A Royal Road to Quantum Theory (or thereabouts)

Alex Wilce Susquehanna University

QPL XIII, Glasgow, June 2016

Supported by a grant from the FQXi foundation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Goal and Outline

Recent reconstructions of (finite-dimensional) QM from simple principles 1 all assume

- Local tomography (LT), ruling out real and quaternionic QM,
- Systems are determined by their "information capacity" (so, only one type of bit).

¹Dakič-Brukner (arXiv:0911.0695), Masanes-Mueller (arXiv:1004.1403), Chiribella-D'Ariano-Perinotti (arXiv:1011.6451), etc. - → - - - → - - - → - - → - - → - - → - - → - - → -

Goal and Outline

Recent reconstructions of (finite-dimensional) QM from simple principles 1 all assume

- Local tomography (LT), ruling out real and quaternionic QM,
- Systems are determined by their "information capacity" (so, only one type of bit).

This talk *fails* to derive f.d. QM from *simpler* principles — but gets close, with much less effort:

- No use of LT;
- Allows real, complex and quaternionic QM, plus bits of any dimension – but little else;
- Added payoff: much easier!

¹Dakič-Brukner (arXiv:0911.0695), Masanes-Mueller (arXiv:1004.1403), Chiribella-D'Ariano-Perinotti (arXiv:1011.6451), etc. - → - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> - <-> -

OUTLINE:

| Background on Jordan algebras

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- II General probabilistic models
- III Conjugates and self-duality
- IV Filters and homogeneity

Let **E** be a f.d. ordered real vector space with positive cone **E**_+ and with an inner product $\langle \, , \, \rangle.$ **E** is

- *self-dual* iff $\langle a, b \rangle \ge 0 \ \forall b \in \mathbf{E}_+$ iff $a \in \mathbf{E}_+$.
- *homogeneous* iff group of order-atomorphisms of **E** transitive on interior of **E**₊.

Let **E** be a f.d. ordered real vector space with positive cone **E**_+ and with an inner product $\langle \, , \, \rangle.$ **E** is

- *self-dual* iff $\langle a, b \rangle \ge 0 \ \forall b \in \mathbf{E}_+$ iff $a \in \mathbf{E}_+$.
- *homogeneous* iff group of order-atomorphisms of **E** transitive on interior of **E**₊.

Koecher-Vingerg Theorem [1957/1961]: E is $HSD \Leftrightarrow E$ a formally real Jordan algebra with $E_+ = \{a^2 | a \in E\}$

Let **E** be a f.d. ordered real vector space with positive cone **E**_+ and with an inner product $\langle \, , \, \rangle.$ **E** is

- *self-dual* iff $\langle a, b \rangle \ge 0 \ \forall b \in \mathbf{E}_+$ iff $a \in \mathbf{E}_+$.
- *homogeneous* iff group of order-atomorphisms of **E** transitive on interior of **E**₊.

Koecher-Vingerg Theorem [1957/1961]: E is $HSD \Leftrightarrow E$ a formally real Jordan algebra with $E_+ = \{a^2 | a \in E\}$

Jordan-von Neumann-Wigner Classification [1932]: Formally real Jordan algebras = direct sums of self-adjoint parts of $M_n(\mathbb{F})$, $\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H}, M_3(\mathbb{O})$, or "spin factors" V_n ("bit" with state space an *n*-ball.)

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへで

Let **E** be a f.d. ordered real vector space with positive cone **E**_+ and with an inner product $\langle \, , \, \rangle.$ **E** is

- *self-dual* iff $\langle a, b \rangle \ge 0 \ \forall b \in \mathbf{E}_+$ iff $a \in \mathbf{E}_+$.
- *homogeneous* iff group of order-atomorphisms of **E** transitive on interior of **E**₊.

Koecher-Vingerg Theorem [1957/1961]: E is $HSD \Leftrightarrow E$ a formally real Jordan algebra with $E_+ = \{a^2 | a \in E\}$

Jordan-von Neumann-Wigner Classification [1932]: Formally real Jordan algebras = direct sums of self-adjoint parts of $M_n(\mathbb{F})$, $\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H}, M_3(\mathbb{O})$, or "spin factors" V_n ("bit" with state space an *n*-ball.)

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへで

Self-duality in QM

 \mathcal{H} a complex Hilbert space, dim $(\mathcal{H}) = n$. Let $\mathbf{E} = \mathcal{L}_h(\mathcal{H})$ with \mathbf{E}_+ = cone of positive operators. This is SD w.r.t.

$$\langle a,b\rangle := \frac{1}{n} \operatorname{Tr}(ab).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Self-duality in QM

 \mathcal{H} a complex Hilbert space, dim $(\mathcal{H}) = n$. Let $\mathbf{E} = \mathcal{L}_h(\mathcal{H})$ with \mathbf{E}_+ = cone of positive operators. This is SD w.r.t.

$$\langle a,b\rangle := \frac{1}{n} \operatorname{Tr}(ab).$$

Note that $\langle \rangle = \frac{1}{n}$ Tr is a *bipartite state*: if

$$\Psi = \frac{1}{\sqrt{n}} \sum_{x \in E} x \otimes \overline{x} \in \mathcal{H} \otimes \overline{\mathcal{H}},$$

E any ONB for \mathcal{H} , then $\langle (a \otimes \overline{b}), \Psi, \Psi \rangle = \frac{1}{n} \operatorname{Tr}(ab)$.

Self-duality in QM

 \mathcal{H} a complex Hilbert space, dim $(\mathcal{H}) = n$. Let $\mathbf{E} = \mathcal{L}_h(\mathcal{H})$ with \mathbf{E}_+ = cone of positive operators. This is SD w.r.t.

$$\langle a,b\rangle := \frac{1}{n} \operatorname{Tr}(ab).$$

Note that $\langle \rangle = \frac{1}{n}$ Tr is a *bipartite state*: if

$$\Psi = \frac{1}{\sqrt{n}} \sum_{x \in E} x \otimes \overline{x} \in \mathcal{H} \otimes \overline{\mathcal{H}},$$

E any ONB for \mathcal{H} , then $\langle (a \otimes \overline{b}), \Psi, \Psi \rangle = \frac{1}{n} \operatorname{Tr}(ab)$.

So Ψ perfectly, and uniformly correlates every ONB of \mathcal{H} with its counterpart in $\overline{\mathcal{H}}$: $|\langle \Psi, x \otimes \overline{y} \rangle|^2 = \frac{1}{n}$ if x = y, 0 if $x \perp y$. Ψ is uniquely defined by this feature.

Probabilistic models

A **test space**: a collection $\mathcal{M} = \{E, F, ...\}$ of (outcome-sets of) possible measurements, experiments, *tests*, etc.

Let $X := \bigcup \mathcal{M}$. A probability weight on \mathcal{M} :

$$oldsymbol{lpha}:X
ightarrow [0,1]$$
 with $\sum_{x\in E} lpha(x)=1 \; orall E\in \mathcal{M}.$

A probabilistic model: a pair $A = (\mathcal{M}, \Omega)$,

- \mathcal{M} a test space,
- Ω a convex set of probability weights on *M*, the *states* of *A*.

Notation: $\mathcal{M}(A)$, X(A) and $\Omega(A)$...

Probabilistic models

A **test space**: a collection $\mathcal{M} = \{E, F, ...\}$ of (outcome-sets of) possible measurements, experiments, *tests*, etc.

Let $X := \bigcup \mathcal{M}$. A probability weight on \mathcal{M} :

$$oldsymbol{lpha}:X
ightarrow [0,1]$$
 with $\sum_{x\in E} oldsymbol{lpha}(x)=1 \; orall E\in oldsymbol{\mathcal{M}}.$

A probabilistic model: a pair $A = (\mathcal{M}, \Omega)$,

- \mathcal{M} a test space,
- Ω a convex set of probability weights on *M*, the *states* of *A*.

Notation: $\mathcal{M}(A)$, X(A) and $\Omega(A)$...

Standing assumption: $\Omega(A)$ finite-dimensional.

Two important examples

Simple **classical model**: $A = (\{E\}, \Delta(E))$ — one test, all probability weights.

Simple quantum model: For a (f.d.) Hilbert space \mathcal{H} , let

- $\mathcal{M}(\mathcal{H}) = \text{set of ONBs for } \mathcal{H};$
- $\Omega({\boldsymbol{\mathcal H}})=$ all probability weights states of the form

$$\alpha(x) = \langle Wx, x \rangle,$$

W a density operator on \mathcal{H} . (= all prob. weights, if dim $\mathcal{H} > 2$.)

Two-bit examples

The square bit B and diamond bit B' have the same test space:

$$\mathcal{M}(B) = \mathcal{M}(B') = \{\{x, x'\}, \{y, y'\}\}$$

but different state spaces:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Two bit-examples

The square bit B and diamond bit B' have the same test space:

$$\mathcal{M}(B) = \mathcal{M}(B') = \{\{x, x'\}, \{y, y'\}\}$$

but different state spaces:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Some properties of probabilistic models

A probabilistic model A is

- **uniform** iff all tests $E \in \mathcal{M}(A)$ have a common size, say |E| = n (the *rank* of A)
- sharp iff $\forall x \in X(A) \exists ! \delta_x \in \Omega(A)$ with $\delta_x(x) = 1$;
- spectral iff sharp and, $\forall \alpha \in \Omega(A)$, $\exists E \in \mathcal{M}(A)$ with

$$\boldsymbol{\alpha} = \sum_{x \in \boldsymbol{E}} \alpha(x) \delta_x.$$

Some properties of probabilistic models

A probabilistic model A is

- **uniform** iff all tests $E \in \mathcal{M}(A)$ have a common size, say |E| = n (the *rank* of A)
- sharp iff $\forall x \in X(A) \exists ! \delta_x \in \Omega(A)$ with $\delta_x(x) = 1$;
- spectral iff sharp and, $\forall \alpha \in \Omega(A)$, $\exists E \in \mathcal{M}(A)$ with

$$\boldsymbol{\alpha} = \sum_{\boldsymbol{x} \in \boldsymbol{E}} \alpha(\boldsymbol{x}) \delta_{\boldsymbol{x}}.$$

Square bit \rightarrow uniform, but not sharp. Diamond bit \rightarrow uniform and sharp, but not spectral. Classical and quantum models \rightarrow uniform, sharp, spectral. The spaces V(A) and E(A)

 $\mathbf{V}(A) =$ span of $\Omega(A)$ in $\mathbb{R}^{X(A)}$, with positive cone

 $\mathbf{V}(A)_{+} := \{ t\alpha \mid \alpha \in \Omega, t \ge 0 \}$

The spaces V(A) and E(A)

 $\mathbf{V}(A) =$ span of $\Omega(A)$ in $\mathbb{R}^{X(A)}$, with positive cone

 $\mathbf{V}(A)_+ := \{ t\alpha \mid \alpha \in \Omega, t \ge 0 \}$

Effects are elements $a \in \mathbf{V}(A)^*$ with $0 \le a(\alpha) \le 1 \ \forall \alpha \in \Omega(A)$. *Example:* $\hat{x}(\alpha) = \alpha(x)$ for $x \in X(A)$. Note: $\forall E \in \mathcal{M}(A)$, $\sum_{x \in E} \hat{x} =: u_A, \ u_A(\alpha) = 1$ forall $\alpha \in \Omega(A)$.

The spaces V(A) and E(A)

 $\mathbf{V}(A) =$ span of $\Omega(A)$ in $\mathbb{R}^{X(A)}$, with positive cone

 $\mathbf{V}(A)_+ := \{ t\alpha \mid \alpha \in \Omega, t \ge 0 \}$

Effects are elements $a \in \mathbf{V}(A)^*$ with $0 \le a(\alpha) \le 1 \ \forall \alpha \in \Omega(A)$. *Example:* $\hat{x}(\alpha) = \alpha(x)$ for $x \in X(A)$. Note: $\forall E \in \mathcal{M}(A)$, $\sum_{x \in E} \hat{x} =: u_A, \ u_A(\alpha) = 1$ forall $\alpha \in \Omega(A)$.

It's also useful to define $E(A) = V(A)^*$, but ordered by

$$\mathbf{E}(A)_{+} := \left\{ \sum_{i=1}^{k} t_{i} \widehat{x}_{i} \mid x_{i} \in X(A), \ t_{i} \geq 0 \right\}$$

Joint States

A (non-signaling) joint state on A and B is a mapping

$$\omega: X(A) \times X(B) \rightarrow [0,1]$$

with

(a)
$$(E,F) \in \mathcal{M}(A) \times \mathcal{M}(B) \Longrightarrow \sum_{(x,y) \in E \times F} \omega(x,y) = 1;$$

(b) $x \in X(A), y \in X(B) \Longrightarrow$

$$\omega(x \cdot \,) \in {f V}_+(B)$$
 and $\omega(\,\cdot\,y) \in {f V}_+(A)$

Condition (b) ensures that $\omega \in \Omega(AB)$ has well-defined marginal and conditional states:

$$\omega_1(x):=\sum_{y\in F}\omega(\cdot,y)\in \Omega(A) \quad ext{and} \quad \omega_{2|x}(y):=rac{\omega(x,y)}{\omega_1(x)}\in \Omega(B);$$

similarly for $\omega_2(y), \omega_{1|y}$.

Joint States

Marginal and conditional states are related by a Law of total probability: $\forall E \in \mathcal{M}(A), F \in \mathcal{M}(B)$,

$$\omega_2 = \sum_{x \in E} \omega_1(x) \omega_{2|x}$$
 and $\omega_1 = \sum_{y \in F} \omega_2(y) \omega_{1|y}$

Lemma 0: Every joint state extends to a unique positive linear mapping

$$\widehat{\omega}: \mathbf{E}(A) \to \mathbf{V}(B),$$

such that $\widehat{\omega}(x)(y) = \omega(x, y) \quad \forall x \in X(A), \ y \in X(B).$

Conjugates

Let A be uniform, with rank n. A **conjugate** for A: a triple $(\overline{A}, \gamma_A, \eta_A)$, $\gamma_A : A \simeq \overline{A}$ an isomorphism and η_A is a joint state on A and \overline{A} such that

(a)
$$\eta(x, \gamma_A(y)) = \eta(y, \gamma_A(x))$$
 and

(b)
$$\eta_A(x,\gamma_A(x)) = \frac{1}{n} \forall x \in X(A).$$

Notation: $\gamma_A(x) =: \overline{x}$.

Note that $(\eta_A)_{1|\overline{x}}(x) = 1$. Thus, A sharp $\Rightarrow \eta_A$ uniquely defined (by $\eta_A(x,\overline{y}) = \frac{1}{n}\delta_y(x)$) $\Rightarrow \eta_A$ is symmetric.

Lemma 1: Let A be sharp, spectral, and have a conjugate. Then

$$\langle a, b \rangle := \eta_A(a, \overline{b})$$

is a self-dualizing inner product on $\mathbf{E}(A)$.

Proof: Exercise!

Lemma 1: Let A be sharp, spectral, and have a conjugate. Then

$$\langle a, b \rangle := \eta_A(a, \overline{b})$$

is a self-dualizing inner product on $\mathbf{E}(A)$.

Proof: Exercise! Hints: \langle , \rangle bilinear and symmetric by Lemma 0 and sharpness. By spectrality, $\hat{\eta}$ takes $\mathbf{E}(A)_+$ onto $\mathbf{V}(A)_+$, so, is an order-isomorphism. Spectrality now also implies every $a \in \mathbf{E}(A)$ has a decomposition $a = \sum_{x \in E} t_x x$ for some $E \in \mathcal{M}(A)$ and coefficients $t_x \in \mathbb{R}$. Hence,

$$\langle \boldsymbol{a}, \boldsymbol{a} \rangle = \sum_{x,y \in E \times E} t_x t_y \eta_A(x, \overline{y}) = \frac{1}{n} \sum_{x \in E} t_x^2 \geq 0,$$

with equality only where a = 0. So \langle , \rangle is positive-definite. That it's self-dualizing follows easily from $\hat{\eta}$'s being an order-isomorphism. \Box

Two Corollaries

Let A satisfy the assumptions of Lemma 1. Then

Corollary 1 (Spectral Uniqueness Theorem): Every $a \in \mathbf{E}(A)$ has a unique expansion $a = \sum_{i} t_i e_i$ with e_i sharply distinguishable effects and t_i distinct.

This a gives us a functional calculus: with $a = \sum_{i} t_{i}e_{i}$ as above, define

$$f(a) = \sum_i f(t_i)e_i.$$

Corollary 2: If $\mathcal{M}(A)$ has rank two then the state space $\Omega(A)$ is a euclidean ball (hence, $\mathbf{E}(A)$ is a spin factor).

Processes

A process from A to B is represented by a positive linear mapping

 $au: \mathbf{V}(A) \to \mathbf{V}(B) \text{ with } u_B(\tau(\alpha)) \leq 1 \ \forall \alpha \in \Omega(A).$

Can think of $p = u_B(\tau(\alpha))$ as probability for the process to "fail" on input state α .

(Not every such mapping need count as a processes!)

 τ is **reversible** iff \exists a process τ' such that $\tau' \circ \tau = p$ id: with probability p, τ' reverses τ .

This implies τ is invertible with τ^{-1} positive, i.e., τ is an order-automorphism.

Filters and Homogeneity

A filter for $E \in \mathcal{M}(A)$: a process $\Phi : \mathbf{V}(A) \to \mathbf{V}(A)$ such that $\forall x \in E \quad \exists t_x \ge 0$ with

$$\Phi(\alpha)(x) = t_x \alpha(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all $\alpha \in \Omega(A)$.

Filters and Homogeneity

A filter for $E \in \mathcal{M}(A)$: a process $\Phi : \mathbf{V}(A) \to \mathbf{V}(A)$ such that $\forall x \in E \quad \exists t_x \ge 0$ with

$$\Phi(\alpha)(x) = t_x \alpha(x)$$

for all $\alpha \in \Omega(A)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Filters and Homogeneity

A filter for $E \in \mathcal{M}(A)$: a process $\Phi : \mathbf{V}(A) \to \mathbf{V}(A)$ such that $\forall x \in E \quad \exists t_x \ge 0$ with

$$\Phi(\alpha)(x) = t_x \alpha(x)$$

for all $\alpha \in \Omega(A)$.

Example: For W a density operator on \mathcal{H} , $\Phi : a \mapsto W^{1/2} a W^{1/2}$ is a filter for any eigenbasis of W, reversible iff W is nonsingular.

Appealing to the KV Theorem,

Theorem 1: Let A satisfy hypotheses of Lemma 1. Then TAE:
(a) A has arbitrary reversible filters
(b) V(A) is homogeneous
(c) E(A) is a formally real Jordan algebra.

One can also show that then X(A) is the set of all minimal idempotents in **E**, and $\mathcal{M}(A)$ is the set of Jordan frames, i.e., A is a *Jordan model* (see arXiv: 1206.2897).

Why spectrality?

A joint state $\omega \in \Omega(AB)$ correlating iff $\exists E \in \mathcal{M}(A), F \in \mathcal{M}(B)$, and partial bijection $f \subseteq E \times F$ such that

$$\omega(x,y) > 0 \iff (x,y) \in f.$$

Lemma 2: A sharp and $\omega \in \Omega(AB)$, correlating $\Rightarrow \omega_1$ spectral.

Proof: With
$$f \subseteq E \times F$$
 as above, $\omega_{1|f(x)}(x) = 1$, so $\omega_{1|x}(f(x)) = \delta_x$. By LOTP, $\alpha = \sum_{x \in \mathsf{dom}(f)} \omega_2(f(x)) \delta_x$. \Box

Correlation Postulate: Every state is the marginal of a correlating joint state.

So: CP implies spectrality. (Note affinity with the "purification postulate" of Chiribella et al.)

Memory and Correlation

Can the CP itself be further motivated?

Suppose the outcome of a test $E \in \mathcal{M}(A)$ is recorded in in the state of an ancilla B. Then A and B must be in a joint state ω such that the conditional states $\omega_{2|x} := \beta_x$, $x \in E$, are sharply distinguishable, say by $F \in \mathcal{M}(B)$. Then ω correlates E with F. If the measurement of E doesn't disturb α , then $\alpha = \omega_1$.

So we might adopt

Non-Disturbance Principle: For every state, there is a test that can be recorded in that state without disturbance.

Conclusion:

Four conditions characterize probabilistic models associated with formally real Jordan algebras:

- (1) A is sharp,
- (2) A has a conjugate,
- (3) A satisfies the CP
- (4) A has arbitrary reversible filters

Condition (4) is needed only for homogeneity. Conditions (1)-(3) already yield a rich structure (Corollaries 1, 2).

Questions:

- Can one prove Theorem 1 without using the KV theorem?
- Can Lemma 1 help simplify earlier reconstruction results?
- Monoidal categories of probabilistic models having well-behaved conjugates are automatically dagger-compact, with η_A as "cup". In such a category, is spectrality automatic?

Conclusion:

Four conditions characterize probabilistic models associated with formally real Jordan algebras:

- (1) A is sharp,
- (2) A has a conjugate,
- (3) A satisfies the CP
- (4) A has arbitrary reversible filters

Condition (4) is needed only for homogeneity. Conditions (1)-(3) already yield a rich structure (Corollaries 1, 2).

Questions:

- Can one prove Theorem 1 without using the KV theorem?
- Can Lemma 1 help simplify earlier reconstruction results?
- Monoidal categories of probabilistic models having well-behaved conjugates are automatically dagger-compact, with η_A as "cup". In such a category, is spectrality automatic?