Geometric Quantization and Epistemically Restricted Theories

Ivan Contreras¹ Ali Nabi Duman²

¹University of Illinois at Urbana-Champain

²King Fahd University of Petroleum and Minerals

June, 2016

ヘロト ヘワト ヘビト ヘビト

Introduction

Spekkens' Toy Theory:

- An evidence of an epistemic view of quantum states
- It contains many quantum features:
 - complementarity
 - no-cloning
 - no-broadcasting
 - teleportation
 - entanglement
 - Choi-Jamiolkowski isomorphism

・ 同 ト ・ ヨ ト ・ ヨ

Introduction

 $\bullet~$ Classical ontological theory $\rightarrow~$ Statistical Theory $\rightarrow~$ Epistemically restricted theories

Classical Complementarity

The valid epistemic states are those wherein an agent knows the values of a set of variables that commute relative to the Poisson bracket and is maximally ignorant otherwise.

- \bullet Mechanics \rightarrow Liouville mechanics \rightarrow Gaussian epistricted mechanics
- $\bullet\,$ trits $\rightarrow\,$ Statistical theory of trits $\rightarrow\,$ Stabilizer subtheory for qutrits
- Optics → Statistical optics → Subtheory of quantum optics

Introduction

 Classical ontological theory \rightarrow Statistical Theory \rightarrow Epistemically restricted theories

Classical Complementarity

The valid epistemic states are those wherein an agent knows the values of a set of variables that commute relative to the Poisson bracket and is maximally ignorant otherwise.

- $\bullet~$ Mechanics \rightarrow Liouville mechanics \rightarrow Gaussian epistricted mechanics
- $\bullet\,$ trits $\rightarrow\,$ Statistical theory of trits $\rightarrow\,$ Stabilizer subtheory for qutrits
- Optics \rightarrow Statistical optics \rightarrow Subtheory of quantum optics

Introduction

• Classical ontological theory \rightarrow Statistical Theory \rightarrow Epistemically restricted theories

Classical Complementarity

The valid epistemic states are those wherein an agent knows the values of a set of variables that commute relative to the Poisson bracket and is maximally ignorant otherwise.

- \bullet Mechanics \rightarrow Liouville mechanics \rightarrow Gaussian epistricted mechanics
- $\bullet \mbox{ trits} \rightarrow \mbox{Statistical theory of trits} \rightarrow \mbox{Stabilizer subtheory for qutrits}$
- $\bullet~$ Optics \rightarrow Statistical optics \rightarrow Subtheory of quantum optics

Introduction

Objective

To investigate how the epistricted theories fit into mathematical methods of geometric quantization.

Geometric Quantization

Given a symplectic manifold (M, Ω) modelling a classical mechanic system and its geometric properties, construct a Hilbert space \mathcal{H} and a set of operators on \mathcal{H} which give the quantum analogue of the classical system.

Introduction

Objective

To investigate how the epistricted theories fit into mathematical methods of geometric quantization.

Geometric Quantization

Given a symplectic manifold (M, Ω) modelling a classical mechanic system and its geometric properties, construct a Hilbert space \mathcal{H} and a set of operators on \mathcal{H} which give the quantum analogue of the classical system.

Quadrature Epistricted Theories

• The phase space: $\Omega = \mathbb{R}^{2n}$

The epistemic restrictions:

- A set of variables are *jointly knowable* if and only if it is commuting with respect to the Poisson bracket.
- An agent can know only the variables which are linear combination of the position and momentum variables.

Quadrature Epistricted Theories

• The phase space: $\Omega = \mathbb{R}^{2n}$

The epistemic restrictions:

- A set of variables are *jointly knowable* if and only if it is commuting with respect to the Poisson bracket.
- An agent can know only the variables which are linear combination of the position and momentum variables.

Quadrature Epistricted Theories

Correspondence between geometric quantization and epistricted theories

Object	Semi-classical version in quantiza-	Epistricted theories
	tion	
phase space	(\mathbb{R}^{2n},ω)	(\mathbb{R}^{2n},ω)
state	lagrangian submanifold of \mathbb{R}^{2n} with	lagrangian subspace with a valua-
	half-density $a: \mathbb{R}^{2n} \to \mathbb{R}$	tion function $v : \mathbb{R}^{2n} \to \mathbb{R}$
transformations	hamiltonian H on \mathbb{R}^{2n}	affine symplectic transformation

Groupoid Quantization

Quantize epistricted theories by a twisted polarized convolution C^* -algebra of a symplectic groupoid in the sense of E. Hawkins.

Hawkins' Recipe

- Construct an symplectic groupoid Σ over Ω .
- Construct a prequantization (σ, L, ∇) of Σ .
- Choose a symplectic groupoid polarization P of Σ which satisfies both symplectic and groupoid polarization.
- Construct a "half form" bundle.
- Ω is quantized by twisted, polarized convolution algebra C^{*}_P(Σ, σ).

Groupoid Quantization

Quantize epistricted theories by a twisted polarized convolution C^* -algebra of a symplectic groupoid in the sense of E. Hawkins.

Hawkins' Recipe

- Construct an symplectic groupoid Σ over Ω .
- Construct a prequantization (σ, L, ∇) of Σ .
- Choose a symplectic groupoid polarization P of Σ which satisfies both symplectic and groupoid polarization.
- Construct a "half form" bundle.
- Ω is quantized by twisted, polarized convolution algebra C^{*}_P(Σ, σ).

Groupoid Quantization

Quantize epistricted theories by a twisted polarized convolution C^* -algebra of a symplectic groupoid in the sense of E. Hawkins.

Hawkins' Recipe

- Construct an symplectic groupoid Σ over Ω .
- Construct a prequantization (σ, L, ∇) of Σ.
- Choose a symplectic groupoid polarization P of Σ which satisfies both symplectic and groupoid polarization.
- Construct a "half form" bundle.
- Ω is quantized by twisted, polarized convolution algebra C^{*}_P(Σ, σ).

イロト イポト イヨト イヨト

э

Groupoid Quantization

Quantize epistricted theories by a twisted polarized convolution C^* -algebra of a symplectic groupoid in the sense of E. Hawkins.

Hawkins' Recipe

- Construct an symplectic groupoid Σ over Ω .
- Construct a prequantization (σ, L, ∇) of Σ.
- Choose a symplectic groupoid polarization P of Σ which satisfies both symplectic and groupoid polarization.
- Construct a "half form" bundle.
- Ω is quantized by twisted, polarized convolution algebra C^{*}_P(Σ, σ).

Groupoid Quantization

Quantize epistricted theories by a twisted polarized convolution C^* -algebra of a symplectic groupoid in the sense of E. Hawkins.

Hawkins' Recipe

- Construct an symplectic groupoid Σ over Ω .
- Construct a prequantization (σ, L, ∇) of Σ.
- Choose a symplectic groupoid polarization P of Σ which satisfies both symplectic and groupoid polarization.
- Construct a "half form" bundle.
- Ω is quantized by twisted, polarized convolution algebra C^{*}_P(Σ, σ).

- Start with the symplectic manifold $\Omega = \mathbb{R}^{2n}$ with symplectic form ω (epistricted theories)
- Construct the symplectic groupoid $\mathbb{R}^{2n} \oplus \overline{\mathbb{R}}^{2n}$ integrating the symplectic vector space \mathbb{R}^{2n}
- Identify R²ⁿ ⊕ R
 ²ⁿ with the cotangent bundle T*(R²ⁿ) via a symplectomorphism Φ : R²ⁿ ⊕ R
 ²ⁿ ⊕ R
 ²ⁿ → T*(R²ⁿ).
- Obtain the the Darboux coordinates (*q*₁,..., *q*_n, *p*₁,..., *p*_n) of *T*^{*}(ℝ²ⁿ) from the symplectomorphism Φ.
- The projection $T^*(\mathbb{R}^{2n})$ to \mathbb{R}^{2n*} gives the polarization

 $P = span\{\partial/\partial p_1, \ldots, \partial/\partial p_n\}$

ヘロン ヘアン ヘビン ヘビン

- Start with the symplectic manifold $\Omega = \mathbb{R}^{2n}$ with symplectic form ω (epistricted theories)
- Construct the symplectic groupoid ℝ²ⁿ ⊕ ℝ²ⁿ integrating the symplectic vector space ℝ²ⁿ
- Identify R²ⁿ ⊕ R
 ²ⁿ with the cotangent bundle T*(R²ⁿ) via a symplectomorphism Φ : R²ⁿ ⊕ R
 ²ⁿ ⊕ R
 ²ⁿ → T*(R²ⁿ).
- Obtain the the Darboux coordinates (*q*₁,..., *q*_n, *p*₁,..., *p*_n) of *T*^{*}(ℝ²ⁿ) from the symplectomorphism Φ.
- The projection $T^*(\mathbb{R}^{2n})$ to \mathbb{R}^{2n*} gives the polarization

 $P = span\{\partial/\partial p_1, \ldots, \partial/\partial p_n\}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Start with the symplectic manifold $\Omega = \mathbb{R}^{2n}$ with symplectic form ω (epistricted theories)
- Construct the symplectic groupoid ℝ²ⁿ ⊕ ℝ²ⁿ integrating the symplectic vector space ℝ²ⁿ
- Identify R²ⁿ ⊕ R
 ²ⁿ with the cotangent bundle T*(R²ⁿ) via a symplectomorphism Φ : R²ⁿ ⊕ R
 ²ⁿ ⊕ R
 ²ⁿ → T*(R²ⁿ).
- Obtain the the Darboux coordinates (*q*₁,..., *q*_n, *p*₁,..., *p*_n) of *T*^{*}(ℝ²ⁿ) from the symplectomorphism Φ.
- The projection $T^*(\mathbb{R}^{2n})$ to \mathbb{R}^{2n*} gives the polarization

 $P = span\{\partial/\partial p_1, \ldots, \partial/\partial p_n\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Start with the symplectic manifold $\Omega = \mathbb{R}^{2n}$ with symplectic form ω (epistricted theories)
- Construct the symplectic groupoid ℝ²ⁿ ⊕ ℝ²ⁿ integrating the symplectic vector space ℝ²ⁿ
- Identify R²ⁿ ⊕ R
 ²ⁿ with the cotangent bundle T^{*}(R²ⁿ) via a symplectomorphism Φ : R²ⁿ ⊕ R
 ²ⁿ ⊕ R
 ²ⁿ → T^{*}(R²ⁿ).
- Obtain the the Darboux coordinates (q₁,..., q_n, p₁,..., p_n) of *T**(ℝ²ⁿ) from the symplectomorphism Φ.
- The projection $T^*(\mathbb{R}^{2n})$ to \mathbb{R}^{2n*} gives the polarization

 $P = span\{\partial/\partial p_1, \dots, \partial/\partial p_n\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Start with the symplectic manifold $\Omega = \mathbb{R}^{2n}$ with symplectic form ω (epistricted theories)
- Construct the symplectic groupoid ℝ²ⁿ ⊕ ℝ²ⁿ integrating the symplectic vector space ℝ²ⁿ
- Identify R²ⁿ ⊕ R
 ²ⁿ with the cotangent bundle T^{*}(R²ⁿ) via a symplectomorphism Φ : R²ⁿ ⊕ R
 ²ⁿ ⊕ R
 ²ⁿ → T^{*}(R²ⁿ).
- Obtain the the Darboux coordinates (q₁,..., q_n, p₁,..., p_n) of *T*^{*}(ℝ²ⁿ) from the symplectomorphism Φ.
- The projection $T^*(\mathbb{R}^{2n})$ to \mathbb{R}^{2n*} gives the polarization

 $P = span\{\partial/\partial p_1, \dots, \partial/\partial p_n\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• This polarization gives us the half-form pairing

• The kernels of operators on $L^2(\mathbb{R}^{2n}) \leftrightarrow$ Weyl symbols

Weyl transform

$$Tf(p,q) = C \int f(rac{p+q}{2},\zeta) e^{i\zeta(q-p)/\hbar} d\zeta.$$

- The quantization procedure gives the twisted group algebra $C^*(\mathbb{R}^{2n*}, \sigma)$ where $\sigma : \mathbb{R}^{2n*} \times \mathbb{R}^{2n*} \to \mathbb{T}$, $\sigma(x, y) = e^{\frac{-i}{\{q, p\}}}$.
- Moyal quantization of a Poisson vector space

- This polarization gives us the half-form pairing
- The kernels of operators on $L^2(\mathbb{R}^{2n}) \leftrightarrow$ Weyl symbols

Weyl transform

$$Tf(p,q) = C \int f(rac{p+q}{2},\zeta) e^{i\zeta(q-p)/\hbar} d\zeta.$$

- The quantization procedure gives the twisted group algebra $C^*(\mathbb{R}^{2n*}, \sigma)$ where $\sigma : \mathbb{R}^{2n*} \times \mathbb{R}^{2n*} \to \mathbb{T}$, $\sigma(x, y) = e^{\frac{-i}{\{q, p\}}}$.
- Moyal quantization of a Poisson vector space

- This polarization gives us the half-form pairing
- The kernels of operators on $L^2(\mathbb{R}^{2n}) \leftrightarrow$ Weyl symbols

Weyl transform

$$Tf(p,q) = C \int f(rac{p+q}{2},\zeta) e^{i\zeta(q-p)/\hbar} d\zeta.$$

- The quantization procedure gives the twisted group algebra C*(ℝ^{2n*}, σ) where σ : ℝ^{2n*} × ℝ^{2n*} → T, σ(x, y) = e^{-i/(q,p)}.
- Moyal quantization of a Poisson vector space

- This polarization gives us the half-form pairing
- The kernels of operators on $L^2(\mathbb{R}^{2n}) \leftrightarrow$ Weyl symbols

Weyl transform

The kernel T of a functional f is given by (Weyl transform)

$$Tf(p,q) = C \int f(rac{p+q}{2},\zeta) e^{i\zeta(q-p)/\hbar} d\zeta.$$

The quantization procedure gives the twisted group algebra C*(ℝ²ⁿ*, σ) where σ : ℝ²ⁿ* × ℝ²ⁿ* → T, σ(x, y) = e^{-i/(q,p)}.

Moyal quantization of a Poisson vector space

・ 同 ト ・ ヨ ト ・ ヨ ト

- This polarization gives us the half-form pairing
- The kernels of operators on $L^2(\mathbb{R}^{2n}) \leftrightarrow$ Weyl symbols

Weyl transform

$$Tf(p,q) = C \int f(rac{p+q}{2},\zeta) e^{i\zeta(q-p)/\hbar} d\zeta.$$

- The quantization procedure gives the twisted group algebra C*(ℝ²ⁿ*, σ) where σ : ℝ²ⁿ* × ℝ²ⁿ* → T, σ(x, y) = e^{-i/(q,p)}.
- Moyal quantization of a Poisson vector space

Quantum Subtheories (Spekkens '14, Gross '07)

- A projector-valued measure with outcome set K is a set of projectors {Π_k : k ∈ K} such that Π_k² = Π_k, ∀k ∈ K and ∑_k Π_k = I.
- Then the quadrature observable associated with f is

$$\mathcal{O}_f = \{\hat{\Pi}_f(\mathbf{f}) : \mathbf{f} \in \mathbb{R}\}$$

where

$\hat{\Pi}_f(\mathbf{f})$

is the Weyl transform of the functional f.

ヘロト ヘアト ヘビト ヘビ

Quantum Subtheories (Spekkens '14, Gross '07)

- A projector-valued measure with outcome set K is a set of projectors {Π_k : k ∈ K} such that Π_k² = Π_k, ∀k ∈ K and ∑_k Π_k = I.
- Then the quadrature observable associated with f is

 $\mathcal{O}_f = \{\hat{\Pi}_f(\mathbf{f}) : \mathbf{f} \in \mathbb{R}\}$

where

$\hat{\Pi}_f(\mathbf{f})$

is the Weyl transform of the functional f.

ヘロト ヘワト ヘビト ヘビト

Main Result

- The operational equivalence quantum subtheories and epistricted theories is proven using Wigner representation.
- The Wigner representation of an operator product is given by the Moyal product.

Main Result

Geometric quantization with an appropriate choice of polarization results in an algebraic structure which is operationally equivalent to epistricted theories. The group algebra $C^*(\mathbb{R}^{2n*}, \sigma)$ contains the algebraic structure of quadrature quantum subtheories.

Main Result

- The operational equivalence quantum subtheories and epistricted theories is proven using Wigner representation.
- The Wigner representation of an operator product is given by the Moyal product.

Main Result

Geometric quantization with an appropriate choice of polarization results in an algebraic structure which is operationally equivalent to epistricted theories. The group algebra $C^*(\mathbb{R}^{2n*}, \sigma)$ contains the algebraic structure of quadrature quantum subtheories.

Main Result

- The operational equivalence quantum subtheories and epistricted theories is proven using Wigner representation.
- The Wigner representation of an operator product is given by the Moyal product.

Main Result

Geometric quantization with an appropriate choice of polarization results in an algebraic structure which is operationally equivalent to epistricted theories. The group algebra $C^*(\mathbb{R}^{2n*}, \sigma)$ contains the algebraic structure of quadrature quantum subtheories.

Functoriality

• In general, geometric quantization is not functorial.

- The geometric quantization picture for symplectic groupoids turns out to be functorial with respect to the choices, i.e. the polarizations (the groupoid one)
- objects ↔ symplectic manifolds
- 1-morphism \leftrightarrow Lagrangian polarizations
- 2-morphisms ↔ affine transformations between Lagrangian polarizations
- The 2-morphims ↔ C*-algebra automorphisms after quantization.

Functoriality

- In general, geometric quantization is not functorial.
- The geometric quantization picture for symplectic groupoids turns out to be functorial with respect to the choices, i.e. the polarizations (the groupoid one)
- objects ↔ symplectic manifolds
- 1-morphism ↔ Lagrangian polarizations
- 2-morphisms ↔ affine transformations between Lagrangian polarizations
- The 2-morphims ↔ C*-algebra automorphisms after quantization.

Functoriality

- In general, geometric quantization is not functorial.
- The geometric quantization picture for symplectic groupoids turns out to be functorial with respect to the choices, i.e. the polarizations (the groupoid one)
- $\bullet \ objects \leftrightarrow symplectic \ manifolds$
- 1-morphism ↔ Lagrangian polarizations
- 2-morphisms ↔ affine transformations between Lagrangian polarizations
- The 2-morphims ↔ C*-algebra automorphisms after quantization.

Functoriality

- In general, geometric quantization is not functorial.
- The geometric quantization picture for symplectic groupoids turns out to be functorial with respect to the choices, i.e. the polarizations (the groupoid one)
- objects \leftrightarrow symplectic manifolds
- 1-morphism ↔ Lagrangian polarizations
- 2-morphisms ↔ affine transformations between Lagrangian polarizations
- The 2-morphims ↔ C*-algebra automorphisms after quantization.

- Start with the special dagger frobenius algebra of epstricted theories, **Spek**.
- Construct the groupoid 9 corresponding to **Spek** via the explicit connection in Heunen, Cattaneo, Contreras.
- Obtain the pair groupoid from *G* and introduce the symplectic structure on it which is compatible with the pair groupoid.
- Apply geometric quantization procedure on the pair groupoid by considering the complex valued function space on the groupoid and using discrete fourier transform (integral kernel) defined by Gross.
- Obtain the finite dimensional *C**-algebra.
- Construct special dagger frobenius algebra over FHilb.

- Start with the special dagger frobenius algebra of epstricted theories, **Spek**.
- Construct the groupoid 9 corresponding to **Spek** via the explicit connection in Heunen, Cattaneo, Contreras.
- Obtain the pair groupoid from *G* and introduce the symplectic structure on it which is compatible with the pair groupoid.
- Apply geometric quantization procedure on the pair groupoid by considering the complex valued function space on the groupoid and using discrete fourier transform (integral kernel) defined by Gross.
- Obtain the finite dimensional *C**-algebra.
- Construct special dagger frobenius algebra over FHilb.

- Start with the special dagger frobenius algebra of epstricted theories, **Spek**.
- Construct the groupoid G corresponding to **Spek** via the explicit connection in Heunen, Cattaneo, Contreras.
- Obtain the pair groupoid from 9 and introduce the symplectic structure on it which is compatible with the pair groupoid.
- Apply geometric quantization procedure on the pair groupoid by considering the complex valued function space on the groupoid and using discrete fourier transform (integral kernel) defined by Gross.
- Obtain the finite dimensional *C**-algebra.
- Construct special dagger frobenius algebra over FHilb.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Start with the special dagger frobenius algebra of epstricted theories, **Spek**.
- Construct the groupoid G corresponding to **Spek** via the explicit connection in Heunen, Cattaneo, Contreras.
- Obtain the pair groupoid from G and introduce the symplectic structure on it which is compatible with the pair groupoid.
- Apply geometric quantization procedure on the pair groupoid by considering the complex valued function space on the groupoid and using discrete fourier transform (integral kernel) defined by Gross.
- Obtain the finite dimensional *C**-algebra.
- Construct special dagger frobenius algebra over FHilb.

- Start with the special dagger frobenius algebra of epstricted theories, **Spek**.
- Construct the groupoid \mathcal{G} corresponding to **Spek** via the explicit connection in Heunen, Cattaneo, Contreras.
- Obtain the pair groupoid from 9 and introduce the symplectic structure on it which is compatible with the pair groupoid.
- Apply geometric quantization procedure on the pair groupoid by considering the complex valued function space on the groupoid and using discrete fourier transform (integral kernel) defined by Gross.
- Obtain the finite dimensional *C**-algebra.
- Construct special dagger frobenius algebra over FHilb.

- Start with the special dagger frobenius algebra of epstricted theories, **Spek**.
- Construct the groupoid \mathcal{G} corresponding to **Spek** via the explicit connection in Heunen, Cattaneo, Contreras.
- Obtain the pair groupoid from 9 and introduce the symplectic structure on it which is compatible with the pair groupoid.
- Apply geometric quantization procedure on the pair groupoid by considering the complex valued function space on the groupoid and using discrete fourier transform (integral kernel) defined by Gross.
- Obtain the finite dimensional C^* -algebra.
- Construct special dagger frobenius algebra over FHilb.

Thank you!

Contreras, Duman Geometric Quantization and Epistemically Restricted Theories

イロト イロト イヨト イヨト

æ