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Abstract

We introduce orthogonal quantum Latin squares, which restrict to traditional
orthogonal Latin squares, and investigate their application in quantum information
science. We use quantum Latin squares to build maximally entangled bases, and
show how mutually unbiased maximally entangled bases can be constructed in
square dimension from orthogonal quantum Latin squares. We also compare our
construction to an existing construction due to Beth and Wocjan [20] and show
that ours is strictly more general.

1 Introduction

In this paper we introduce a notion of orthogonality between quantum Latin squares
(QLSs) [13], mathematical objects which generalise Latin squares. We use this
concept to give a new construction of maximally entangled mutually unbiased bases
(MUBs), extending existing known techniques for Latin squares [18, 20]. In addition
we prove that our construction can produce bases that are unobtainable by existing
methods [18, 20]. We also introduce the concept of mutually weak orthogonal quantum
Latin squares (MOQLS) which generalise mutually orthogonal Latin squares (MOLS),
about which a significant body of research exists in connection with quantum information,
and particularly pertaining to the connection between MOLS and MUBs [5, 10, 14].
Mutually unbiased bases are of fundamental importance to quantum information, as
they capture the physical notion of complementary observables, quantities that cannot
be simultaneously measured. Entanglement is one of the central phenomena of quantum
theory that is at the foundation of quantum information and computation.

The results presented in this paper were developed using the graphical calculus of
categorical quantum mechanics (CQM), and we have made use of it where we believe it
elucidates some detail. For those unfamiliar with CQM, there is a short introduction of the
concepts necessary to understand this paper in Appendix A; for a thorough introduction
please refer to [1, 2, 6]. Everything that we present here is in the category FHilb of finite
Hilbert spaces and linear maps, but could be interpreted in any monoidal category such
as Rel with quantum-like properties, which have been extensively researched as quantum
toy theories.
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We start with a definition of quantum Latin squares.

Definition 1. A quantum Latin square of order n is an n × n array of elements of the
Hilbert space Cn, such that every row and every column is an orthonormal basis.

Example 2. Here is an example of a quantum Latin square given in terms of the
computational basis states |i〉 for i ∈ {0, ..., 9}, and the following states:

|a〉 :=
1
√

3
(|3〉 + |4〉 + i|5〉) (1)

|b〉 :=
1
√

6
(2|3〉 − |4〉 + i|5〉) (2)

|c〉 :=
1

√
14

(−2i|3〉 − i|4〉 + 3|5〉) (3)

|α〉 :=
1
√

3
(|0〉 + |1〉 + |2〉) (4)

|β〉 :=
1
√

3
(|0〉 + e

2πi
3 |1〉 + e

−2πi
3 |2〉) (5)

|γ〉 :=
1
√

3
(|0〉 + e

−2πi
3 |1〉 + e

2πi
3 |2〉) (6)

|0〉 |2〉 |1〉 |3〉 |5〉 |4〉 |6〉 |8〉 |7〉

|2〉 |1〉 |0〉 |5〉 |4〉 |3〉 |8〉 |7〉 |6〉

|1〉 |0〉 |2〉 |4〉 |3〉 |5〉 |7〉 |6〉 |8〉

|6〉 |8〉 |7〉 |0〉 |2〉 |1〉 |3〉 |5〉 |4〉

|8〉 |7〉 |6〉 |2〉 |1〉 |0〉 |5〉 |4〉 |3〉

|7〉 |6〉 |8〉 |1〉 |0〉 |2〉 |4〉 |3〉 |5〉

|a〉 |c〉 |b〉 |6〉 |8〉 |7〉 |α〉 |γ〉 |β〉

|c〉 |b〉 |a〉 |8〉 |7〉 |6〉 |γ〉 |β〉 |α〉

|b〉 |a〉 |c〉 |7〉 |6〉 |8〉 |β〉 |α〉 |γ〉

It can be checked that every row and every column is an orthonormal basis.

Definition 3 (Latin square). A Latin square is a QLS with entries that all come from
the computational basis. For those who are familiar with the traditional definition, it is
recovered by mapping each computational basis state to a different symbol.

The main result of this paper is a construction of mutually unbiased maximally
entangled bases from orthogonal QLSs. We now define the necessary concepts.

Definition 4 (Mutually unbiased bases). Two orthonormal bases |ai〉 and |bj〉 for a
Hilbert space H of dimension n are mutually unbiased when, for all i, j ∈ {0, ..., n−1} [3]:

|〈ai |bj〉|
2 =

1

n
(7)

Definition 5 (Maximally entangled state). A maximally entangled state of a bipartite
system is a state |ψ〉 of a product Hilbert space HA ⊗ HB with dim(HB) = n, such
that the partial trace over one of the systems of its density operator ρAB = |ψ〉〈ψ| is
proportional to the identity. i.e [11].

ρA :=
∑

k=0

(idA ⊗ 〈k|)ρAB(idA ⊗ |k〉) =
1

n
idA⊗B (8)
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Remark 1. For the Hilbert space H ⊗ H with dim(H) = n, all maximally entangled
states are of the following form, where U is a unitary linear map and is the classical
structure (see Appendix A) corresponding to the orthonormal basis |k〉 [16]:

|U〉 :=
1
√

n

n−1∑

k=0

|k〉 ⊗ U |k〉 or equivalently |U〉 :=
1
√

n
U (9)

Definition 6 (Maximally entangled basis). A maximally entangled basis (MEB) for a
bipartite system represented by a tensor product Hilbert space H⊗H, is an orthonormal
basis such that each basis state is maximally entangled.

Two MEBs A := |Ai〉 and B := |Bi〉 are equivalent when there exist unitaries U and
V and complex numbers of modulus 1, ci such that:

Ai

= ci

Bi

U V
(10)

In Section 2 we introduce our main result, the most general construction of mutually
unbiased bases of the three presented in this paper. We introduce orthogonal quantum
Latin squares and show how they can be used to construct MUBs, and we construct an
explicit example. In Section 3 we start with traditional orthogonality of Latin squares
and then show that the definition of orthogonality for QLSs in Section 2 generalises it. In
Section 4 we present Beth and Wocjan’s construction for MUBs in square dimension, and
show that ours is strictly more general. In Section 5 we explain the correspondence
between unitary error bases and maximally entangled bases and introduce mutually
unbiased error bases. Finally in Section 6 we introduce mutually weak orthogonal
quantum Latin squares, which generalise mutually orthogonal Latin squares.

Acknowledgements

The author is grateful to Dominic Verdon and Jamie Vicary for useful discussions, and
to EPSRC for financial support.

2 New construction for square dimension MUBs

In this section we introduce the main result of this paper, a new construction for mutually
unbiased maximally entangled bases. In order to formulate our construction we introduce
weak orthogonal quantum Latin squares which, as we will show in Section 3, reduce to
traditional orthogonal Latin squares. It will be useful to introduce some notation for
quantum Latin squares. Given a QLS Q we will denote the vector appearing in the ith

column of the jth row as |Qij〉.
Before the main result it will be requisite to define generalised Hadamards.

Definition 7 (Hadamard, see [4], Definition 2.1). A Hadamard matrix of order n is an
n × n matrix H with the following properties for all i, j, which we write in both matrix
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and index form:

|Hij| = 1 HijH
∗
ij = 1 (11)

H ◦ H† = n In
∑

p HipH
∗
jp = n δij (12)

H† ◦ H = n In
∑

p H∗
piHpj = n δij (13)

We now introduce a method for constructing MEBs given as input a family of
Hadamards and a quantum Latin square. This construction is in fact dual to the quantum
shift-and-multiply method for constructing unitary error bases [13], as we will explain in
Section 5.

Definition 8 (Quantum Latin square maximally entangled basis). Given a quantum
Latin square Q and a family of Hadamards Hj , a quantum Latin square maximally
entangled basis B(Q, Hj) is defined as follows:

A :=

{

Aij =
1
√

n

n−1∑

k=0

|k〉 ⊗ |Qkj〉〈k|Hj|i〉 such that i, j ∈ {0, .., n − 1}

}

(14)

Lemma 9. Quantum Latin square maximally entangled bases are maximally entangled
bases.

Proof. This MEB construction is the dual of the quantum shift-and-multiply basis
construction, for a proof of the correctness of that construction see [13, Theorem 19].

Definition 10 (Weak orthogonal quantum Latin squares). Given a pair of QLSs P and
Q with vector entries |Pij〉 and |Qij〉 respectively, they are weak orthogonal when for all
i, j ∈ {0, .., n − 1}, there exists unique t ∈ {0, ..., n − 1} such that:

n−1∑

k=0

|k〉〈Qki|Pkj〉 = |t〉 (15)

In words: if we take any row from P and any row from Q and compute the componentwise
inner product of their vector entries, the resulting n numbers will always be n − 1 zeros
and a single 1. If the 1 appears in the tth column then the output state of the linear map
above will be |t〉.

Example 11. We present a pair of 9 × 9 weak orthogonal quantum Latin squares, the
first is the QLS from Example 2. Again let |i〉, i ∈ {0, ..., 9} be the computational basis
states and define the states |a〉, |b〉, |c〉, |α〉, |β〉 and |γ〉 as in Equations (1) (2) (3) (4) (5)
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and (6). We define the following pair of QLSs:

P :=

|0〉 |2〉 |1〉 |3〉 |5〉 |4〉 |6〉 |8〉 |7〉

|2〉 |1〉 |0〉 |5〉 |4〉 |3〉 |8〉 |7〉 |6〉

|1〉 |0〉 |2〉 |4〉 |3〉 |5〉 |7〉 |6〉 |8〉

|6〉 |8〉 |7〉 |0〉 |2〉 |1〉 |3〉 |5〉 |4〉

|8〉 |7〉 |6〉 |2〉 |1〉 |0〉 |5〉 |4〉 |3〉

|7〉 |6〉 |8〉 |1〉 |0〉 |2〉 |4〉 |3〉 |5〉

|a〉 |c〉 |b〉 |6〉 |8〉 |7〉 |α〉 |γ〉 |β〉

|c〉 |b〉 |a〉 |8〉 |7〉 |6〉 |γ〉 |β〉 |α〉

|b〉 |a〉 |c〉 |7〉 |6〉 |8〉 |β〉 |α〉 |γ〉

Q :=

|0〉 |1〉 |2〉 |6〉 |7〉 |8〉 |3〉 |4〉 |5〉

|2〉 |0〉 |1〉 |8〉 |6〉 |7〉 |5〉 |3〉 |4〉

|1〉 |2〉 |0〉 |7〉 |8〉 |6〉 |4〉 |5〉 |3〉

|a〉 |b〉 |c〉 |0〉 |1〉 |2〉 |6〉 |7〉 |8〉

|c〉 |a〉 |b〉 |2〉 |0〉 |1〉 |8〉 |6〉 |7〉

|b〉 |c〉 |a〉 |1〉 |2〉 |0〉 |7〉 |8〉 |6〉

|6〉 |7〉 |8〉 |3〉 |4〉 |5〉 |α〉 |β〉 |γ〉

|8〉 |6〉 |7〉 |5〉 |3〉 |4〉 |γ〉 |α〉 |β〉

|7〉 |8〉 |6〉 |4〉 |5〉 |3〉 |β〉 |γ〉 |α〉

(16)

It can be checked that if we take any row from P and any row from Q and compute the
componentwise inner product of their vector entries, the resulting n numbers will always
be n − 1 zeros and a single 1.

Theorem 12. Given two indexed families of n Hadamards Hk and Gjboth of size n× n,
and a pair of n×n weak orthogonal quantum Latin squares P and Q, the bases B(Q, Hk)
and B(P , Gj) are mutually unbiased.

Proof. Let P := , Q := and be the computational basis. By Definition 8 the
(i, j)th state of the basis A and the (p, q)th state of the basis B are as follows:

Aij =
1
√

n

n−1∑

k=0

|k〉 ⊗ |Pkj〉〈k|Hj|i〉

Bpq =
1
√

n

n−1∑

s=0

|s〉 ⊗ |Qsq〉〈s|Gq|p〉

Graphically they are as follows:

Aij :=
1
√

n
Hj

i

j

Bpq :=
1
√

n
Gq

p

q

(17)

P and Q are weak orthogonal so by Equation (26), f defined as follows is a function on
computational basis states:

f := (18)
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Since f is a function on basis states, f(|j, q〉) is a computational basis state, say |t〉 i.e.

qj

f =

t

(19)

We are now ready to show that A and B are mutually unbiased.

|〈Bpq|Aij〉|
2 (17)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

n

Hj

i

j

Gq

p

q

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

(37)
=

1

n2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Hj

i

j

Gq

p

q

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

(19)
=

1

n2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Hj

i

j

Gq

p

q

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

(18)
=

1

n2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Hj

i

j

Gq

p

q

f

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

(19)
=

1

n2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Hj

t

i

Gq

p
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

(36)
=

1

n2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Hj

t

i

Gq

t

p
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

(37)
=

1

n2

∣
∣
∣
∣
∣

Hj

ti

Gq

t p
∣
∣
∣
∣
∣

2

(33)
=

1

n2
|(Hj )it(G

†
q)tp|

2 (11)
=

1

n2
12 =

1

n2

Example 13. Given as input P and Q from Example 11 and the Hadamard
H = H0 = H1 = ... = Hn−1 = G0 = ... = Gn−1 defined below with ω := e2πi/3 we have
constructed a pair of maximally entangled mutually unbiased bases A and B for the
Hilbert space C9 ⊗ C9.

H :=

















1 1 1 1 1 1 1 1 1
1 ω ω2 1 ω ω2 1 ω ω2

1 ω2 ω 1 ω2 ω 1 ω2 ω
1 1 1 ω ω ω ω2 ω2 ω2

1 1 1 ω ω ω ω2 ω2 ω2

1 ω2 ω ω 1 ω2 ω2 ω 1
1 1 1 ω2 ω2 ω2 ω ω ω
1 ω ω2 ω2 1 ω ω ω2 1
1 ω2 ω ω2 ω 1 ω 1 ω2

















(20)
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A sample of the 162 basis states of A and B with some calculations showing mutual
unbiasedness (see Definition 7) can be found in Appendix B. We have performed inner
product calculations for all 6561 combinations of states from A and B and can confirm
that they are mutually unbiased.

3 Weak orthogonality and Latin square conjugates

In this section we explain how weak orthogonality for QLSs restricts to orthogonality for
Latin squares, and why this is the natural generalisation of orthogonality for QLSs. We
start with the traditional definition of orthogonality.

Definition 14 (Orthogonal Latin squares). Given a pair of Latin squares A and B of
equal size, we take each computational basis state from A and form the ordered pair with
the state from B corresponding to the same position in the grid. A and B are orthogonal
when this procedure gives us all possible pairs of computational basis states [12].

This definition does not lend itself to generalisation to QLSs since we may now have more
than n2 possible ordered pairs, but we can take an alternative approach. We characterise
orthogonality in the following way:

Lemma 15. Latin squares A and B are orthogonal if and only if the following linear
map P is a permutation of basis states:

P :=
n−1∑

i=0

n−1∑

j=0

n−1∑

k=0

|i〉|j〉〈Aij |〈k|Bij〉〈k| (21)

Proof. We now rearrange the equation defining the linear map P :

P :=
∑

i

∑

j

∑

k

|i〉|j〉〈Aij|〈k|Bij〉〈k|

=
∑

i

∑

j

∑

k

|i〉|j〉〈Aij|〈Bij |k〉〈k|

=
n−1∑

i=0

n−1∑

j=0

|i〉|j〉〈Aij|〈Bij|
∑

k

|k〉〈k|

=
n−1∑

i=0

n−1∑

j=0

|i〉|j〉〈Aij|〈Bij|

The second equality above holds because all |Bij〉 and |k〉 are real valued vectors, and so

〈k|Bij〉 = 〈k|Bij〉 = 〈Bij|k〉. The third equality is just a rearranging of terms. The last
equality holds by virtue of

∑
k |k〉〈k| being the resolution of the identity. The linear map

P takes in the state |p〉|q〉 and outputs a superposition of all the states |i〉|j〉 such that
|Aij〉 = |p〉 and |Bij〉 = |q〉, or outputs 0 if no such i, j exist. P is a permutation if and
only if for all inputs p, q there exists unique i, j such that |Aij〉 = |p〉 and |Bij〉 = |q〉, i.e.
A and B are orthogonal Latin squares.

We now have a condition that we can apply to quantum Latin squares. However, for
QLSs A and B this turns out to preclude superpositions, thus making A and B Latin
squares.
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Lemma 16. Given a pair of quantum Latin squares, if they obey equation (21), then they
are Latin squares.

Proof. Let A and B be QLSs such that the linear map P as defined above is a permutation
of basis states. Then the adjoint of P , P † =

∑
i

∑
j

∑
k |Aij〉|k〉〈i|〈Bij |k〉〈j| must also be

a permutation of basis states. We input computational basis states p and q into P †

P †(|p〉|q〉) =
∑

k

|Apq〉|k〉〈Bpq|k〉

=
∑

k

|Apq〉|k〉〈k|Bpq〉

=
∑

k

|Apq〉|k〉〈k|Bpq〉

= |Apq〉

[
∑

k

|k〉〈k|

]

|Bpq〉

= |Apq〉|Bpq〉

The second equality is due to the fact that the inner product is Hermitian, the third
equality is due to |k〉 being real valued for all k, the fourth equality is an algebraic
rearrangement and the final equality is a resolution of the identity. If P † above is a
permutation of basis states, then for all p, q ∈ {0, ..., n − 1}, |Apq〉 and |Bpq〉 must be
computational basis states. Thus A and B are Latin squares.

In order to define orthogonality for QLSs we will now make a (very) brief detour into
quasigroup theory. Latin squares can be thought of as the multiplication (Cayley) table
for finite order quasigroups [15] on the computational basis states. Let ∗ be the binary
operation given by a Latin square. The fact that each state appears exactly once in each
row and each column means that knowledge of any two of a, b and c in the equation
a ∗ b = c uniquely determines the third. This means we can canonically define the binary
operation \ , read as left divide, such that a∗b = c ⇒ a\c = b. This new binary operation
defines a new quasigroup and therefore a new Latin square called the left conjugate Latin
square (it can easily be checked that this does indeed give a Latin square) [15]. The
map that takes a Latin square and gives the left conjugate L

\
−→ L′, is in fact involutive

so we can recover L from L′ by applying the map again. We will see a nice graphical
characterisation of this fact below. The map L

\
−→ L′ is a bijection on the set of all Latin

squares.

Definition 17 (Left orthogonality). Given a pair of Latin squares they are left orthogonal
when their left conjugates are orthogonal.

Remark 2. We could equally well talk about the right conjugate given by right divide
and define right orthogonality. In this paper we only make use of left orthogonality.

Since L
\

−→ L′ is a bijection as mentioned above, the set of orthogonal Latin squares
and left orthogonal Latin squares are isomorphic. Left orthogonality is in fact the property
that we have generalised to QLSs in Definition 10.

To proceed further it will be useful to introduce some diagrams (see Appendix A). Let
be a Latin square and be the classical structure corresponding to the computational
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basis. Then the left divide map has the following form:

\
−→ (22)

The fact that \ is an involution can be verified using the snake equation:

\
−→

\
−→ (34)

= (23)

For Latin squares A = and B = , equation (21) can be expressed diagramatically
as follows:

P := is a permutation (24)

We now substitute in the left conjugates of Latin squares A and B,
\

−→ and
\

−→ to obtain a linear map P ′ which must be a permutation of basis states for
A and B to be left orthogonal. The condition that A and B are left orthogonal is thus
equivalent to the following statement:

P ′ :=
(34)
= is a permutation (25)

In words: first we input two states i and j and then compute the component-wise inner
products of the ith row of A and the jth row of B. There must be one unique column, say
s, such that 〈Bsj|Asi〉 = 1 with 〈Brj|Ari〉 = 0 for all r not equal to s. We then output
s on the left and |Asi〉 on the right. The set of output states s ⊗ |Asi〉 must be every
possible combination of computational basis states.

We can interpret this for QLSs but again we encounter the same difficulty.

Lemma 18. Every pair of left orthogonal QLSs are Latin squares.

Proof. For a contradiction assume that A and B are left orthogonal QLSs that are not
Latin squares. There is some vector entry in A that is not a computational basis state
say |Apq〉. For P ′ as defined in Equation (26) to be a permutation, |Apq〉 cannot be the
output on the right for any input q, j. This means that no row of B has the complex
conjugate of |Apq〉 as its pth column entry. But each row of B must have one column
entry that is the complex conjugate of the corresponding column entry of the qth row of
A. Thus at least two of the rows of B have the same vector in the same column. This
violates the rule that B is a QLS and thus gives a contradiction. Therefore A must be
a Latin square. Reversing the roles, we find that B must be a Latin square too (left
orthogonality, like orthogonality is a symmetric relation).
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The condition must therefore be weakened if we want to define a property that non-
Latin square QLSs can satisfy. One approach is to delete the output from the right hand
wire and require that the linear map thus obtained be a function on the computational
basis states. This is in fact the weak orthogonality property of Definition 10. This
condition turns out to be strong enough to give rise to interesting and useful properties
such as using QLSs to build mutually unbiased MEBs (see Theorem 12), yet weak enough
so that pairs of Latin squares are weak orthogonal if and only if they are orthogonal.

Diagrammatically Definition 10 becomes the following:

f :=
(34)
= is a function (26)

Lemma 19. Given a pair of Latin squares, A and B the following are equivalent:

• A and B are weak orthogonal (see Definition 10).

• A and B are left orthogonal (see Definition 17).

Proof. If A and B are left orthogonal then P ′, as defined in Equation (26), is a
permutation of basis states, which clearly implies the weaker condition that f as defined
in Equation (26) is a function. For the other implication let A and B be weak
orthogonal Latin squares. Consider the pth columns of A and B. They both contain
all n computational basis states and there must therefore exist values of i and j for all
q ∈ {0, ..., n− 1} such that |Api〉 = |Bpj〉 = |q〉. So for column p there exist i, j such that
P ′(|i〉 ⊗ |j〉) = |p〉 ⊗ |q〉 for all q. This is true for all rows q, so P ′ is a permutation.

Remark 3. We defined weak orthogonality from left orthogonality by setting the
requirement that the linear map P ′ (see Equation (26))with the right hand output
deleted needs to be a function on the basis states, rather than requiring P ′ itself to be a
permutation of the basis states. We could have tried to weaken orthogonality directly by
requiring that P (see Equation (24)) with the right hand output deleted be a function on
basis states. However, it turns out that this would still preclude non-Latin square QLSs.

4 Beth and Wocjan’s MUB construction

In their 2004 paper [20] Beth and Wocjan gave a construction for a pair of mutually
unbiased bases of a Hilbert space H of square dimension s = n2, given as input a pair of
n × n orthogonal Latin squares and an n × n Hadamard matrix which was later put in
explicit Latin square form by Wehner and Winter [18, 20].

The construction takes each Latin square together with the Hadamard and produces
an MEB of dimension n2. The fact that the Latin squares are orthogonal is then shown to
entail that these two bases are mutually unbiased. I will refer to this MEB construction
as the Left Beth-Wocjan maximally entangled basis (LBW MEB) construction1.

1The construction presented here is technically the construction given by taking the left conjugate of
the Latin square L first and then applying the construction defined by Beth and Wocjan. Since taking
the left conjugate gives us a bijection (see Equation (3)) on the set of Latin squares the MEBs obtainable
are not affected by this.
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Definition 20 (Left Beth-Wocjan maximally entangled basis). Given an n × n Latin
square L and an n × n Hadamard H, then B as defined below is a Left Beth-Wocjan
maximally entangled basis (LBW MEB). 2

B :=

{

Bij =
1
√

n

n−1∑

k,p=0

|k, p〉Hik〈Lkp|j〉 such that i, j ∈ {0, .., n − 1}

}

(27)

The graphical calculus gives a good notation with which to compare LBW MEBs to
QLS MEBs (see Definition 8).

Lemma 21. Under the restriction to Latin squares and to having a single fixed Hadamard
the QLS MEBs are the same as LBW MEBs.

Proof. We construct an LBW MEB Bij and a QLS MEB Cij from the latin square L =
and Hadamard H.

Left Beth-Wocjan MEB Quantum Latin square MEB

Bij :=
1
√

n
H

i

j
Cij :=

1
√

n
H

i

j

We see that the diagrams are the same.

Theorem 22. Given a pair of n×n left3 orthogonal Latin squares and an n×n Hadamard,
construct two LBW MEBs using each Latin square with the Hadamard. The bases are
mutually unbiased.

Lemma 23. The construction of MUBs in Theorem 12 restricts to the construction of
Theorem 22, under the restriction of the QLS to a Latin square and the two families of
Hadamards to a single fixed Hadamard.

Proof. Follows directly from Lemma 21.

The following corollary gives a construction for MUBs in square dimension that is more
general than the LBW MUB construction but not as general as our main construction.

Corollary 24. Given two indexed families of n Hadamards Hk and Gj both of size n×n,
and a pair of n × n left orthogonal Latin squares P and Q, the bases B(P , Hk) and
B(Q, Gj) are mutually unbiased.

2 The definition below is slightly different to the one given by Beth and Wocjan even taking into
account the use of the left conjugate Latin square. However, when the input is a Latin square the two
constructions agree precisely.

3In their paper Beth and Wocjan use orthogonal Latin squares, but since we defined their MEB
construction on the left conjugate the left becomes necessary here.
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So our new construction generalises Beth and Wocjan’s in two directions, having two
arbitrary families of Hadamards rather than a single fixed Hadamard and quantum Latin
squares rather than Latin squares. The next theorem shows, by explicit example, that
the generalisation is strict.

Theorem 25. The pair of mutually unbiased MEBs from Example 13 are inequivalent
to any MEBs obtainable by the LBW MEB construction.

Proof. It will be sufficient to prove that one of our MEBs is inequivalent to any obtainable
by the LBW MEB construction. Since equivalence of MEBs is the same as equivalence
of UEBs we will take the dual approach here (see Section 5) and prove that the UEB
arising from QLS P and Hadamard H in Example 13, which we will refer to as X, is
inequivalent to any LBW UEB.

We will proceed along the same lines as [13, Corollary 31]. Note that LBW UEBs
are a restriction to a single fixed Hadamard of shift-and-multiply UEBs. Thus by [13,
Proposition 30], LBW UEBs are monomial (meaning each unitary matrix of the basis is
the product of a diagonal matrix and a permutation matrix).

Suppose for a contradiction that X is equivalent to a monomial basis. The first matrix
of X is as follows:

X00 =

















1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0

















X00 is self adjoint. We obtain the equivalent UEB X ′ by composing all the matrices of X
on the right by X00. Thus X ′

00 = id9. Now X ′ contains the identity and is equivalent to a
monomial basis so by [13, Proposition 26] X ′ is simultaneously monomializable. (See [13,
Definition 25] . The least common multiple of {1, 2, 3, 4, 5, 6, 7, 8, 9} is μ9 = 2520; thus
by [13, Proposition 28] the 2520th powers of the elements of X will commute. Now let
ω = e2πi/3and consider X ′

06 and X ′
07 below:

X ′
06 =




















0 0 0 0 0 0 1√
3

1√
3

1√
3

0 0 0 0 0 0 1√
3

ω2
√

3
ω√
3

0 0 0 0 0 0 1√
3

ω√
3

ω2
√

3

1√
3

−i
√

2
7

√
2
3

0 0 0 0 0 0
1√
3

−i√
14

−1√
6

0 0 0 0 0 0
i√
3

3√
14

i√
6

0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0




















X ′
07 =




















0 0 0 0 0 0 1√
3

1√
3

1√
3

0 0 0 0 0 0 ω2
√

3
ω√
3

1√
3

0 0 0 0 0 0 ω√
3

ω2
√

3
1√
3

−i
√

2
7

√
2
3

1√
3

0 0 0 0 0 0
−i√
14

−1√
6

1√
3

0 0 0 0 0 0
3√
14

i√
6

i√
3

0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0




















For a contradiction we now compute the first column first row entry of the commutator:

K := (X06)
2520(X07)

2520 − (X07)
2520(X06)

2520

〈0|K|0〉 ≈ −0.0219 + 0.0252i 6= 0
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Thus X ′ and therefore X is not equivalent to any monomial basis, and in particular any
LBW MEB.

5 Mutually unbiased error bases

Unitary error bases (UEBs) are the mathematical data necessary for protocols such as
dense coding and teleportation as well as having important applications to quantum error
correction. In this section we explain how the results of this paper can also be described
in terms of UEBs via the correspondence between maximally entangled bases in square
dimension and UEBs by introducing the natural concept of mutually unbiased UEBs.

Definition 26 (Unitary error basis). A unitary error basis on an n-dimensional Hilbert
space is a family of n2 unitary matrices Ui, each of size n × n, such that [9]:

tr(U †
i ◦ Uj) = δijn (28)

Via state-process duality a bijection exists between UEBs and MEBs (See Defini-
tion 6) [7]. The correspondence is particularly clear diagrammatically.

Given a UEB, A := {Ui|0 < i ≤ n2} and the computational basis , we have the
corresponding MEB, B := {|Ui〉|0 < i ≤ n2} defined as follows (see [17] Lemma 2):

Ui := Ui  
1
√

n
Ui =: |Ui〉 (29)

By Equation (9) the condition that the matrices Ui are unitary means that the states
|Ui〉 are maximally entangled. Under this duality equivalence of MEBs as described
by Equation 10, becomes the usual notion of equivalence for UEBs. The fact that the
states on the right hand side of Equation (30) are orthonormal follows directly from
Equation (29) as follows:

〈Ui|Uj〉
(30)
=

1

n Ui

U †
j

=
1

n
tr(U †

i ◦ Uj)
(29)
= δij (30)

In this paper the dual MEB constructions of two of the main constructions for UEBs
were used. As mentioned above Lemma 9 the QLS MEB of that lemma is the dual of
the quantum shift-and-multiply error bases of this author’s paper with Jamie Vicary [ 13].
The MEB used in Corollary 24 is the shift-and-multiply basis introduced by Werner [19].
Thus the LBW MEB construction described in Definition 22 gives us a family of UEBs
strictly contained within Werners construction.

The duality of MEBs and UEBs makes it natural to talk about mutually unbiased
unitary error bases.

Definition 27 (Mutually unbiased error bases). A pair of unitary error bases over a
Hilbert space H of dimension n, A = {Ui|i ∈ {0, ..., n − 1}} and B = {Vj|j ∈ {0, ..., n − 1}}
are mutually unbiased when the following equation holds for all i, j:

|tr(U †
i ◦ Vj)|

2 =
1

n
(31)
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We had two choices in defining mutually unbiased UEBs above, we used the inner
product of Equation (29) to interpret Equation (7) of Definition 7 directly but we could
have defined mutually unbiased UEBs to be UEBs with corresponding MEBs that are
mutually unbiased. Fortunately it does not matter as they are equivalent by a similar
argument to Equation (31).

This definition brings up the question of what it may mean for two teleportation
protocols to be mutually unbiased, or what kind of error correction could be performed
by a pair of mutually unbiased error bases.

The main result of this paper can now be interpreted as a construction for a pair of
mutually unbiased unitary error bases from a pair of weak orthogonal quantum Latin
squares.

6 Mutually orthogonal quantum Latin squares

In this section we introduce the concept of families of orthogonal quantum Latin
squares. In their 2004 paper Beth and Wocjan [20] introduced the construction of
square dimensional MUBs from orthogonal Latin squares as described in Section 4. They
used this construction to improve the known lower bounds for maximal sets of pairwise
mutually unbiased bases. A set of mutually orthogonal Latin squares (MOLs) is a set
of two or more Latin squares that are pairwise orthogonal. Beth and Wocjan use their
construction on a set of w MOLs of size n × n and give w + 2 MUBs for dimension n2.
The extra two MUBs come from the two squares of vectors (which do not satisfy the
axioms to be Latin squares, or even quantum Latin squares) described below: 4

• The first is the n × n grid with the ith row consisting of the repeated entry |i〉 for
every column.

• The second is the n×n grid with
∑n−1

k |k〉 as every diagonal entry and 0s elsewhere.

Some thought reveals that although they are not Latin squares, these two squares are left
orthogonal to every n × n Latin square and to each other. Note that the bases obtained
from these extra two however are not maximally entangled. The following definition is a
natural extension of the concept of sets of MOLs.

Definition 28 (Mutually weak orthogonal quantum Latin squares). A set of w quantum
Latin squares are Mutually weak orthogonal quantum Latin squares (MOQLs) when they
are pairwise weak orthogonal.

There are no generalisations of the two squares of vectors described above that would
be weak orthogonal to every QLS. However, with a particular set of MOQLs, an analogue
of the first vector square above can be found by considering the subspaces spanned by
the non-computational basis states. As an example we present a square of vectors that is
weak orthogonal to both of the pair of weak orthogonal QLSs from Example 11. Again let
|i〉, i ∈ {0, ..., 9} be the computational basis states and define the states |a〉, |b〉, |c〉, |α〉, |β〉

4Note that due to the presentation of Beth and Wocjan’s construction in Section 4, in which we start
by taking the left-conjugate, the left conjugate map must also be applied to these squares of vectors to
recover the ones used by Beth and Wocjan. In addition the second square here only gives a basis using
the original Beth-Wocjan method and not the altered version given by definition 20 (See footnote 2).
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and |γ〉 as in Equations (1) (2) (3) (4) (5) and (6). We define the following square of
vectors:

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |α〉 |α〉 |α〉

|1〉 |1〉 |1〉 |1〉 |1〉 |1〉 |β〉 |β〉 |β〉

|2〉 |2〉 |2〉 |2〉 |2〉 |2〉 |γ〉 |γ〉 |γ〉

|a〉 |a〉 |a〉 |3〉 |3〉 |3〉 |3〉 |3〉 |3〉

|b〉 |b〉 |b〉 |4〉 |4〉 |4〉 |4〉 |4〉 |4〉

|c〉 |c〉 |c〉 |5〉 |5〉 |5〉 |5〉 |5〉 |5〉

|6〉 |6〉 |6〉 |6〉 |6〉 |6〉 |6〉 |6〉 |6〉

|7〉 |7〉 |7〉 |7〉 |7〉 |7〉 |7〉 |7〉 |7〉

|8〉 |8〉 |8〉 |8〉 |8〉 |8〉 |8〉 |8〉 |8〉

It can be checked that this square is weak orthogonal to P and Q in Example 11. It is
also weak orthogonal to any QLS weak orthogonal to P or Q. To see this consider that
any two weak orthogonal QLSs must have columns that are permutations of each other.

This example relies on the block-like structure of the QLSs in question. Any family of
MOQLS having a similar structure will admit a similar square of vectors. It is unknown
whether all QLSs are of this form, but to the authors knowledge none have been found
yet that do not have this structure up to equivalence.

The lower bound for the number of MOQLS in dimension n must be at least the lower
bound for the number of MOLS, more research is required to say any more than that at
this stage.

7 Conclusion

In our 2015 paper [13] the author together with Jamie Vicary introduced the quantum
combinatorial objects of quantum Latin squares and gave a construction of UEBs using
them. In this paper we have built upon that work by introducing mutually orthogonal
quantum Latin squares which generalise mutually orthogonal Latin squares, which have
been used extensively to derive results in quantum information. As an application we
have given a construction for mutually unbiased bases in square dimension which gives
MUBs that are inequivalent to those that can be constructed by any known method.
Their is the potential for improved bounds on maximal families of MUBs in composite
dimensions using the main result of this paper.
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A Categorical quantum mechanics

The graphical calculus of categorical quantum mechanics gives us a diagrammatic
notation through which certain kind of problems are easier. The results of this paper
were all achieved using these high level techniques.

In order to read these diagrams the first thing to understand is that wires represent
Hilbert spaces and boxes between wires are linear maps. We will use the convention
that diagrams are read from bottom to top. The composition of linear maps U and V is
given by vertical composition and the tensor product is given by horizontal composition.
We represent n-partite states by triangles with no wires in and n wires out. Scalars are
represented by boxes with no wires in or out and can move freely around the diagram.
Adjoints are given by vertical mirror image, so asymmetry in the boxes representing
linear maps is introduced to avoid ambiguity. Thus we have the following diagrammatic
rendering of (U ◦ V |k〉) ⊗ U †|l〉:

(U ◦ V |k〉) ⊗ U †|l〉 :=

V

U

k

U

l

(32)

We will represent quantum Latin squares as linear maps and , these are obtained
from QLSs by having the left input wire represent the columns , and the right input wire
represent the rows of the QLS indexed by the computational basis states. So the ( i, j)th

entry |Qij〉, of some QLS Q, is represented by the following diagram:

|Qij〉 :=
i j

The final definition we require is that of a classical structure. Classical structures are
dagger special frobenius algebras. In FHilb given an orthonormal basis |i〉, classical
structures are equivalent to families of linear maps H⊗s → H⊗r for varying s and r
(possibly zero) of the following form [8]:

s︷ ︸︸ ︷

︸ ︷︷ ︸
r

:=
n−1∑

i=0

s︷ ︸︸ ︷

i

i

i

i

i

i

i

i

︸ ︷︷ ︸
r

Classical structures are thus in one to one correspondence with orthonormal bases. It is
standard notation to use different colours to represent different bases. Throughout this
paper we use the grey classical structure to represent the computational basis. The
following theorem gives us a way to rewrite connected diagrams of classical structures.
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Theorem 29 (Spider merge theorem). Given a family of linear maps : H⊗r → H⊗s

for varying r, s ∈ N the following are equivalent:

• is a classical structure

• any connected tensor diagram of the linear maps with swap maps and identities is
equal to the unique linear map from H⊗r to H⊗s

e.g.
s︷ ︸︸ ︷

︸ ︷︷ ︸
r

=

s︷ ︸︸ ︷

︸ ︷︷ ︸
r

(33)

Classical structures are also useful for performing linear algebraic operations such as
the trace of a linear map, the following diagram shows how this is done:

Trace(U) := U (34)

Classical structures copy the basis states of the corresponding orthonormal basis.

k

=

kk

(35)

If the state |k〉 is real valued then the following holds:

k =

k

(36)

On the left, the classical structure acts as a transpose which is equal to the adjoint since
|k〉 is real valued.

B Quantum Latin square 9 × 9 example MUB

We now give a sample of the 81 states of basis A and the 81 states of basis B from
Example 13, with some calculations of their inner products showing mutual unbiasedness.
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We give everything in terms of the computational basis states |i, j〉 such that i, j ∈
{0, ..., n − 1}. And we define the scalar ω := e2πi/3. Here are some states from A and B:

A74 =
1

3
(|0, 8〉 + ω2|1, 7〉 + ω|2, 6〉 + ω2|3, 2〉 + ω|4, 1〉 + |5, 0〉 + ω|6, 5〉 + |7, 4〉 + ω2|8, 3〉)

A46 =
1

3
(

ω
√

3
|0, 3〉 +

ω2

√
3
|0, 4〉 +

i
√

3
|0, 5〉 − ω

√
2

7
|1, 3〉 −

iω2

√
14

|1, 4〉 +
3

√
14

|1, 5〉 + iω

√
2

3
|2, 3〉

−
ω2

√
6
|2, 4〉 +

i
√

6
|2, 5〉 + ω2|3, 6〉 + ω|4, 8〉 + |5, 7〉 +

1
√

3
|6, 0〉 +

ω
√

3
|6, 1〉 +

ω2

√
3
|6, 2〉

+
1
√

3
|7, 0〉 +

1
√

3
|7, 1〉 +

1
√

3
|7, 2〉 +

1
√

3
|8, 0〉 +

ω2

√
3
|8, 1〉 +

ω
√

3
|8, 2〉)

B38 =
1

3
(|0, 7〉 + |1, 8〉 + |2, 6〉 + ω|3, 4〉 + ω|4, 5〉 + ω|5, 3〉 +

ω2

√
3
|6, 0〉 +

1
√

3
|6, 1〉 +

ω
√

3
|6, 2〉

+
ω2

√
3
|7, 0〉 +

ω
√

3
|7, 1〉 +

1
√

3
|7, 2〉 +

ω2

√
3
|8, 0〉 +

ω2

√
3
|8, 1〉 +

ω2

√
3
|8, 2〉)

B03 =
1

3
(|0, 1〉 + |1, 2〉 + |2, 0〉 + |3, 7〉 + |4, 8〉 + |5, 6〉 + |6, 4〉 + |7, 5〉 + |8, 3〉)

Here are some calculations for mutual unbiasedness. Note that they all equal 1
81

as
required:

|〈A74|B38〉|
2 = |

1

9
ω|2 =

1

81

|〈A74|B03〉|
2 = |

1

9
ω2|2 =

1

81

|〈A46|B38〉|
2 = |

1

9

[
1

3
(ω2 + ω + 1) +

1

3
(ω2 + ω + 1) +

1

3
(ω2 + ω + 1)

]

|2 =
1

81

|〈A46|B03〉|
2 = |

1

9
ω|2 =

1

81
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