
Properties of the least squares fit

1. the fitted line passes through (x̄, ȳ)

• see this by substituting xi = x̄

into the fitted line

ŷi = ȳ + β̂1(xi − x̄)

2. the mean of the fitted values is the
same as the mean of the observed
responses

• the mean of the fitted values is

¯̂y =
1

n

n∑

i=1

ŷi

=
1

n

n∑

i=1

(ȳ + β̂1(xi − x̄))

= ȳ +
β̂1

n

n∑

i=1

(xi − x̄)

= ȳ
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3. the mean of the residuals is zero

• the residuals are êi = yi − ŷi

• so, using (2) above

¯̂e =
1

n

n∑

i=1

(yi − ŷi)

= ȳ −
¯̂y = 0

4. the residuals have zero correlation
with the predictor

• we can show SSêX = 0

SSêX =
n∑

i=1

(êi − ē)(xi − x̄)

=
n∑

i=1

(yi − ŷi)(xi − x̄)

=
n∑

i=1

(yi − ȳ − β̂1(xi − x̄))(xi − x̄)
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= SSXY − β̂1SSXX = 0

• the residuals have zero
correlation with the fitted values

• we can show SSêŷ = 0

SSêŷ =
n∑

i=1

êi(ŷi − ȳ)

=
n∑

i=1

(yi − ŷi)β̂1(xi − x̄)

=
n∑

i=1

(yi − ȳ − β̂1(xi − x̄))β̂1(xi − x̄)

= β̂1SSXY − β̂2
1SSXX

= β̂1SSXY − β̂1SSXY = 0
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Ozone example: the fitted values,
residuals, sums and crossproducts are
shown below

xi yi ŷi êi = yi − ŷi êixi

.02 242 247.563 -5.563 -.1113

.07 237 232.887 4.113 .28791

.11 231 221.146 9.854 1.0840

.15 201 209.404 -8.404 -1.2606

Sum 911 911 0 0

• the observed and fitted responses
have the same sum

• the residuals have zero sum

• the correlation between residuals and
predictors will be zero because the
sum of cross products is zero
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Plotting residuals to assess fit

• from (3) above, the residuals have
zero mean, and from (4) and (5)
they are uncorrelated with the
predictor x and the fitted values ŷ

• a scatterplot of the residuals versus x

should show random scatter about 0,
with no linear association with x

• the scatterplot of residuals versus
fitted values should be similar

• various problems can be revealed
from the plot of ê versus x or ŷ

– curvature indicates that the form
of the model is not correct

∗ this can be fixed by adding
the term x2 to the model or
by transforming the response
variable
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– the magnitude of the residuals
may increase or decrease with
the predictor - sometimes called
‘fanning’ out

∗ when we use least squares
and minimize SSE, we give
equal weight to all n

deviations

∗ this implicitly assumes that
the deviations are all roughly
the same size

∗ this problem can be fixed
using a weighted least
squares criterion (giving
smaller weight to the larger
deviations) or by
transformation
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Example: Lumber example - useable
volume versus diameter at chest height
MTB > plot c3 c1
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• there is clearly some curvature here

• one remedy is to add a quadratic
term in the equation, giving

y = β0 + β1x + β2x
2

7



• MINITAB can fit this too

MTB > let c3 = c1**2

MTB > regress c2 2 c1 c3;

SUBC> residuals c4.

The regression equation is

volume = 29.7 - 5.62 diameter + 0.290 C3

Predictor Coef Stdev t-ratio p

Constant 29.74 51.39 0.58 0.570

diameter -5.620 3.792 -1.48 0.157

C3 0.29037 0.06572 4.42 0.000

s = 14.27 R-sq = 97.8% R-sq(adj) = 97.6%

Analysis of Variance

SOURCE DF SS MS F p

Regression 2 156236 78118 383.54 0.000

Error 17 3463 204

Total 19 159698

SOURCE DF SEQ SS

diameter 1 152259

C3 1 3976

MTB > plot c4 c1
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• the new residual plot shows no
curvature

Example: PCBs in lake trout

• consider the PCB concentration in
Cayuga Lake Trout, plotted against
the age of the fish
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• the fitted least squares line is

PCB = −1.45 + 1.56age
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• the residuals, however show problems
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• the residuals are larger at larger ages

• there is some curvature in the plot

• the plot of log(PCB) versus age, with
least squares line is shown
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• the least squares fit is

log(PCB) = .03 + .259age
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• the residual plot shows even spread
for all ages
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• the model says

PCB = e.03+.259age

• comparing model predictions at age

and age + 1 gives
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PCBage+1

PCBage

=
e.03+.259(age+1)

e.03+.259age
= e.259 = 1.3

so

PCBage+1 = 1.3PCBage

• this is an example of exponential

growth

– where growth increases by a fixed
percentage of the previous total

– linear growth increases by a fixed
amount

– growth of bacteria, compound
interest are both examples of
exponential growth

13


