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Motivation

To go beyond “state-dependent” proofs of KS-contextuality for
quantum theory to tests of contextuality for arbitrary operational
theories.1 Part of the larger project of making noncontextuality an
experimentally testable hypothesis that doesn’t presume
determinism, much like local causality.2

1To see how to do this for “state-independent” quantum contextuality
based on Kochen-Specker uncolourability, see R. Kunjwal and R. W. Spekkens,
Phys. Rev. Lett. 115, 110403 (2015).

2See R. W. Spekkens, Phys. Rev. A 71, 052108 (2005), for a detailed
account of the motivations and proposed formalism for this approach.



Previously...

We have obtained noncontextuality inequalities as constraints on
the predictability of measurements with respect to corresponding
preparations under the assumption of noncontextuality for
preparations and/or measurements:

I Noncontextuality inequalities based on KS-uncolourability:
R. Kunjwal and R. W. Spekkens, Phys. Rev. Lett. 115,
110403 (2015).3

I Noncontextuality inequality going beyond the traditional
Kochen-Specker notion of a ‘context’4: Mazurek et al.,
arXiv:1505.06244.

3A more detailed follow-up to this is in the works.
4Namely, in quantum theory, “commutative contexts”: if [A,B] = 0 and

[A,C ] = 0, then B and C provide two different (commutative) contexts for the
measurement of A.



Quick intro to the basic notions that we need...



Operational theory

(P,M, p), where p : (M,P)→ [0, 1] is the probability p(k |M,P)
that k ∈ KM occurs when M ∈M is implemented following
P ∈ P. For each M:∑

k∈KM

p(k |M,P) = 1 ∀P ∈ P. (1)

[k |M] denotes the event: outcome k occurs for measurement M.



Ontological model of an Operational theory

(Λ, µ, ξ), where each preparation P ∈ P is associated with a
distribution µ(λ|P) ∈ [0, 1] such that

∑
λ∈Λ µ(λ|P) = 1 for all

P ∈ P, each [k |M] with the probability ξ(k|M, λ) ∈ [0, 1] that
[k |M] occurs when the ontic state of the system is λ, and for each
M ∈M: ∑

k∈KM

ξ(k|M, λ) = 1 ∀λ ∈ Λ. (2)

Assumption of outcome determinism: for any [k |M],
ξ(k |M, λ) ∈ {0, 1}∀λ ∈ Λ.



An ontological model of an operational theory must be empirically
adequate, that is:

p(k|M,P) =
∑
λ∈Λ

ξ(k|M, λ)µ(λ|P) (3)

for all P ∈ P,M ∈M. This is how an operational theory and its
ontological model fit together.



Operational equivalence of experimental procedures

I [k |M] and [k ′|M ′] operationally equivalent ([k |M] ' [k ′|M ′])
if no preparation procedure yields differing outcome
probabilities for them, i.e.,

∀P ∈ P : p(k|M,P) = p(k ′|M ′,P). (4)

Two measurement procedures M and M ′ are operationally
equivalent, i.e., M ' M ′, if each effect belonging to M is
operationally equivalent to an effect belonging to M ′ and vice
versa.

I P and P ′ operationally equivalent (P ' P ′) if no
measurement event [k|M] yields differing outcome
probabilities for them, i.e.,

p(k|M,P) = p(k |M,P ′) ∀k ∈ KM , (M,KM) ∈M. (5)



What is a ‘context’?

I Any distinction between two operationally equivalent
experimental procedures.5

I Measurement contexts: (a) whether M1 is jointly measured

with M2 (M12) or with M3 (M13), where M
(2)
1 ' M

(3)
1 ' M1,

(b) different operationally equivalent ways of implementing a
fair coin flip measurement.6

I Preparation contexts: (a) different convex decompositions:
I
2 = 1

2 |0〉〈0|+
1
2 |1〉〈1| = 1

2 |+〉〈+|+
1
2 |−〉〈−|, (b) different

purifications: ρA = TrB |ψ〉〈ψ|AB = TrC |φ〉〈φ|AC .

5A distinction that doesn’t make a difference, operationally. ‘Contextuality’:
this distinction sometimes necessarily makes a difference in any ontological
model underlying the operational statistics.

6M. D. Mazurek, M. F. Pusey, R. Kunjwal, K. J. Resch, and R. W.
Spekkens, An experimental test of noncontextuality without unwarranted
idealizations, arXiv:1505.06244 [quant-ph] (2015).



Noncontextuality (or Leibnizianity): identity of
indiscernibles

If there exists no operational way to distinguish two things, then
they are physically identical.7

I Measurement noncontextuality:

[k |M] ' [k ′|M ′]⇒ ξ(k |M, λ) = ξ(k ′|M ′, λ) ∀λ ∈ Λ

I Preparation noncontextuality:

P ' P ′ ⇒ µ(λ|P) = µ(λ|P ′) ∀λ ∈ Λ

7Contrapositively: if two things are non-identical, or physically distinct, then
there exists an operational way to distinguish them.



Questions?



Specker’s compatibility scenario: measurement procedures



Preparation procedures



Quantities of interest



Noncontextuality inequalities

Only for ηave = 1 do these inequalities resemble Kochen-Specker
inequalities.



Deterministic vertices

I 8 deterministic vertices,
{000, 001, 010, 011, 100, 101, 110, 111}, characterized by 4 KS
inequalities: no more than 2 anticorrelated pairs (one
inequality) and anticorrelation of any pair is less than the sum
of anticorrelations of the remaining pairs (three inequalities).

∑
(ij)

ξ(Xi 6= Xj |Mij , λ) ≤ 2 (6)

ξ(Xi 6= Xj |Mij , λ) ≤ ξ(Xj 6= Xk |Mjk , λ) + ξ(Xk 6= Xi |Mki , λ)

∀(ijk) ∈ {(123), (231), (312)} (7)

(Relabelling Xk shows equivalence with the first inequality.)



Indeterministic vertices

ξ(Xi = 0,Xj = 1|Mij , λ) = ξ(Xi = 1,Xj = 0|Mij , λ) =
1

2
∀(ij) ∈ {(12), (23), (31)}, (8)

ξ(Xi = 0,Xj = 1|Mij , λ) = ξ(Xi = 1,Xj = 0|Mij , λ) =
1

2

ξ(Xj = 0,Xk = 0|Mjk ,P) = ξ(Xj = 1,Xk = 1|Mjk , λ) =
1

2

ξ(Xk = 0,Xi = 0|Mki ,P) = ξ(Xk = 1,Xi = 1|Mki , λ) =
1

2
for (ijk) ∈ {(123), (231), (312)}. (9)

We allow preparations to sample from λ corresponding to
indeterministic vertices. Traditionally, you restrict yourself to
deterministic vertices.



In terms of predictability:



Is there a quantum realization?

I If there is, it cannot be in terms of sharp/projective
measurements. Firstly, three pairwise commuting projective
measurements admit simultaneous value assignments and
therefore can’t even violate the 2/3 Kochen-Specker bound on
anticorrelation. Secondly, the measurements {M1,M2,M3}
necessarily have to be unsharp/nonprojective in order to admit
non-unique joint measurements Mij and M ′ij for pairs
{Mi ,Mj}.

I Since the measurements are nonprojective, we are not
guaranteed the existence of preparations with respect to which
they perfectly predictable. Hence, it’s not clear ηave = 1 is
possible with nonprojective measurements.

I We construct a qubit realization with unsharp measurements
and imperfect predictability.



Quantum violation

p(anti|M∗,P∗) + p(anti|M ′∗,P⊥∗ ) ≤ 2(1− 1

3
ηave)

I Measurements: Mi (i = 1, 2, 3) is the qubit POVM

{E (i)
0 ,E

(i)
1 }, given by

E
(i)
Xi
≡ 1

2
I + (−1)Xi

1

2
η0~σ · n̂i , (10)

I Preparations: Pi is the qubit state given by rank 1 projector
|+ n̂i 〉〈+n̂i | and P⊥i by | − n̂i 〉〈−n̂i |, for i = 1, 2, 3. P∗ is a
qubit state given by |+ n̂∗〉〈+n̂∗| and P⊥∗ by | − n̂∗〉〈−n̂∗|.

Pairwise joint measurability of {M1,M2,M3}:

η0 ≤ min
(i ,j)

1√
1 +

√
1− (n̂i · n̂j)2

. (11)



Joint measurements

Mij : E
(ij)
XiXj
≡ 1

2

(
1 + (−1)Xi+Xjη2

0 n̂i .n̂j

)
Π
n̂ijXi Xj

(12)

where

Π
n̂ijXi Xj

≡ 1

2
(I + ~σ.n̂ijXiXj

),

n̂ijXiXj
≡
η0((−1)Xi n̂i + (−1)Xj n̂j)− (−1)Xi+Xj~aij

1 + (−1)Xi+Xjη2
0 n̂i .n̂j

,

M ′ij : E
′(ij)
XiXj
≡ 1

2

(
1 + (−1)Xi+Xjη2

0 n̂i .n̂j

)
Π
n̂′ijXi Xj

(13)

where

Π
n̂′ijXi Xj

≡ 1

2
(I + ~σ.n̂′ijXiXj

),

n̂′ijXiXj
≡
η0((−1)Xi n̂i + (−1)Xj n̂j) + (−1)Xi+Xj~aij

1 + (−1)Xi+Xjη2
0 n̂i .n̂j

,



and

~aij ≡ (0,
√

1 + η4
0(n̂i .n̂j)2 − 2η2

0, 0).



Choice of measurement/preparation directions

n̂1 ≡ (0, 0, 1), n̂2 ≡ (

√
3

2
, 0,−1

2
), n̂3 ≡ (−

√
3

2
, 0,−1

2
), n̂∗ ≡ (0, 1, 0),

η0 ∈ [0,
√

3− 1] or 0 ≤ η0 ≤ 0.732







Quantum value:

p(anti|M∗,P∗) + p(anti|M ′∗,P⊥∗ )

= 1 + η2
0 cos

π

3
+

√
1 + η4

0

(
cos

π

3

)2
− 2η2

0. (14)

Noncontextuality bound:

2
(

1− η0

3

)
(15)

The largest violation of the inequality for our choice of preparations
and measurements occurs when ηave = η0 ≈ 0.4566 so that the
violation is 0.1793: in this case the noncontextual bound on the
anticorrelation is 1.6956 and the quantum value is 1.8749.



  

Contextuality 
witness



Generalization to arbitrary n > 3

I Odd n ≥ 3: We compute

p(anti|M∗,P) ≡1

n

n∑
i=1

p(Xi 6= Xj |Mij ,P) (16)

where j = i + 1 mod n for a given i . We are also interested
in p(anti|M ′∗,P).

I Even n ≥ 4: We compute

p(chained|M∗,P) ≡ 1

n

n−1∑
i=1

p(Xi = Xj |Mij ,P)

+
1

n
p(Xn 6= X1|Mn1,P). (17)

We are also interested in p(chained|M ′∗,P).



Operational equivalences

M
(2)
1 ' M

(n)
1 ' M1,

M
(1)
2 ' M

(3)
2 ' M2,

...

M
(n−1)
n ' M

(1)
n ' Mn. (18)

M
′(2)
1 ' M

′(n)
1 ' M1,

M
′(1)
2 ' M

′(3)
2 ' M2,

...

M
′(n−1)
n ' M

′(1)
n ' Mn. (19)

P
(ave)
1 ' P

(ave)
2 ' · · · ' P

(ave)
n ' P

(ave)
∗ . (20)



Noncontextuality inequalities

p(anti|M∗,P∗) + p(anti|M ′∗,P⊥∗ ) ≤ 2

(
1− 1

n
ηave

)
, (21)

for odd n ≥ 3, and

p(chained|M∗,P∗) + p(chained|M ′∗,P⊥∗ ) ≤ 2

(
1− 1

n
ηave

)
, (22)

for even n ≥ 4, where

ηave ≡
1

2n

n∑
i=1

(
η(Mi ,Pi ) + η(Mi ,P

⊥
i )
)
. (23)



p(anti|M∗,P∗) + p(anti|M∗,P⊥∗ ) ≤ 2

(
1− 1

n
ηave

)
, (24)

p(anti|M∗,P∗)

≤ n − 1

n
+ 2

(1− ηave)

n
, (25)

for odd n-cycle scenarios, and

p(chained|M∗,P∗) + p(chained|M∗,P⊥∗ ) ≤ 2

(
1− 1

n
ηave

)
, (26)

p(chained|M∗,P∗)

≤ n − 1

n
+ 2

(1− ηave)

n
, (27)

for even n-cycle scenarios.



Quantum violation

  

Z

X



Odd n

I n̂i .n̂j = cos n−1
n π, where i ∈ {1, . . . , n} and j = (i + 1)

mod n.

I That is, our measurements are in an equatorial plane of the
Bloch sphere, say the ZX plane, such that n̂i and n̂j are at an
angle of n−1

n π relative to each other:

n̂k ≡
(

sin (k−1)(n−1)
n π, 0, cos (k−1)(n−1)

n π
)

, for all

k ∈ {1, 2, . . . , n}, and, as before, n̂∗ ≡ (0, 1, 0).

I Our construction of the pairwise joint measurements proceeds
exactly as in the n = 3 case described earlier, the joint

POVMs given by Mij = {E (ij)
XiXj
} and M ′ij = {E ′(ij)XiXj

}.



Even n

I n̂i .n̂j = cos πn , where i ∈ {1, . . . , n − 1} and j = i + 1, and

n̂n.n̂1 = cos (n−1)π
n : n̂k ≡ (sin (k−1)π

n , 0, cos (k−1)π
n ) for all

k ∈ {1, 2, . . . , n}. Also, n̂∗ ≡ (0, 1, 0).

I The joint POVMs are given by Mij = {F (ij)
XiXj
} and

M ′ij = {F ′(ij)XiXj
}, where F

(n1)
XnX1

= E
(n1)
XnX1

and F
′(n1)
XnX1

= E
′(n1)
XnX1

,

while for i ∈ {1, . . . , n − 1}, j = i + 1:

F
(ij)
XiXj
≡ 1

2

(
1− (−1)Xi+Xjη2

0 n̂i .n̂j

)
Π
n̂ijXi Xj

(28)

where

Π
n̂ijXi Xj

≡ 1

2
(I + ~σ.n̂ijXiXj

),

n̂ijXiXj
≡
η0((−1)Xi n̂i + (−1)Xj n̂j) + (−1)Xi+Xj~aij

1− (−1)Xi+Xjη2
0 n̂i .n̂j

,



F
′(ij)
XiXj
≡ 1

2

(
1− (−1)Xi+Xjη2

0 n̂i .n̂j

)
Π
n̂′ijXi Xj

(29)

where

Π
n̂′ijXi Xj

≡ 1

2
(I + ~σ.n̂′ijXiXj

),

n̂′ijXiXj
≡
η0((−1)Xi n̂i + (−1)Xj n̂j)− (−1)Xi+Xj~aij

1− (−1)Xi+Xjη2
0 n̂i .n̂j

,

and

~aij ≡ (0,
√

1 + η4
0(n̂i .n̂j)2 − 2η2

0, 0).



The quantum value for both odd and even n takes the same form
given our construction. For odd n ≥ 3:

p(anti|M∗,P∗) + p(anti|M ′∗,P⊥∗ )

= 1 + η2
0 cos

π

n
+

√
1 + η4

0

(
cos

π

n

)2
− 2η2

0. (30)

For even n ≥ 4:

p(chained|M∗,P∗) + p(chained|M ′∗,P⊥∗ )

= 1 + η2
0 cos

π

n
+

√
1 + η4

0

(
cos

π

n

)2
− 2η2

0. (31)

The noncontextuality bound is 2
(
1− η0

n

)
. The quantum violation

is therefore given by

Qviol ≡
√

1 + η4
0

(
cos

π

n

)2
− 2η2

0 + η2
0 cos

π

n
+ 2

η0

n
− 1 (32)



n Qviol Optimal η0

3 0.1793 0.4566

4 0.1557 0.5029

5 0.1393 0.5412

6 0.1266 0.5727

7 0.1164 0.5990

8 0.1079 0.6213

9 0.1007 0.6403

10 0.0944 0.6569

11 0.0889 0.6715

12 0.0841 0.6822

13 0.0798 0.6960

14 0.0759 0.7064

99 0.0160 0.8881

100 0.0159 0.8887

199 0.0086 0.9211

200 0.0085 0.9213



Takeaway

I Noncontextuality inequalities can be derived for Specker’s
compatibility scenario without presuming outcome
determinism or the validity of quantum theory. At least one of
these even admits a quantum violation on a qubit.

I Unsharp measurements are fundamental to testing for
noncontextuality in Specker’s compatibility scenario.

I Our construction – of the noncontextuality inequalities and
their quantum violation – for n = 3 can be generalized to
arbitrary n > 3, both odd and even.

I Work-in-progress: It remains to show how all known examples
of “state-dependent” KS-contextuality can be made robust in
this operational approach. This will complement our work on
noncontextuality inequalities from KS-uncolourability proofs.
It also remains to tackle the case “state-independent”
KS-contextuality in quantum theory that does not arise from
KS-uncolourability (Yu-Oh 13 ray example).



Questions?8

8If the answers don’t satisfy you, go see this guy.
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