Abraham Westerbaan <u>Bas Westerbaan</u> abrabas@westerbaan.name

Radboud Universiteit Nijmegen

June 10, 2016

Stinespring dilation

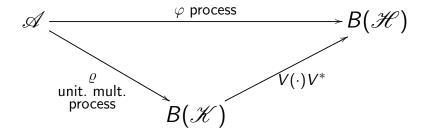
arphi normal linear completely positive contractive $B(\mathscr{H})$.A -

\mathscr{A} von Neumann algebra, \mathscr{H} Hilbert space

Stinespring dilation

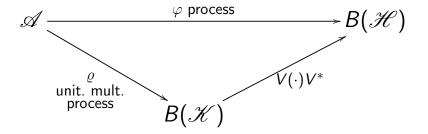
\mathscr{A} von Neumann algebra, \mathscr{H} Hilbert space

Stinespring dilation



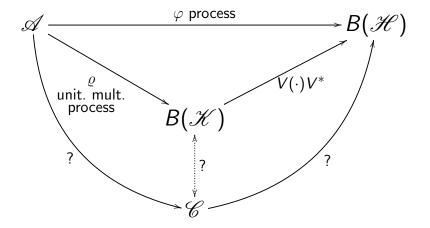
 \mathscr{K} Hilbert space, $V \colon \mathscr{H} \to \mathscr{K}$ bounded linear

Minimal Stinespring dilation



minimal
$$\equiv (\operatorname{span} \varrho(\mathscr{A}) V \mathscr{H}$$
 dense in \mathscr{K})

Minimal Stinespring dilation



1. Stinespring has a universal property.

- 1. Stinespring has a universal property.
- 2. Paschke's 1973 factorization for arbitrary processes $\varphi \colon \mathscr{A} \to \mathscr{B}$ also has this universal property.

Yes!

- 1. Stinespring has a universal property.
- 2. Paschke's 1973 factorization for arbitrary processes $\varphi \colon \mathscr{A} \to \mathscr{B}$ also has this universal property.

5.3 Corollary. Let A and B be as above, and $\phi: A \to B$ a completely positive map such that $\phi(1) = 1$. There is a B*-algebra \mathfrak{A} containing B, a projection $p \in \mathfrak{A}$ such that $B = p\mathfrak{A}p$, and a *-homomorphism $\pi: A \to \mathfrak{A}$ such that $\phi(a) = p\pi(a)p \quad \forall a \in A$.

inner product modules over b*-algebras - American Mathemat... www.ams.org/tran/1973-182-00/.../S0002-9947-1973-0355613-0.pdf ▼ by WL Paschke - 1973 - Cited by 523 - Related articles

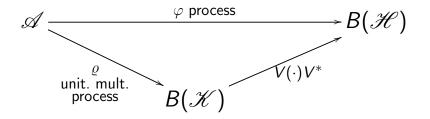
Yes!

- 1. Stinespring has a universal property.
- 2. Paschke's 1973 factorization for arbitrary processes $\varphi \colon \mathscr{A} \to \mathscr{B}$ also has this universal property.

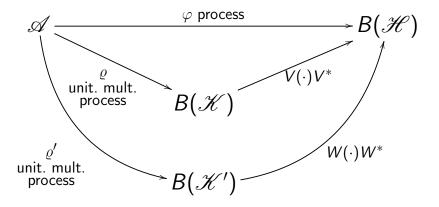
5.3 Corollary. Let A and B be as above, and $\phi: A \to B$ a completely positive map such that $\phi(1) = 1$. There is a B*-algebra \mathfrak{A} containing B, a projection $p \in \mathfrak{A}$ such that $B = p\mathfrak{A}p$, and a *-bomomorphism $\pi: A \to \mathfrak{A}$ such that $\phi(a) = p\pi(a)p \quad \forall a \in A$.

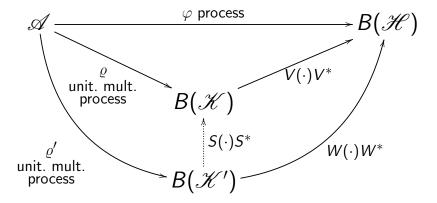
inner product modules over b*-algebras - American Mathemat... www.ams.org/tran/1973-182-00/.../S0002-9947-1973-0355613-0.pdf ▼ by WL Paschke - 1973 - Cited by 523 - Related articles

3. Thus (surprisingly): Paschke is a generalization of Stinespring.

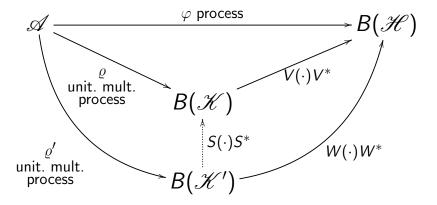


$$(arrho,\mathscr{K}, {m V})$$
 minimal Stinespring



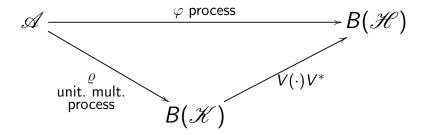


 \exists !isometry $S: \mathscr{K} \to \mathscr{K}'$ with SV = W



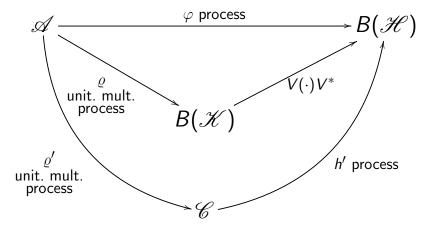
 $\exists ! \text{isometry } S \colon \mathscr{K} \to \mathscr{K}' \text{ with } SV = W$ (WW filled a gap in the proof.)

Universal property Stinespring

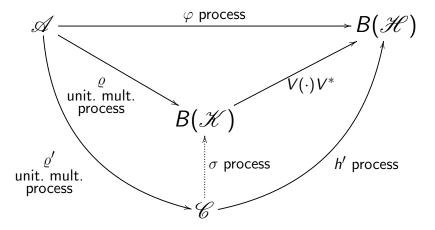


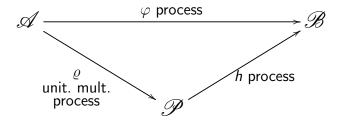
$$(arrho,\mathscr{K},V)$$
 minimal Stinespring dilation of $arphi$

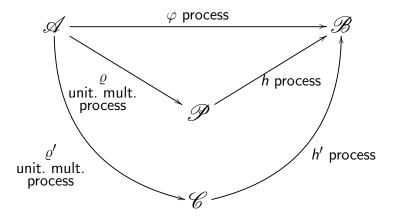
Universal property Stinespring

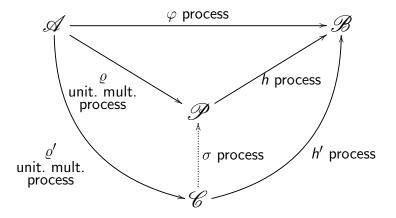


Universal property Stinespring









Remainder talk

- 1. Sketch construction ${\mathscr P}$
- 2. Examples of dilations
- 3. Pure maps
- 4. Future research

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi} := b^* \varphi(a^* \alpha) \beta.$

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi} := b^* \varphi(a^* \alpha) \beta.$ $N_{\varphi} := \{x; \ x \in \mathscr{A} \otimes \mathscr{B}; \ [x, x] = 0\}$

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi} := b^* \varphi(a^* \alpha) \beta.$ $N_{\varphi} := \{x; \ x \in \mathscr{A} \otimes \mathscr{B}; \ [x, x] = 0\}$ $X_0 := \mathscr{A} \odot \mathscr{B} / N_{\varphi}$

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi} := b^* \varphi(a^* \alpha) \beta.$ $N_{\varphi} := \{x; \ x \in \mathscr{A} \otimes \mathscr{B}; \ [x, x] = 0\}$ $X_0 := \mathscr{A} \odot \mathscr{B} / N_{\varphi} \text{ and } X := \overline{X_0}$

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi} := b^* \varphi(a^* \alpha) \beta.$ $N_{\varphi} := \{x; x \in \mathscr{A} \otimes \mathscr{B}; [x, x] = 0\}$ $X_0 := \mathscr{A} \odot \mathscr{B} / N_{\varphi} \text{ and } X := \overline{X_0}$ $X \text{ is Hilbert C*-module over } \mathscr{B}$

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi} := b^* \varphi(a^* \alpha) \beta.$ $N_{\varphi} := \{x; x \in \mathscr{A} \otimes \mathscr{B}; [x, x] = 0\}$ $X_0 := \mathscr{A} \odot \mathscr{B} / N_{\varphi} \text{ and } X := \overline{X_0}$ $X \text{ is Hilbert C*-module over } \mathscr{B}$ $\mathscr{A} \otimes_{\varphi} \mathscr{B} := X'_0 \text{ self-dual Hilbert C*-module}$

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[\mathbf{a} \otimes \mathbf{b}, \alpha \otimes \beta]_{\varphi} := \mathbf{b}^* \varphi(\mathbf{a}^* \alpha) \beta.$ $N_{\omega} := \{x; x \in \mathscr{A} \otimes \mathscr{B}; [x, x] = 0\}$ $X_0 := \mathscr{A} \odot \mathscr{B} / N_{\wp}$ and $X := X_0$ X is Hilbert C*-module over \mathscr{B} $\mathscr{A} \otimes_{\wp} \mathscr{B} := X'_0$ self-dual Hilbert C*-module $\mathscr{P} := B^{a}(\mathscr{A} \otimes_{\varphi} \mathscr{B})$ bounded modulemaps

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[\mathbf{a} \otimes \mathbf{b}, \alpha \otimes \beta]_{\varphi} := \mathbf{b}^* \varphi(\mathbf{a}^* \alpha) \beta.$ $N_{\omega} := \{x; x \in \mathscr{A} \otimes \mathscr{B}; [x, x] = 0\}$ $X_0 := \mathscr{A} \odot \mathscr{B} / N_{\wp}$ and $X := X_0$ X is Hilbert C*-module over \mathscr{B} $\mathscr{A} \otimes_{\mathscr{A}} \mathscr{B} := X'_0$ self-dual Hilbert C*-module $\mathscr{P} := B^{a}(\mathscr{A} \otimes_{\varphi} \mathscr{B})$ bounded modulemaps $\rho(\alpha) a \otimes b = (\alpha a) \otimes b$

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[\mathbf{a} \otimes \mathbf{b}, \alpha \otimes \beta]_{\varphi} := \mathbf{b}^* \varphi(\mathbf{a}^* \alpha) \beta.$ $N_{\omega} := \{x; x \in \mathscr{A} \otimes \mathscr{B}; [x, x] = 0\}$ $X_0 := \mathscr{A} \odot \mathscr{B} / N_{\wp}$ and $X := X_0$ X is Hilbert C*-module over \mathscr{B} $\mathscr{A} \otimes_{\mathscr{A}} \mathscr{B} := X'_0$ self-dual Hilbert C*-module $\mathscr{P} := B^{a}(\mathscr{A} \otimes_{\varphi} \mathscr{B})$ bounded modulemaps $\varrho(\alpha) a \otimes b = (\alpha a) \otimes b$ and $h(T) = \langle T1 \otimes 1, 1 \otimes 1 \rangle_{\omega}$

• $\mathscr{A} \xrightarrow{\varrho} \mathscr{B} \xrightarrow{\mathrm{id}} \mathscr{B}$ Paschke dilation of unital multiplicative process ϱ

A → B → B → B Paschke dilation of unital multiplicative process Q
P → B → B Paschke dilation of any process h on RHS of a Paschke dilation.

A → B → B → B Paschke dilation of unital multiplicative process Q
P → P → B Paschke dilation of any process h on RHS of a Paschke dilation.

• $\mathscr{A} \xrightarrow{\varrho} \mathscr{P} \xrightarrow{h} \mathscr{B}$ is a Paschke dilation of a unital φ , then *h* is a corner.

A → B → B → B Paschke dilation of unital multiplicative process Q
P → D → B Paschke dilation of any process h on RHS of a Paschke dilation.

• $\mathscr{A} \xrightarrow{\varrho} \mathscr{P} \xrightarrow{h} \mathscr{B}$ is a Paschke dilation of a unital φ , then *h* is a corner.

(*h* corner if $h(x) = \vartheta(pxp)$ for some projection $p \in \mathscr{P}$ and isomorphism $\vartheta \colon p\mathscr{P}p \to \mathscr{B}$.)

Examples 2/3

 $\blacktriangleright \langle \varphi_1, \varphi_2 \rangle : \mathscr{A} \to \mathscr{B}_1 \oplus \mathscr{B}_2 \text{ has P-dill.}$ $\mathscr{A} \xrightarrow{\langle \varrho_1, \varrho_2 \rangle} \mathscr{P}_1 \oplus \mathscr{P}_2 \xrightarrow{h_1 \oplus h_2} \mathscr{B}_1 \oplus \mathscr{B}_2,$ with $\mathscr{A} \xrightarrow{\varrho_i} \mathscr{P}_i \xrightarrow{h_i} \mathscr{B}_i$ Paschke dilation of φ_i .

Examples 2/3

- $\langle \varphi_1, \varphi_2 \rangle : \mathscr{A} \to \mathscr{B}_1 \oplus \mathscr{B}_2$ has P-dill. $\mathscr{A} \xrightarrow{\langle \varrho_1, \varrho_2 \rangle} \mathscr{P}_1 \oplus \mathscr{P}_2 \xrightarrow{h_1 \oplus h_2} \mathscr{B}_1 \oplus \mathscr{B}_2$, with $\mathscr{A} \xrightarrow{\varrho_i} \mathscr{P}_i \xrightarrow{h_i} \mathscr{B}_i$ Paschke dilation of φ_i .
- Thus in the finite dimensional case, the Paschke dilation is componentwise minimal Stinespring.

Examples 3/3

•
$$\mathscr{A} \xrightarrow{C_p(\cdot)C_p} C_p \mathscr{A} C_p \xrightarrow{p(\cdot)p} p \mathscr{A} p$$
 is
the Paschke dilation of the
corner $h: \mathscr{A} \to p \mathscr{A} p, x \mapsto p x p$

Remainder talk

- 1. Sketch construction ${\mathscr P}$
- 2. Examples of dilations
- 3. Pure maps
- 4. Future research

When call a process $\varphi \colon \mathscr{A} \to \mathscr{B}$ pure?

When call a process $\varphi \colon \mathscr{A} \to \mathscr{B}$ pure?

 Extreme is not ok: unital multiplicative processes are extreme (among the unital processes)

When call a process $\varphi \colon \mathscr{A} \to \mathscr{B}$ pure?

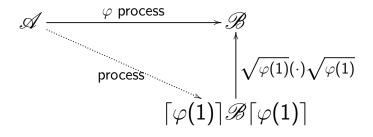
- Extreme is not ok: unital multiplicative processes are extreme (among the unital processes)
- If [0, φ]_{cp} = [0, 1]φ? No: then id not pure.

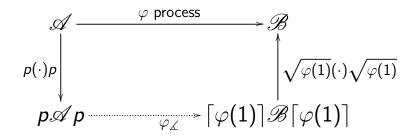
When call a process $\varphi \colon \mathscr{A} \to \mathscr{B}$ pure?

- Extreme is not ok: unital multiplicative processes are extreme (among the unital processes)
- If [0, φ]_{cp} = [0, 1]φ? No: then id not pure.

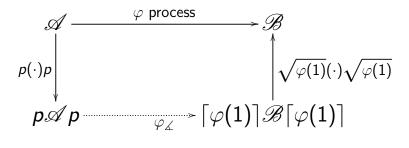
Clearly $\operatorname{Ad}_V \colon B(\mathscr{H}) \to B(\mathscr{K})$ should be pure with $\operatorname{Ad}_V^{\dagger} = \operatorname{Ad}_{V^*}$

 $\mathscr{A} \xrightarrow{\varphi \text{ process}} \mathscr{B}$





p carrier projection of φ



 $\varphi \, \operatorname{pure} := \varphi_{\measuredangle} \, \operatorname{isomorphism}$

With $\mathscr{A} \xrightarrow{\varrho} \mathscr{P} \xrightarrow{h} \mathscr{B}$ Paschke dilation φ

► *h* is pure

- ► *h* is pure
- φ is pure if and only if ϱ surjection

- *h* is pure
- φ is pure if and only if ϱ surjection
- Pure processes are extreme among processes with the same value on 1

- *h* is pure
- φ is pure if and only if ϱ surjection
- Pure processes are extreme among processes with the same value on 1
- (To be published: there is a unique* dagger on pure maps.)

Future work

 Continuity as for Stinespring (Kretschmann et al).

Future work

- Continuity as for Stinespring (Kretschmann et al).
- Universal property gives X and H gates, what else?

Future work

▶ ?

- Continuity as for Stinespring (Kretschmann et al).
- Universal property gives X and H gates, what else?

Thanks!

Questions?