

Quantum Protocols within Spekkens' Toy Model

Leonardo Disilvestro, Damian Markham

Paris Center for Quantum Computing (Telecom ParisTech), Paris

QPL, Glasgow

June 8, 2016

- Contextuality and non-locality are ubiquitous in quantum theory
- We study quantum protocols within Spekkens' toy model¹ a classical, realist, and **local** theory phenomenologically very close to quantum theory

¹R. W. Spekkens, Phys. Rev. A, 75, 032110 (2007)

- Contextuality and non-locality are ubiquitous in quantum theory
- We study quantum protocols within Spekkens' toy model¹ a classical, realist, and local theory phenomenologically very close to quantum theory

¹R. W. Spekkens, Phys. Rev. A, 75, 032110 (2007)

Leonardo Disilvestro, Damian Markham

Quantum computations in the Toy Model

Intro

A few remarks on the toy model

<u>States</u>

- Underlying states \rightarrow *Ontic* (= of reality/existence) (i.e. the LHV)
- Observable states → *Epistemic* (= of knowledge)
- Epistemic restriction: 'Knowledge Balance Principle' (KBP)
- KBP \Rightarrow uniform distributions over the ontic states

²B. Coecke, B. Edwards, R. Spekkens, *Phase groups and the origin of non-locality for qubits* (2011)

Intro

A few remarks on the toy model

<u>States</u>

- Underlying states \rightarrow *Ontic* (= of reality/existence) (i.e. the LHV)
- Observable states → *Epistemic* (= of knowledge)
- Epistemic restriction: 'Knowledge Balance Principle' (KBP)
- $\bullet~{\rm KBP}$ \Rightarrow uniform distributions over the ontic states

Stabilizer structure

- Qubit stabilizer pprox Toy stabilizer
- Difference between quantum and toy well understood²
- However stabilizer formalism generalize the protocol more straightforwardly
- Toy model is local but steerable
- Computationally very weak model, i.e. $\oplus L$ (Gottesman-Knill)

²B. Coecke, B. Edwards, R. Spekkens, *Phase groups and the origin of non-locality for qubits* (2011)

Intro

Summary of our results

Leonardo Disilvestro, Damian Markham

Toy stabilizer notation [Pusey $(12)^3$]

For a single system define a group composed by

$$G_1 = \left\{ \mathcal{I} = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right), \mathcal{X} = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right), \mathcal{Z} = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right), \mathcal{Y} = \left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) \right\}$$

³M. Pusey, Found. Phys. 42, 688 (2012)

Toy stabilizer notation [Pusey $(12)^3$]

For a single system define a group composed by

$$G_{1} = \left\{ \mathcal{I} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \mathcal{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \mathcal{Z} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \mathcal{Y} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \right\}$$

Analogously to quantum, all states over n toy systems are described by

the stabilizer group
$$S = \{s_1, \ldots, s_{|S|}\} = \overbrace{\langle g_1, \ldots, g_l \rangle}^{Generators}$$

S identifies a diagonal matrix

$$\rho_S = rac{1}{4^n} \prod_{g \in Gen(S)} (\mathcal{I} + g)$$

where the elements of ρ_S are *probabilities* of each ontic state

³M. Pusey, Found. Phys. 42, 688 (2012)

Leonardo Disilvestro, Damian Markham

Toy state evolution

1. Reversible transformations [Pusey'12] : $4^n \times 4^n$ permutation matrices \tilde{U} over ontic states

$$\rho_{\mathcal{S}}' = \tilde{U}\rho_{\mathcal{S}}\tilde{U}^{\mathcal{T}},$$

Toy state evolution

1. Reversible transformations [Pusey'12] : $4^n \times 4^n$ permutation matrices \tilde{U} over ontic states

$$\rho_{\mathcal{S}}' = \tilde{U} \rho_{\mathcal{S}} \tilde{U}^{\mathcal{T}},$$

2. Measurements [Pusey'12]: given a toy state ρ_S

Measurement:
$$M = \sum_{i} \alpha_{i} P_{T_{i}}$$
, where $\sum_{i} P_{T_{i}} = \mathcal{I}^{n}$

Probability outcome α_i : $prob(\alpha_i) = Tr(P_{T_i}\rho_s)$,

Resulting state : $\rho_{S'} = \langle T_i, \{ \text{generators of } S \text{ compatible with } T_i \} >$

Toy state evolution

1. Reversible transformations [Pusey'12] : $4^n \times 4^n$ permutation matrices \tilde{U} over ontic states

$$\rho_{\mathcal{S}}' = \tilde{U} \rho_{\mathcal{S}} \tilde{U}^{\mathcal{T}},$$

2. Measurements [Pusey'12]: given a toy state ρ_S

Measurement:
$$M = \sum_{i} \alpha_{i} P_{T_{i}}$$
, where $\sum_{i} P_{T_{i}} = \mathcal{I}^{n}$

Probability outcome α_i : $prob(\alpha_i) = Tr(P_{T_i}\rho_s)$,

Resulting state : $\rho_{S'} = \langle T_i, \{ \text{generators of } S \text{ compatible with } T_i \} >$

3. Generalized Transformation : 'Toy CPTP'

$$\begin{array}{ll} \textit{Global permutation}: & \sigma_{S}^{AR} = \tilde{U}^{AR}(\rho^{A} \otimes \sigma^{R})\tilde{U}^{AR^{T}} \\ \textit{Ancilla Measurement}: & M = \sum_{i} q_{i} l^{A} \otimes P_{T_{i}}^{R} \\ \textit{Ensamble}: & \{\textit{prob}(q_{i}), \ \chi_{S_{i}^{\prime}}^{A} = \textit{Tr}_{R}(\chi_{S_{i}^{\prime}}^{AR})\}, \end{array}$$

toy states $\leftrightarrow \rightarrow$ quantum states

•
$$S^{Q} = \{XX, ZZ, -YY, II\} \not\Rightarrow S^{T} = \{XX, ZZ, -YY, II\}$$
 not a toy state
(quantum-ly $XZ = -iY$, while toy-ly $XZ = Y$)

toy states $\leftrightarrow \rightarrow$ quantum states

•
$$S^{Q} = \{XX, ZZ, -YY, II\} \not\rightarrow S^{T} = \{XX, ZZ, -YY, II\}$$
 not a toy state
(quantum-ly $XZ = -iY$, while toy-ly $XZ = Y$)

• However, we can use the generators:

$$S^{Q} = \{XX, ZZ, -YY, II\} \text{ is generated by } \begin{cases} G_{1}^{Q} = \langle XX, ZZ \rangle, \\ G_{2}^{Q} = \langle XX, -YY \rangle, \\ G_{3}^{Q} = \langle ZZ, -YY \rangle, \end{cases}$$

toy states $\leftrightarrow \rightarrow$ quantum states

•
$$S^{Q} = \{XX, ZZ, -YY, II\} \not\rightarrow S^{T} = \{XX, ZZ, -YY, II\}$$
 not a toy state
(quantum-ly $XZ = -iY$, while toy-ly $XZ = Y$)

• However, we can use the generators:

$$S^{Q} = \{XX, ZZ, -YY, II\} \text{ is generated by } \begin{cases} G_{1}^{Q} = \langle XX, ZZ \rangle, \\ G_{2}^{Q} = \langle XX, -YY \rangle, \\ G_{3}^{Q} = \langle ZZ, -YY \rangle, \end{cases}$$

implying

$$\begin{split} G_1^Q &\to G_1^T = \{\mathcal{X}\mathcal{X}, \mathcal{Z}\mathcal{Z}\} \text{ generates } S_1^T = \{\mathcal{X}\mathcal{X}, \mathcal{Z}\mathcal{Z}, \mathcal{Y}\mathcal{Y}, \mathcal{I}\mathcal{I}\}\\ G_2^Q &\to G_2^T = \{\mathcal{X}\mathcal{X}, -\mathcal{Y}\mathcal{Y}\} \text{ generates } S_2^T = \{\mathcal{X}\mathcal{X}, -\mathcal{Z}\mathcal{Z}, -\mathcal{Y}\mathcal{Y}, \mathcal{I}\mathcal{I}\},\\ G_3^Q &\to G_3^T = \{\mathcal{Z}\mathcal{Z}, -\mathcal{Y}\mathcal{Y}\} \text{ generates } S_3^T = \{-\mathcal{X}\mathcal{X}, \mathcal{Z}\mathcal{Z}, -\mathcal{Y}\mathcal{Y}, \mathcal{I}\mathcal{I}\}, \end{split}$$

toy states $\leftrightarrow \rightarrow$ quantum states

•
$$S^{Q} = \{XX, ZZ, -YY, II\} \not\rightarrow S^{T} = \{XX, ZZ, -YY, II\}$$
 not a toy state
(quantum-ly $XZ = -iY$, while toy-ly $XZ = Y$)

• However, we can use the generators:

$$S^{Q} = \{XX, ZZ, -YY, II\} \text{ is generated by } \begin{cases} G_{1}^{Q} = < XX, ZZ >, \\ G_{2}^{Q} = < XX, -YY >, \\ G_{3}^{Q} = < ZZ, -YY >, \end{cases}$$

implying

$$\begin{split} G_1^Q &\to G_1^T = \{\mathcal{X}\mathcal{X}, \mathcal{Z}\mathcal{Z}\} \text{ generates } S_1^T = \{\mathcal{X}\mathcal{X}, \mathcal{Z}\mathcal{Z}, \mathcal{Y}\mathcal{Y}, \mathcal{I}\mathcal{I}\}\\ G_2^Q &\to G_2^T = \{\mathcal{X}\mathcal{X}, -\mathcal{Y}\mathcal{Y}\} \text{ generates } S_2^T = \{\mathcal{X}\mathcal{X}, -\mathcal{Z}\mathcal{Z}, -\mathcal{Y}\mathcal{Y}, \mathcal{I}\mathcal{I}\},\\ G_3^Q &\to G_3^T = \{\mathcal{Z}\mathcal{Z}, -\mathcal{Y}\mathcal{Y}\} \text{ generates } S_3^T = \{-\mathcal{X}\mathcal{X}, \mathcal{Z}\mathcal{Z}, -\mathcal{Y}\mathcal{Y}, \mathcal{I}\mathcal{I}\}, \end{split}$$

• Note quantum-ly [X, Z] = 0, while toy-ly $[\mathcal{X}, \tilde{Z}] = 0 = [\tilde{X}, \mathcal{Z}]$

Translation criteria

Equivalent \equiv preserves some key figure of merit

Difficulties:

- 1. Criteria fails when quantum protocol is non-local (e.g. Mermin square)
- 2. Ambiguity due to different group structure

i.e. quantum:
$$XZ = -iY$$
, toy: $XZ = Y$

Need a way to ensure consistency

Proof sketch:

Idea: use the stabilizer nature of the toy model

Mixed state

Purification

 $\rho_{T}^{A} \quad \xleftarrow{?}{} \rho_{T}^{AR} \text{ , s.t. } Tr_{R}(\rho_{T}^{AR}) = \rho_{T}^{A}$

Proof sketch:

Idea: use the stabilizer nature of the toy model

Mixed state

Purification

 $\rho_T^A \quad \xleftarrow{?} \quad \rho_T^{AR} \text{ , s.t. } Tr_R(\rho_T^{AR}) = \rho_T^A$

Proof sketch:

Idea: use the stabilizer nature of the toy model

Mixed state

Purification

Proof sketch:

Idea: use the stabilizer nature of the toy model

Mixed state

Purification

note $\forall s = s^A \otimes s^R \in S_Q^{AR}$

$$Tr_R(s^A \otimes s^R) = \begin{cases} 0 & \text{if } s^R \neq \mathcal{I}^R, \\ s^A & \text{if } s^R = \mathcal{I}^R. \end{cases}$$

Proof sketch:

Idea: use the stabilizer nature of the toy model

Proof sketch:

Idea: use the stabilizer nature of the toy model

Toy-Quantum ambiguity is pushed where it doesn't matter

Purifications & no-bit commitment

Imply

- No-go theorem for perfect and imperfect toy bit commitment
- Proof: exactly as in the quantum case!

Error correction

- We show $\forall [n, k, d]^Q \longrightarrow [n, k, d]^{toy}$, with same correcting properties
- Any toy $[2k1, 1, k]^{toy}$ E.C. code is equivalent to a (k, 2k1) secret sharing code

Key remarks

- Cloning is impossible in the toy model
- Information is spread through the resource
- Syndrome/errors is recovered through permutations/stabilizer interplay
- Choice of generators

- 1. (Blindness) Bob gains no info about the computation he performs
- 2. (*Verified*) Bob's cheats or deviations from the agreed instruction are discovered with high probability

 $^{^{\}rm 4}$ B. Reichardt, R. Unger, U. Vazirani. Classical command of quantum systems. Nature, 2013. $^{\rm 5}$ J. Fitzsimons, E. Kashefi. Unconditionally verifiable blind computation, arXiv:1203.5217 2012

- 1. (Blindness) Bob gains no info about the computation he performs
- 2. (*Verified*) Bob's cheats or deviations from the agreed instruction are discovered with high probability

Big open question: can quantum computation be verified classically ...?

Our question: are contextual resources needed?

- [RUV⁴] explicitly uses Bell's tests
- [FK⁵]
 - 1. graph states [toy version, Pusey '12]
 - 2. measurement based quantum computation
 - 3. trapification & randomness

⁴B. Reichardt, R. Unger, U. Vazirani. Classical command of quantum systems. Nature, 2013.

⁵J. Fitzsimons, E. Kashefi. Unconditionally verifiable blind computation, arXiv:1203.5217 2012

Blind and verified computation (ii)

<u>Outline</u>

- Client weaker than server (no 'toy entanglement' and bounded computational power)
- Slight extension of the toy model to allow for classical control
 - Needed to *define* the protocol
 - Not a key issue
 - Gaussian motivated
- probability accepting an incorrect computation $p_{fail} < 1 \frac{1}{2n}$

What does it imply?

- Suggest that structure of FK is Bell-local
- Therefore steering correlations should be enough

Blind and verified computation (ii)

<u>Outline</u>

- Client weaker than server (no 'toy entanglement' and bounded computational power)
- Slight extension of the toy model to allow for classical control
 - Needed to *define* the protocol
 - Not a key issue
 - Gaussian motivated
- probability accepting an incorrect computation $p_{fail} < 1 rac{1}{2n}$

What does it imply?

- Suggest that structure of FK is Bell-local
- Therefore steering correlations should be enough

Recent work² provides a FK version based on steering

 $^{^2\}text{A}.$ Cheorghiu, P. Wallden and E. Kashefi, Rigidity of quantum steering and one-sided device independent verifiable quantum computation, arXiv:1512.04401

Considerations

Our contribution

- A framework where toy protocols can be analyzed
- $\bullet~$ Despite classical and no-cloning $\rightarrow~$ error correction
- Properties of the encoding \rightarrow no bit commitment, secret sharing
- $\bullet\,$ Despite locality $\to\,$ can perform toy blind and verified

Perspective

- Define a Gaussian blind and verified protocol
- Provide a generalized translation criteria

Take home message

- Toy stabilizer protocols are non-trivial
- Steering correlations suffice for many interesting protocols

Considerations

Our contribution

- A framework where toy protocols can be analyzed
- $\bullet~$ Despite classical and no-cloning $\rightarrow~$ error correction
- Properties of the encoding \rightarrow no bit commitment, secret sharing
- $\bullet\,$ Despite locality $\to\,$ can perform toy blind and verified

Perspective

- Define a Gaussian blind and verified protocol
- Provide a generalized translation criteria

Take home message

- Toy stabilizer protocols are non-trivial
- Steering correlations suffice for many interesting protocols

Thank you for listening!