Probabilistic structure 



A 

{½i} 

{Ej} 
Joint probabilities 

p(i, j| {½i},{Ej}) 

Equivalently,  

The	circuit	framework	for	opera<onal	
probabilis<c	theories	



 
An OPT is completely defined by specifying all possible operations and 
the probabilities for all possible circuits. 

States: equivalence classes of preparation events  
 
 
 

Effects: equivalence classes of measurement events 
 
 
 

Transformations: equivalence classes of general events from A to B  

If two events (which may be part of different operations) yield the same probabilities 
for all possible circuits they may be part of, they are deemed equivalent.    

The	circuit	framework	for	opera<onal	
probabilis<c	theories	

If two operations yield the same probabilities for all possible circuits they may be 
part of, they are deemed equivalent.    



A 

{½i} 

{Ej} 

p(i, j| {½i},{Ej}) = p(½i,	Ej)   

The	circuit	framework	for	opera<onal	
probabilis<c	theories	

(non-contextual) function of the respective state and effect 

states 

effects 



A 

½ 

E 

The	circuit	framework	for	opera<onal	
probabilis<c	theories	

state 

effect 

States are real functions on effects, and vice versa. 
(elements of two dual vector spaces) 

Joint probability 

p(½,E) 
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System         à   Hilbert space            of dimension        .       
 
 

Composite system              à                             . 
 
 

Trivial system        à    1-dimensional Hilbert space         . 
 
 

Transformation from         to         à    completely positive (CP) linear map  
 
                                                                           
 
 
     (Kraus form:                                                               ,                                              ) 
 
 
Operation from         to         à 
 
 
                               where                                                        is trace preserving (CPTP). 

The	case	of	standard	quantum	theory	
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(non-normalized ‘density operator’) 
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(non-normalized ‘density operator’) 



State:                                                              ,  isomorphic to                                                .  . 
 
 
 
Preparation:                   , where                                      .     
 
 
 
 

Effect:                                                                                                                                         
 
 
 
Measurement:                       , where                                       .     
 
                             [Positive operator-valued measure (POVM)] 
 
 
 

Main probability rule:                                              . 
 
 
        
 

                                                                                                                                       .  

The	case	of	standard	quantum	theory	

(non-normalized ‘density operator’) 

choice of  
bilinear form! 

(not a natural isomorphism!) 

vector dual vector 



Chiribella, D’Ariano, Perinotti, PRA	81,	062348	(2010),	PRA	84,	012311	(2011): 
	

																											

{½i} 

{Ej} 

The marginal probabilities of the preparation,                                                    , are 
independent of the measurement:   
 

 
                                                                                                

‘No signalling from the future’ 

Also in Ludwig (1983) (but not called causality); 
Pegg, PLA 349, 411 (2006), (‘weak causality’). 

A p(i, j | {ρi},{Ej}) = p(ρi,Ej ) in QT = Tr(ρi
AEA

j )

p(i | {ρi},{Ej}) = p(ρi,Ej )
j
∑

p(i | {ρi},{Ej}) = p(i | {ρi},{Fk}) ∀{ρi},{Ej},{Fk}

The	causality	axiom	



Chiribella, D’Ariano, Perinotti, PRA	81,	062348	(2010),	PRA	84,	012311	(2011): 
	

Some	proper<es	of	causal	theories:		
	
•  There	is	a	unique	determinis<c	effect	(in	quantum	theory,								).	

•  Condi<oned	opera<ons	are	possible	

	
	
•  If	a	causal	theory	is	not	determinis<c	and	the	set	of	states	is	closed,	the	set	of	

states	is	convex.		

	
	
	

The	causality	axiom	



What	is	the	axiom	of	causality	about?	



What	is	an	opera<on?	



Two ideas: 

What	is	an	opera<on?	
O.O. and N. Cerf, Nature Phys. 11, 853 (2015) 



What	is	an	opera<on?	
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What	is	an	opera<on?	

Idea 1.  The ‘closed-box’ assumption 
 
All correlations between the events in the boxes are  
due to information exchange through the wires.  
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(The concept of circuit formalizes the idea of  
information exchanged via systems)  



What	is	an	opera<on?	

Idea 1.  The ‘closed-box’ assumption 
 
All correlations between the events in the boxes are  
due to information exchange through the wires.  
 
 
 
 A 

B 

An operation could be realized inside an isolated box. 

(The concept of circuit formalizes the idea of  
information exchanged via systems)  



What	is	an	opera<on?	

Imagine Alice who chooses to perform one  
out of many possible operations               with probability  
          inside a closed box.     

A 

B 

{M α
jα
}

p(α)

- If Charlie doesn’t known the choice of Alice, he can say that the operation  
is                                                             . 
                  
- If he learns that Alice has chosen     , he can say that the operation is              . 
 

     (This is consistent with the Bayesian update of the probabilities of a circuit.) 
 
 
à A subset of the possible events in an operation defines another operation.  
 
 
 
 

                     

{{p(α1)M
α1
jα1
},{p(α2 )M

α2
jα2
}, ⋅ ⋅ ⋅}

α {M α
jα
}

The description of an operation is conditional on information.  
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- If Charlie doesn’t known the choice of Alice, he can say that the operation 
is                                                             . 
                  
- If he learns that Alice has chosen     , he can say that the operation is              . 
 
 
              But not all subsets of events are considered valid operations! 
 
 
 

                     

{{p(α1)M
α1
jα1
},{p(α2 )M

α2
jα2
}, ⋅ ⋅ ⋅}

α {M α
jα
}

The description of an operation is conditional on information.  

 Why?  
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Intuition: a valid operation can be chosen by the experimenter, but an arbitrary  
subset of its outcomes cannot.   
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What	is	an	opera<on?	

                                  How do we formalize this?  
 
 
A guess: define that the ‘choice’ of operation is independent of past events.  
 
 

Problem: this would mean that the causality axiom is a definition and not an axiom. 
However, the axiom seems to express a non-trivial physical constraint.  
 

Intuition: a valid operation can be chosen by the experimenter, but an arbitrary  
subset of its outcomes cannot.   



What	is	an	opera<on?	

                                  How do we formalize this?  
 
 
Idea 2: The ‘no post-selection’ criterion:  
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What	is	an	opera<on?	

Intuition: a valid operation can be chosen by the experimenter, but an arbitrary  
subset of its outcomes cannot.   

The very concept of operation is time-asymmetric !  

                                  How do we formalize this?  
 
 
Idea 2: The ‘no post-selection’ criterion:  
 
The ‘choice’ of operation can be known before the time of the input system, 
irrespectively of future events.  
 
 
Under this criterion, the causality axiom expresses a nontrivial constraint.  
 



Does	the	property	of	causality	imply	an	actual		
physical	asymmetry?	

(Note: The formal asymmetry does not automatically imply a physical  
asymmetry because the very concept of operation is asymmetric.) 
 
 
 
It actually does -  The ‘pre-selected’ operations in the reverse time direction are 
all post-selected operations in the forward direction.   
 
These time-reversed operations do not obey the causality axiom. 
 
 
Physics under time reversal is not described by the usual quantum theory. 
 
 
  



To summarize, in the circuit framework, a notion of time is presumed.   
 
Events are equipped with a partial (causal) order coming from  
the circuit composition – one operation precedes another  
if there is a directed path from the former to the 
latter through the circuit.   
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To summarize, in the circuit framework, a notion of time is presumed.   
 
Events are equipped with a partial (causal) order coming from  
the circuit composition – one operation precedes another  
if there is a directed path from the former to the 
latter through the circuit.   
 
 
 
 
 
Can we understand time and causal structure from  
                    more primitive concepts? 
 
 
(e.g., signaling from Alice to Bob à Alice is in the past of Bob) 
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The	process	framework	

Output 

Input 

A local experiment can exchange information with the outside 
world only via the input and output systems.          

2) A setting        is chosen.  

1) A system enters the lab. 

4) A system exits the lab. 

3) An outcome        is obtained.  

O. O., F. Costa, and C. Brukner, Nat. Commun. 3, 1092 (2012).  



The	process	framework	

No assumption of global causal order between the local experiments.  

O. O., F. Costa, and C. Brukner, Nat. Commun. 3, 1092 (2012).  

Alice 
Bob 



The	process	framework	

‘Process’ 
(catalogue of probabilities) 

Alice 
Bob 



Local	descrip0ons	agree	with	quantum	mechanics	

Kraus representation: 

Completeness relation: 

Quantum	processes	

Transforma<ons	=	completely	posi<ve	(CP)	maps	



Assumption 1: The probabilities are functions of the local CP maps, 

Local validity of QM    is linear in        ,        , ...    

Quantum	processes	



Choi-Jamiołkowski	isomorphism	

CP	maps	 Posi<ve	semidefinite	
operators	
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Choi-Jamiołkowski	isomorphism	

CP	maps	 Posi<ve	semidefinite	
operators	



The	process	matrix	

Representation 

Process matrix  



Representation 

Process matrix  

Similar to Born‘s rule but can describe signalling!   

The	process	matrix	



1. Non-negative probabilities: 

2. Probabilities sum up to 1: 
 
 
 
    on all CPTP maps               ,              , ...   

The	process	matrix	

Note:                 is CPTP   iff                                                                 .   

Conditions on W:  

Assumption 2: The parties can share entangled input ancillas. 



An alternative formulation as a second-order operation: 
 

[Quantum supermaps, Chiribella, D’Ariano, and Perinotti, EPL 83, 30004 (2008)] 

The	process	matrix	

W CPTP CPTP = CPTP 

A2 

A1 B1 

B2 

A’1 

A’2 

B’1 

B’2 B’2 A’2 

A’1 B’1 



Terms	appearing	in	a	process	matrix	

Hilbert-Schmidt basis: Hermitian                  , where   

Proposition:                               is a valid process matrix iff 
 
 

1) 
 
2)  In addition to the identity, it contains only terms with a non-trivial         on           
 
and         on            for some party                                        .     



Example:	bipar<te	case	

… 

and contain only the identity term plus terms of type  

A valid process matrix:  



Example:	bipar<te	state	



Example:	channel	B→A	



Example:	channel	with	memory	Aà	B	
(The most general possibility compatible with no signalling from B to A!)  



Causal	order	

A 

causal future 

causal past 

B 

C 

D 

causal elsewhere 



(D           A) 

    (Strict) partial order        : 
 
1) irreflexivity 
 

    not  X         X . 

2) transitivity 
 
    if  X        Y   and  Y       Z ,  
 

    then  X         Z . 
 
3) antisymmetry 
 
    if  X        Y ,  
 

    then not   Y        X  . 

A 

causal future 

causal past 

B 

C 

D 

causal elsewhere 

(B        A) 

(C        A) 

Causal	order	
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causal future 

causal past 

B 

Signaling is possible 

C 

D 

causal elsewhere 

Causal	order	



causal future 

causal past 

causal elsewhere 

C 

D 

B 

Signaling is impossible A 

Causal	order	



causal future 

causal past 

causal elsewhere 
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B 

Signaling is impossible A 

Causal	order	



Causal	order	

 Notation:      A       B 

Alice is not in the causal past of Bob (hence, Alice cannot signal to Bob) 

In a causal scenario, at least one of   (A       B)   or  (B       A)  must be true. 
 
à  Alice cannot signal to Bob or Bob cannot signal to Alice. 



               –   no signalling from A to B (ch. with memory from B to A)   
 
               –   no signalling from B to A (ch. with memory from A to B) 

 
 
 
 
 
 
 
 
 
 
 
 
                                     

Bipar<te	processes	with	causal	realiza<on	
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More generally, we may conceive causally separable processes 
(probabilistic mixtures of fixed-order processes): 
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More generally, we may conceive causally separable processes 
(probabilistic mixtures of fixed-order processes): 
 
 
 
                                                                          
 
 
 
 
 
 
 
 
 
 
 
                                     

Bipar<te	processes	with	causal	realiza<on	

Are all process matrices causally separable?  



A	causal	game	

O. O., F. Costa, and C. Brukner, Nat. Commun. 3, 1092 (2012).  

a 

x 

y 

b 
b‘ 

Their goal is to maximize:  



Causally	ordered	situa<on	

a 

y 

b 

x 

Global Time 

Case    



Causally	ordered	situa<on	

a 

y 

b 

x 

Global Time 

Case    



Causally	ordered	situa<on	

a 

y 

b 

x 

Global Time 

Case    
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a 

x 

y 

b 
b‘ 

Definite causal order à  

A	causal	inequality	



Can violate the inequality with                                         .  

The operations of Alice and Bob do not occur in a definite order! 

two-level 
systems  

A	non-causal	process	

O. O., F. Costa, and C. Brukner, Nat. Commun. 3, 1092 (2012).  



A	causally	non-separable	situa<on	

If Bob wants to receive (b‘=1), he measures in the z basis 

Alice‘s CP map: 

Not seen by Bob Channel from Alice to Bob 

Bob receives the state 

He can read Alice‘s bit with probability 

Alice always measures in the z basis and encodes the bit in the z basis 



Bob‘s CP map: 

Not seen by Bob 

If Bob wants to send (b‘ = 0), he measures in the x basis and encodes 
in the z basis conditioned on his outcome 

Channel from Bob to Alice, 
correlated with Bob‘s 
outcome 

Alice receives the state 

She can read Bob‘s bit with probability 

A	causally	non-separable	situa<on	



Other	causal	inequali<es	and	viola<ons	

Simplest bipartite inequalities:  
 
Branciard, Araujo, Feix, Costa, Brukner,  NJP 18, 013008 (2016) 
 
Multiparite inequalities:  
 
-  violation with perfect signaling  
 
Baumeler and Wolf, Proc. ISIT 2014, 526-530 (2014) 
 
-  violation by classical local operations:   
 
Baumeler, Feix, and Wolf, PRA 90, 042106 (2014)                  
 
Baumeler and Wolf, NJP 18, 013036 (2016) 
 
Biased version of the original inequality:  
 
Bhattacharya and Banik, arXiv:1509.02721 (2015) 



Can	non-causal	processes	be	realized	physically?		



Can	non-causal	processes	be	realized	physically?		

From the outside the experiment may still agree with standard unitary 
evolution in time. 

time 

unitary 
transformation 

Not a priori impossible!  



The	quantum	switch	

Chiribella, D’Ariano, Perinotti and Valiron,  
arXiv:0912.0195, PRA 2013 
                                   
The tripartite process is not causally  
separable! 
 

O. Oreshkov and C. Giarmatzi, arXiv:1506.05449 

M. Araujo et al., NJP 17, 102001 (2015) 
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Advantage	in	black-box	discrimina<on	

quantum SWITCH 

Charlie can find with certainty whether two gates commute or anti-commute, even  
though each gate is used only once.  

Chiribella, Phys. Rev. A 86, 040301(R) (2012) 
Experimental demonstration: Procopio et al., Nat. Commun. 6:7913 (2015) 



Advantage	in	black-box	discrimina<on	

Causal witness:  

Araujo, Branciard, Costa, Feix, Giarmatzi, Brukner, New J. Phys. 17, 102001 (2015) .  

Branciard,                                            .  Sci. Rep. 6, 26018 (2016) 



Advantage	in	black-box	discrimina<on	

Computations with multipartite-SWITCH 
 
Colnaghi, D’Ariano, Perinotti, Facchini, Phys. Lett. A 376 (2012), pp. 2940--2943 
 
Araujo, Costa, Brukner, Phys. Rev. Lett. 113, 250402 (2014)  
 
 
Communication complexity: 
 
Guerin, Feix, Araujo, Brukner, arXiv: 1605.07372 
 
 
 
 



										Formal	theory	of	causality	for	processes	
O. O. and C. Giarmatzi, arXiv:1506.05449 

B 

A 

C 

What constraints on the correlations does causality imply? 
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C E.g., the operation at A could  
influence the order in which  
B and C happen in A’s future. 

The	causal	order	can	be	both	random	and	dynamical		



causal future 

causal past 

B 

A 

C 

E.g., the operation at A could  
influence the order in which  
B and C happen in A’s future. 

The	causal	order	can	be	both	random	and	dynamical		



•  have a universal expression (which implies the multipartite case) 
 
 
•  allow of dynamical causal order (a given event can influence the  
    order of other events in its future) 
 
 
•  capture our intuition of causality  

A notion of causality should: 

O. O. and C. Giarmatzi, arXiv:1506.05449 

										Device-independent	defini<on	of	causality	



General process:  

O. O. and C. Giarmatzi, arXiv:1506.05449 

Intuition: The probability for a set of events to occur outside of the  
causal future of Alice and for these events to have a particular causal  
configuration with Alice is independent of the choice of setting of Alice.  

										Device-independent	defini<on	of	causality	



General process:  

O. O. and C. Giarmatzi, arXiv:1506.05449 

A process is causal iff there exists a probability distribution                                                                           
 

                                                                        where                       is a partial 
order, such that for every party, e.g., A, and every subset X, Y, … of the other 
parties, 
 

                      
 
  

										Device-independent	defini<on	of	causality	



If no signaling from        to                    exists  reduced process              

Consider  

O. O. and C. Giarmatzi, arXiv:1506.05449 

										Structure	of	causal	processes	



If no signaling from        to                    exists  reduced process              

Consider  

conditional process 

O. O. and C. Giarmatzi, arXiv:1506.05449 

										Structure	of	causal	processes	



If no signaling from        to                    exists  reduced process              

Consider  

O. O. and C. Giarmatzi, arXiv:1506.05449 

										Structure	of	causal	processes	



Theorem (canonical causal decomposition): 

where 

Describes causal ‘unraveling’ of the events in the process.  

(iterative formulation) 

O. O. and C. Giarmatzi, arXiv:1506.05449 

										Structure	of	causal	processes	



Theorem (canonical causal decomposition): 

(iterative formulation) 

O. O. and C. Giarmatzi, arXiv:1506.05449 

Causal correlations form polytopes!  [For the bipartite case, see Branciard et al., 
 NJP 18, 013008 (2016)] 
  

										Structure	of	causal	processes	

where 



Example	of	a	causal	inequality	which	is	a	facet:	
Guess Your Neighbour’s Input (GYNI) game 

Goal: maximize  

Branciard, Araujo, Feix, Costa, Brukner, New J. Phys. 18, 013008 (2016) 

(bits) 

p(x, y) = p(x)p(y),

p(a = y,b = x)

p(x) =1/ 2, p(y) =1/ 2

a

x y

b



Guess Your Neighbour’s Input (GYNI) game 

Branciard, Araujo, Feix, Costa, Brukner, New J. Phys. 18, 013008 (2016) 

(bits) 

p(x, y) = p(x)p(y), p(x) =1/ 2, p(y) =1/ 2

a

x y

b

Causal order      

p(a = y,b = x) ≤1/ 2

Example	of	a	causal	inequality	which	is	a	facet:	



Guess Your Neighbour’s Input (GYNI) game 

Branciard, Araujo, Feix, Costa, Brukner, New J. Phys. 18, 013008 (2016) 

(bits) 

p(x, y) = p(x)p(y),

p(a = y,b = x) ≤1/ 2

p(x) =1/ 2, p(y) =1/ 2

a

x y

b

Causal order      

Example	of	a	causal	inequality	which	is	a	facet:	



Guess Your Neighbour’s Input (GYNI) game 

Branciard, Araujo, Feix, Costa, Brukner, New J. Phys. 18, 013008 (2016) 

(bits) 

p(x, y) = p(x)p(y),

p(a = y,b = x) ≤1/ 2

p(x) =1/ 2, p(y) =1/ 2

a

x y

b

Causal order      

Example	of	a	causal	inequality	which	is	a	facet:	



Guess Your Neighbour’s Input (GYNI) game 

Branciard, Araujo, Feix, Costa, Brukner, New J. Phys. 18, 013008 (2016) 

(bits) 

p(x, y) = p(x)p(y),

p(a = y,b = x)>1/ 2

p(x) =1/ 2, p(y) =1/ 2

a

x y

b

Example	of	a	causal	inequality	which	is	a	facet:	

There exists a process matrix which allow                                                  .   



										Causal	separability			

A quantum process is called causally separable iff it can be written in a canonical causal  
form  
 
 
 
 
 
 
 
 
 
with every process in this decomposition being a valid quantum process.  

(analogy with Bell local and separable quantum states) 

O. O. and C. Giarmatzi, arXiv:1506.05449 

 Agrees with the bipartite concept  

where 



Causal	but	causally	nonseparable	process	

Chiribella, D’Ariano, Perinotti and Valiron,  
arXiv:0912.0195, PRA 2013 
                                   
The tripartite process is not causally  
separable! 
 

O. Oreshkov and C. Giarmatzi, arXiv:1506.05449 

M. Araujo et al., NJP 17, 102001 (2015) 

Yet, it cannot violate causal inequalities… 

causal simulation 



Example where                                is not causally separable, 
 
                   but                                         is causally separable.  
 
 
(The two have the same statistics on local quantum operations.) 

Causality	and	causal	separability	are	different	in	the	
bipar<t	case	too	

A. Feix, M. Araujo, and C. Brukner, arXiv:1604.03391. 



	Non-causality	can	be	ac,vated	by	entanglement	
O. O. and C. Giarmatzi, arXiv:1506.05449 

Example where                                       is causally separable (and hence causal), 
 
 
                    but                                                                       is non-causal.                                                                          



	Non-causality	can	be	ac,vated	by	entanglement	
O. O. and C. Giarmatzi, arXiv:1506.05449 

Example where                                       is causally separable (and hence causal), 
 
 
                    but                                                                       is non-causal.                                                                          

More natural concepts of interest: 

Extensibly causal (EC) 
 
Extensibly causally separable (ECS)  

(the property does not change  
under extension with ancilla) 

One may expect that physically relevant processes are extensible!  



Some	proper<es	of	EC	and	ECS	processes	

1)  In the bipartite case, ECS = causally separable.   

    à ECS is another possible multipartite generalization of the 
  

     bipartite concept                                                               . 
 
 
2)  EC ≠ ECS (tripartite example: the quantum switch).  

      The bipartite case is an open problem. 
 
3)  In the bipartite case, C ≠ EC either (Feix et al). 



										Classically	controlled	quantum	circuits	
O. O. and C. Giarmatzi, arXiv:1506.05449 

1. Prepare a quantum register in some quantum state.  
 
2. Perform a quantum operation on the register. 
 
3. Depending on the outcome, choose which party is first and which subsystem  
    of the register will be his/her input system. 
 
4. After the first party operates, perform a quantum operation on the transformed register. 
  
5. Depending on the outcome, choose which party is second and which subsystem of the 
    register is his/her input system.  
 
6. Continue analogously until all parties are used.    

A protocol: 



										Classically	controlled	quantum	circuits	
O. O. and C. Giarmatzi, arXiv:1506.05449 

1. Prepare a quantum register in some quantum state.  
 
2. Perform a quantum operation on the register. 
 
3. Depending on the outcome, choose which party is first and which subsystem  
    of the register will be his/her input system. 
 
4. After the first party operates, perform a quantum operation on the transformed register. 
  
5. Depending on the outcome, choose which party is second and which subsystem of the 
    register is his/her input system.  
 
6. Continue analogously until all parties are used.    

A protocol: 

Similar to classically controlled quantum Turing machine [Knill (1996), Valiron-Selinger (2005)]. 



										Classically	controlled	quantum	circuits	
O. O. and C. Giarmatzi, arXiv:1506.05449 

The processes realizable within this paradigm are ECS. 

Conjecture: The reverse also holds: CCQC = ECS.  

(certainly holds in the bipartite case) 



								What we know at present 



Outlook 

•  Two conjectures: 
 
     1) ECS = classically controlled quantum circuits (CCQC)? 

     2) EC = quantum controlled quantum circuits (QCQC)? 

•  What is the structure of CCQC and QCQC process matrices? 
 
•  Are there physically admissible processes that are non-causal? 
 
•  What are the information processing powers of these classes?   

•  Causal inference for dynamical and quantum causal relations?  
 



Related	work 

•  Classical causal inference (Pearl, CUP 2009) in the context of quantum 
theory: 

     Wood and Spekkens, New J. Phys. 17, 033002 (2015) 
     Ried et al, Nat Phys 11, 414-420 (2015) 
 
•  Another notion of ‘indefinite causal structures’: 
 
     Ried, Spekkens, ... (in preparation) 
 
•  Quantum and GPT generalizations of classical causal inference: 

     Fritz, Comm. Math. Phys. 341(2), 391-434 (2016) 
     Henson, Lal, Pusey, New J. Phys. 16, 113043 (2014) 
     Pienaar and Brukner, New J. Phys. 17 073020 (2015) 
     Cavalcanti and Lal, J. Phys. A: Math. Theor. 47, 424018 (2014) 
     …    



The	process	framework	s<ll	assumes	<me	locally,		
and	it	is	<me-asymmetric.		

 
  
    

Could we relax the assumption of time also locally?  



Idea 2.  No post-selection 
 
 
The ‘choice’ of operation can be known before  
the operation is applied 
 
 
(Underlies the interpretation that an operation can be ‘chosen’.) 
 
 
   

A 

B 

Recall	

{Mi} 



Proposal: drop the ‘no post-selection’ criterion    
 

 Operation =  
 

description of the possible events in a box conditional on local information   

O.O. and N. Cerf, Nature Phys. 11, 853 (2015) 

A 

B 

{Mi} 



Joint probabilities: 

p(i, j) =
Tr(ρiE j )
Tr(ρE) where  

ρ = ρi
i
∑ ,

E = Ej
j
∑ ,

Tr(ρ) =1

Tr(E) = d

A 

{ρi}

{Ej}

The basic probability rule. 

[Pegg, Barnett, Jeffers, J. Mod. Opt. 49, 913 (2002).] 
 

Time-symmetric	quantum	theory	
O.O. and N. Cerf, Nature Phys. 11, 853 (2015) 



Joint probabilities: 

A 
p[(ρ,ρ), (E,E)]= Tr(ρE)

Tr(ρE)
,

(ρ,ρ)

(E,E)

States can be thought of as functions on effects and vice versa.  

Tr(ρE) ≠ 0

= 0, Tr(ρE) = 0

States (equivalent preparation events):            , where                                       .    
 
Effects (equivalent measurement events):            , where                                        .    
 
 
 
 

(ρ,ρ) 0 ≤ ρ ≤ ρ, Tr(ρ) =1

0 ≤ E ≤ E, Tr(E) = d(E,E)

New	states	and	effects	



States (equivalent preparation events):            , where                                       .    
 
Effects (equivalent measurement events):            , where                                        .    
 
 
 
 
Joint probabilities: 

A 
p[(ρ,ρ), (E,E)]= Tr(ρE)

Tr(ρE)
,

(ρ,ρ)

(E,E)

States can be thought of as functions on effects and vice versa.   

Tr(ρE) ≠ 0

= 0, Tr(ρE) = 0

The set of states (effects) is not closed under 
convex combinations! 

(ρ,ρ) 0 ≤ ρ ≤ ρ, Tr(ρ) =1

0 ≤ E ≤ E, Tr(E) = d(E,E)

New	states	and	effects	



Transformations:               ,   where                                                . 
 
 
 
                        
 
 

General operations:  collections of CP maps           , s.t.                                .                   
 
 

General	opera<ons	

{M j}

(M,M ) 0 ≤M ≤M, Tr(M (
I
dA
)) =1

A 

B 

Tr( M j
j
∑ ( I

dA
)) =1

{M j}



Example:            
 
  

B 

A 

{M j}

{ρi}

{Ek}

p(i, j,k) =
Tr(Ek

BM j
A→B (ρi

A ))
Tr(EBM A→B (ρ A ))

Time	reversal	symmetry	



Time	reversal	symmetry	

Example:            
 
  

B 

A 

{N j}

{Fi}

{σ k}

p(i, j,k) =
Tr(Fi

AN j
B→A (σ k

B ))

Tr(F
A
N

B→A
(σ

B
))



Time	reversal	symmetry	

The exact form of time-reversal is not implicit in the formalism!  

{ρi} {Fi}
(play the movie backwards) 



Time	reversal	symmetry	

{ρi} {Fi}
(play the movie backwards) 

{σ m}The time-reversed image           of           is  
 

determined relative to preparations            that 
 

have not been time-reversed.    

{Fi}
{σ m}
{ρi}

The exact form of time-reversal is not implicit in the formalism!  



Generalized	Wigner’s	theorem	

Important: states and effects are objects that live in different spaces. 
 
 
There is no natural isomorphism between the two spaces!  
 
 
We represent them by operators in the same space based on the bilinear form   
 
                                                                                                   , 
 
 

which defines an isomorphism                           .     
 
 
This isomorphism has no physical meaning! It is simply based on the choice  
of bilinear form, and should not be confused with time reversal! 
 
 
   
 
 
 
 



Two types of symmetry transformation:  
 

Type I - States go to states, and effects go to effects:   (                             ) 

Type II - States go to effects, and effects go to states:  (                             ) 

Generalized	Wigner’s	theorem	



•  Symmetries of type I are described by: 
 
 
 
 
 
 
 
      or 
 
 
 
 
 
 
 
 
      where        is an invertible operator, and        is a transposition is some basis. 
 
 
 
 
 
 
 
  

Generalized	Wigner’s	theorem	



Generalized	Wigner’s	theorem	

•  Symmetries of type II are described by: 
 
 
 
 
 
 
 
      or 
 
 
 
 
 
 
 
 
      where        is an invertible operator, and        is a transposition is some basis. 
 
 
 
 
 
 
 
  



 
If the evolution under time reversal is described by Schrödinger’s equation,  
positivity of energy à time reversal is in the class: 
 
 
 
 
 
 
 
 
 
 
 
 
The standard notion corresponds to unitary     .   
 
  

Generalized	Wigner’s	theorem	



Understanding	the	observed	asymmetry	

A toy model of the universe: 
  
 
 
 
 
 
 
 
       
 
 
 
 
 
 
For an observer at     , all future circuits contain standard operations iff                           .  
                    
              (linked to the fact that we can remember the past and not the future) 
 
 
 
 
  

t1

O.O. and N. Cerf, Nature Phys. 11, 853 (2015) 



Note:	it	is	logically	possible	that	non-standard	opera<ons	were	
obtainable	without	post-selec<on		



A	<me-neutral	formalism	

TRANSFORMATIONS																					EFFECTS	ON	PAIRS	OF	SYSTEMS			

O.O. and N. Cerf, arXiv: 1406.3829 

An isomorphism 
dependent on  
time reversal 
 



A 
p(i, j) =

Tr(ρi
AE j

A )
Tr(ρ AEA )

{ρi
A}

{Ej
A}

p(i, j) =
Tr (Fi

A2 ⊗ EA1
j ) Φ Φ

A2A1#
$

%
&

Tr (F
A2 ⊗ E

A1 ) Φ Φ
A2A1#

$'
%
&(

{Fi
A2 }

{Ej
A1}

A1 

A2 

entangled  
state 

Φ Φ
A2A1

is the time-reversed image of        . ρiFi

A	<me-neutral	formalism	

Example: 



A 
p(i, j) =

Tr(ρi
AE j

A )
Tr(ρ AEA )

{ρi
A}

{Ej
A}

{Fi
A2 }

{ρi
A1}

A1 

A2 

entangled  
state 

Φ Φ
A2A1

the usual states and effects live on systems of type 1 

is the time-reversed image of        . ρiFi

A	<me-neutral	formalism	

Example: 



A 
p(i, j) =

Tr(ρi
AE j

A )
Tr(ρ AEA )

{ρi
A}

{Ej
A}

{σ j
A2 }

{Ej
A1}

A1 

A2 

entangled  
state 

Φ Φ
A2A1

the time-reversed states and effects live on systems of type 2 

is the time-reversed image of        . Ejσ j

A	<me-neutral	formalism	

Example: 



A 
p(i, j) =

Tr(ρi
AE j

A )
Tr(ρ AEA )

{ρi
A}

{Ej
A}

p(i, j) =
Tr (Fi

A2 ⊗ EA1
j ) Φ Φ

A2A1#
$

%
&

Tr (F
A2 ⊗ E

A1 ) Φ Φ
A2A1#

$'
%
&(

{Fi
A2 }

{Ej
A1}

A1 

A2 

entangled  
state 

Φ Φ
A2A1

is the time-reversed image of        . ρiFi

A	<me-neutral	formalism	

Example: 



A	<me-neutral	formalism	

An isomorphism 
dependent on  
time reversal 
 

TRANSFORMATIONS																					EFFECTS	ON	PAIRS	OF	SYSTEMS			

entangled  
state 

measurement 

p(i, j,k, l | {Mi
A2B2 },{N j

C2 }, ⋅ ⋅ ⋅,W ) =

 ‘process matrix’ (encodes the connections) 

Joint probabilities: 

= Φ Φ
A1A2 ⊗ Φ Φ

B1B2 ⊗ Φ Φ
C1C2 ⊗ Φ Φ

D1D2

Tr[W A1A2B1B2C1C2D1D2 (Mi
A2B2 ⊗ N j

C2 ⊗ Pk
B1C1D2 ⊗Ql

A1D1 )]
Tr[W A1A2B1B2C1C2D1D2 (Mi

A2B2 ⊗ N j
C2 ⊗ Pk

B1C1D2 ⊗Ql
A1D1 )]

i, j,k,l
∑

Φ Φ
A2A1

(encodes 
time  

reversal) 



A	<me-neutral	formalism	

Can describe circuits with cycles: 

{Mi} 

{Nj} 
A1 

B2 
C1 

D2 E2 

H1 

{Lk} 

A1 

                               Compatible with closed timelike curves (P-CTC): 
 
Bennett and Schumacher, talk at QUPON (2005);   Svetlichny, arXiv:0902.4898 (2009);   
Lloyd et al., Phys. Rev. Lett 106, 040403 (2011);  … 
 

All such circuits can be realized 
using post-selection. 



A	<me-neutral	formalism	

There exist circuits with cycles that can be obtained without post-selection! 

the idea of background independence extended to random events 
 

(provides a basis for understanding experiments with the quantum switch) 

(classical switch) 



Equivalently:     

p(i, j, ⋅ ⋅ ⋅ | {Mi
A1A2 },{M j

B1B2 }, ⋅ ⋅ ⋅,W ) =
Tr[W A1A2B1B2⋅⋅⋅(Mi

A1A2 ⊗M j
B1B2 ⊗⋅⋅⋅)]

Tr[W A1A2B1B2⋅⋅⋅(MA1A2 ⊗MB1B2 ⊗⋅⋅⋅)]

W A1A2B1B2⋅⋅⋅ ≥ 0, Tr(W A1A2B1B2⋅⋅⋅) =1

external variables 

The ‘process matrix’: 
Note: Any process matrix is allowed. 

W

Time-symmetric	process	matrix	formalism	

O.O. and N. Cerf, arXiv: 1406.3829 



Equivalently:     

p(i, j, ⋅ ⋅ ⋅ | {Mi
A1A2 },{M j

B1B2 }, ⋅ ⋅ ⋅,W ) =
Tr[W A1A2B1B2⋅⋅⋅(Mi

A1A2 ⊗M j
B1B2 ⊗⋅⋅⋅)]

Tr[W A1A2B1B2⋅⋅⋅(MA1A2 ⊗MB1B2 ⊗⋅⋅⋅)]

external variables 

W

Time-symmetric	process	matrix	formalism	

Linked to two-time and multi-time state vector formalism:  
 
Aharonov, Bergmann, Lebowitz, PRB 134, 1410 (1964) 
Aharonov, Popescu, Tollaksen, Vaidman,  arXiv:0712.0320 (2007)  
 
 



Dropping	the	assump<on	of	local	<me	
Observation: The predictions are the same whether the systems are of type 1 or type 2.  
 
Proposal: There is no a priori distinction between systems of type 1 and 2.   
 

            The concept of time should come out from properties of the dynamics! 



Dropping	the	assump<on	of	local	<me	
Observation: The predictions are the same whether the systems are of type 1 or type 2.  
 
Proposal: There is no a priori distinction between systems of type 1 and 2.   
 

            The concept of time should come out from properties of the dynamics! 

The general picture:     

p(i, j, ⋅ ⋅ ⋅ | {Mi
⋅⋅⋅},{N j

⋅⋅⋅}, ⋅ ⋅ ⋅) = Tr[Wwires
⋅⋅⋅⋅⋅⋅⋅⋅⋅(Mi

⋅⋅⋅ ⊗ N ⋅⋅⋅
j ⊗⋅⋅⋅)]

Tr[Wwires
⋅⋅⋅⋅⋅⋅⋅⋅⋅(M ⋅⋅⋅ ⊗ N ⋅⋅⋅ ⊗ ⋅⋅ ⋅)]

Main probability rule 

O.O. and N. Cerf, arXiv: 1406.3829 



•  Connecting operations amounts to new operations.   

•  Every region performs a ‘measurement’ on the state prepared by its complement.  

Lij
abefg =

Trcd[Φ Φ
cd (Mi

abc ⊗ N j
defg )]

Tr[Φ Φ
cd (Mi

abc ⊗ N j
defg )]

(In some cases this may be the null operation.)  

•  There is an update rule for states and operations upon learning of information 
    (not shown here).  

A region ‘outputs’ 
states  

 
 



U U U U 

U U U U U 

U U U U 

U U U U U 

U U U U U 

Time 

Space 

Limit	of	quantum	field	theory	
R. Oeckl, Phys. Lett. B 575, 318 (2003), ... , Found. Phys. 43, 1206 (2013) 
 
                  (the ‘general boundary’ approach with a few generalization) 

O.O. and N. Cerf, arXiv: 1406.3829 



U U U U 

The causal structure underlying the dynamics in the region is reflected in 
correlation properties of the state on the boundary.    

U U U U U 

U U U U 

U U U U U 

U U U U U 

Time 

Space 

Proposal:	causal	structure	from	correla<ons	

O.O. and N. Cerf, arXiv: 1406.3829 



Conclusion	on	the	last	part	
It is possible to formulate a QT without any predefined time, which 
 
    - agrees with experiment  
 
    - has a physical and informational interpretation 
 
    - opens up the possibility to understand time and causal structure as dynamical  
      and explore new forms of dynamics  
 
•  Is the metric/causal structure emergent, or do we need to postulate it as  
    another field? 

•  What processes/networks can be realized without post-selection 
     (e.g., can we violate causal inequalities?) 
 
•  How can we formulate general covariant laws of dynamics in this framework? 

•  What does it imply for the foundations of information processing? 
 

 


