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Goal and Outline

Recent reconstructions of (finite-dimensional) QM from simple
principles 1 all assume

• Local tomography (LT), ruling out real and quaternionic QM,

• Systems are determined by their “information capacity” (so,
only one type of bit).

This talk fails to derive f.d. QM from simpler principles — but
gets close, with much less effort:

• No use of LT;

• Allows real, complex and quaternionic QM, plus bits of any
dimension – but little else;

• Added payoff: much easier!

1Dakič-Brukner (arXiv:0911.0695), Masanes-Mueller (arXiv:1004.1403),
Chiribella-D’Ariano-Perinotti (arXiv:1011.6451 ), etc.
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Background: all you need to know about Jordan algebras

Let E be a f.d. ordered real vector space with positive cone E+

and with an inner product 〈 , 〉. E is

• self-dual iff 〈a, b〉 ≥ 0 ∀b ∈ E+ iff a ∈ E+.

• homogeneous iff group of order-atomorphisms of E transitive
on interior of E+.

Koecher-Vingerg Theorem [1957/1961]: E is HSD ⇔ E a
formally real Jordan algebra with E+ = {a2|a ∈ E}

Jordan-von Neumann-Wigner Classification [1932]: Formally
real Jordan algebras = direct sums of self-adjoint parts of Mn(F),
F = R,C,H, M3(O), or “spin factors” Vn (“bit” with state space
an n-ball.)
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Self-duality in QM

H a complex Hilbert space, dim(H) = n. Let E = Lh(H) with E+

= cone of positive operators. This is SD w.r.t.

〈a, b〉 := 1
nTr(ab).

Note that 〈 〉 = 1
nTr is a bipartite state: if

Ψ =
1√
n

∑
x∈E

x ⊗ x ∈H⊗H,

E any ONB for H, then
〈
(a⊗ b),Ψ,Ψ

〉
= 1

nTr(ab).

So Ψ perfectly, and uniformly correlates every ONB of H with its
counterpart in H: |〈Ψ, x ⊗ y〉|2 = 1

n if x = y , 0 if x ⊥ y . Ψ is
uniquely defined by this feature.
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Probabilistic models

A test space: a collection M = {E ,F , ...} of (outcome-sets of)
possible measurements, experiments, tests, etc.

Let X :=
⋃

M. A probability weight on M:

α : X → [0, 1] with
∑
x∈E

α(x) = 1 ∀E ∈M.

A probabilistic model: a pair A = (M,Ω),
• M a test space,
• Ω a convex set of probability weights on M, the states

of A.

Notation: M(A), X (A) and Ω(A) ...

Standing assumption: Ω(A) finite-dimensional.
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Two important examples

Simple classical model: A = ({E},∆(E )) — one test, all
probability weights.

Simple quantum model: For a (f.d.) Hilbert space H, let

• M(H) = set of ONBs for H;

• Ω(H) = all probability weights states of the form

α(x) = 〈Wx , x〉,

W a density operator on H. (= all prob. weights, if
dimH > 2.)



Two-bit examples

The square bit B and diamond bit B ′ have the same test space:

M(B) = M(B ′) = {{x , x ′}, {y , y ′}}

but different state spaces:

x

y

1

1 δy ′

δx

δy

δx ′

Ω(A) = all prob weights on M(A) Ω(A′)
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Some properties of probabilistic models

A probabilistic model A is

• uniform iff all tests E ∈M(A) have a common size, say
|E | = n (the rank of A)

• sharp iff ∀x ∈ X (A) ∃!δx ∈ Ω(A) with δx(x) = 1;

• spectral iff sharp and, ∀α ∈ Ω(A), ∃E ∈M(A) with

α =
∑
x∈E

α(x)δx .

Square bit → uniform, but not sharp.
Diamond bit → uniform and sharp, but not spectral.
Classical and quantum models → uniform, sharp, spectral.
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The spaces V(A) and E(A)

V(A) = span of Ω(A) in RX (A), with positive cone

V(A)+ := { tα |α ∈ Ω, t ≥ 0 }

Effects are elements a ∈ V(A)∗ with 0 ≤ a(α) ≤ 1 ∀α ∈ Ω(A).
Example: x̂(α) = α(x) for x ∈ X (A). Note: ∀E ∈M(A),∑

x∈E x̂ =: uA, uA(α) = 1 forall α ∈ Ω(A).

It’s also useful to define E(A) = V(A)∗, but ordered by

E(A)+ :=

{
k∑

i=1

ti x̂i

∣∣∣∣ xi ∈ X (A), ti ≥ 0

}
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Joint States

A (non-signaling) joint state on A and B is a mapping

ω : X (A)× X (B)→ [0, 1]

with

(a) (E ,F ) ∈M(A)×M(B) =⇒
∑

(x ,y)∈E×F ω(x , y) = 1;

(b) x ∈ X (A), y ∈ X (B) =⇒

ω(x · ) ∈ V+(B) and ω( · y) ∈ V+(A)

Condition (b) ensures that ω ∈ Ω(AB) has well-defined marginal
and conditional states:

ω1(x) :=
∑
y∈F

ω(·, y) ∈ Ω(A) and ω2|x(y) :=
ω(x , y)

ω1(x)
∈ Ω(B);

similarly for ω2(y), ω1|y .



Joint States

Marginal and conditional states are related by a Law of total
probability: ∀ E ∈M(A), F ∈M(B),

ω2 =
∑
x∈E

ω1(x)ω2|x and ω1 =
∑
y∈F

ω2(y)ω1|y

Lemma 0: Every joint state extends to a unique positive linear
mapping

ω̂ : E(A)→ V(B),

such that ω̂(x)(y) = ω(x , y) ∀x ∈ X (A), y ∈ X (B).



Conjugates

Let A be uniform, with rank n. A conjugate for A: a triple
(A, γA, ηA), γA : A ' A an isomorphism and ηA is a joint state on
A and A such that

(a) η(x , γA(y)) = η(y , γA(x)) and

(b) ηA(x , γA(x)) = 1
n ∀x ∈ X (A).

Notation: γA(x) =: x .

Note that (ηA)1|x(x) = 1. Thus, A sharp ⇒ ηA uniquely defined

(by ηA(x , y) = 1
nδy (x)) ⇒ ηA is symmetric.



Lemma 1: Let A be sharp, spectral, and have a conjugate. Then

〈a, b〉 := ηA(a, b)

is a self-dualizing inner product on E(A).

Proof: Exercise!

Hints: 〈 , 〉 bilinear and symmetric by Lemma 0 and sharpness. By
spectrality, η̂ takes E(A)+ onto V(A)+, so, is an
order-isomorphism. Spectrality now also implies every a ∈ E(A)
has a decomposition a =

∑
x∈E txx for some E ∈M(A) and

coefficients tx ∈ R. Hence,

〈a, a〉 =
∑

x ,y∈E×E
tx tyηA(x , y) =

1

n

∑
x∈E

tx
2 ≥ 0,

with equality only where a = 0. So 〈 , 〉 is positive-definite. That
it’s self-dualizing follows easily from η̂’s being an
order-isomorphism. �
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Two Corollaries

Let A satisfy the assumptions of Lemma 1. Then

Corollary 1 (Spectral Uniqueness Theorem): Every a ∈ E(A)
has a unique expansion a =

∑
i tiei with ei sharply distinguishable

effects and ti distinct.

This a gives us a functional calculus: with a =
∑

i tiei as above,
define

f (a) =
∑
i

f (ti )ei .

Corollary 2: If M(A) has rank two then the state space Ω(A) is a
euclidean ball (hence, E(A) is a spin factor).



Processes

A process from A to B is represented by a positive linear mapping

τ : V(A)→ V(B) with uB(τ(α)) ≤ 1 ∀α ∈ Ω(A).

Can think of p = uB(τ(α)) as probability for the process to “fail”
on input state α.

(Not every such mapping need count as a processes!)

τ is reversible iff ∃ a process τ ′ such that τ ′ ◦ τ = pid: with
probability p, τ ′ reverses τ .

This implies τ is invertible with τ−1 positive, i.e., τ is an
order-automorphism.



Filters and Homogeneity

A filter for E ∈M(A): a process Φ : V(A)→ V(A) such that
∀x ∈ E ∃tx ≥ 0 with

Φ(α)(x) = txα(x)

for all α ∈ Ω(A).

α 5
4

x prob = 1
2α(x)

y prob = α(y)

z prob = α(y)Φ

Example: For W a density operator on H, Φ : a 7→W 1/2aW 1/2 is
a filter for any eigenbasis of W , reversible iff W is nonsingular.
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Appealing to the KV Theorem,

Theorem 1: Let A satisfy hypotheses of Lemma 1. Then TAE:
(a) A has arbitrary reversible filters
(b) V(A) is homogeneous
(c) E(A) is a formally real Jordan algebra.

One can also show that then X (A) is the set of all minimal
idempotents in E, and M(A) is the set of Jordan frames, i.e., A is
a Jordan model (see arXiv: 1206.2897).



Why spectrality?

A joint state ω ∈ Ω(AB) correlating iff ∃E ∈M(A), F ∈M(B),
and partial bijection f ⊆ E × F such that

ω(x , y) > 0 ⇔ (x , y) ∈ f .

Lemma 2: A sharp and ω ∈ Ω(AB), correlating ⇒ ω1 spectral.

Proof: With f ⊆ E × F as above, ω1|f (x)(x) = 1, so
ω1|x(f (x)) = δx . By LOTP, α =

∑
x∈dom(f ) ω2(f (x))δx . �

Correlation Postulate: Every state is the marginal of a
correlating joint state.

So: CP implies spectrality. (Note affinity with the “purification
postulate” of Chiribella et al.)



Memory and Correlation

Can the CP itself be further motivated?

Suppose the outcome of a test E ∈M(A) is recorded in in the
state of an ancilla B. Then A and B must be in a joint state ω
such that the conditional states ω2|x := βx , x ∈ E , are sharply
distinguishable, say by F ∈M(B). Then ω correlates E with F . If
the measurement of E doesn’t disturb α, then α = ω1.

So we might adopt

Non-Disturbance Principle: For every state, there is a test that
can be recorded in that state without disturbance.



Conclusion:
Four conditions characterize probabilistic models associated with
formally real Jordan algebras:

(1) A is sharp,

(2) A has a conjugate,

(3) A satisfies the CP

(4) A has arbitrary reversible filters

Condition (4) is needed only for homogeneity. Conditions (1)-(3)
already yield a rich structure (Corollaries 1, 2).

Questions:

• Can one prove Theorem 1 without using the KV theorem?

• Can Lemma 1 help simplify earlier reconstruction results?

• Monoidal categories of probabilistic models having
well-behaved conjugates are automatically dagger-compact,
with ηA as “cup”. In such a category, is spectrality automatic?

Thanks!
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