Multiple comparisons - subsequent inferences for one-way ANOVA

- if the overall F test does not show significant differences among the groups, then no further inferences are required
- if the overall test of equality of means concludes in favour of the alternative H_A : not all means are the same, then the natural question is "which of the means are difference"

The differences between a particular means, say of the i'th and k'th populations can be tested with a t-test, using the test statistic

$$T = \frac{\bar{x}_{i.} - \bar{x}_{k.}}{\sqrt{MSE}\sqrt{\frac{1}{n_i} + \frac{1}{n_k}}}$$

- The null hypothesis here is $H_{0,ik}: \mu_i = \mu_k$ and the alternative is $H_{A,ik}: \mu_i \neq \mu_k$.
- in this expressions, MSE is the estimate of σ^2 from the analysis of variance
- the degrees of freedom for the t-test is N a, which is the degrees of freedom associated with MSE in the ANOVA
- adjustment must be made for the fact that we are doing multiple comparisons, that is, for the fact that several tests are being done, sometimes known as simultaneous inference
- the simplest adjustment is the *Bonferroni correction*, which reduces the significance level for each test so that the overall probability of making at least one type I error is no larger than the level α associated with the ANOVA
- in a one-way ANOVA with a groups, there are $r = \begin{pmatrix} a \\ 2 \end{pmatrix}$ natural comparisons between pairs of groups
- if you do r tests each at level α , then the probability of incorrectly rejecting at least one null hypothesis could be as large as $r\alpha$

- for example for r = 2

 $P(reject \ at \ least \ one \ H_0) =$ $P(reject \ 1st) + P(reject \ 2nd)$ $-P(reject \ both) < 2\alpha$

• to control the overall level, or *experimentwise error rate*, at α , each test should be done using $\alpha_* = \alpha/r$

- \bullet alternatively the P value should be multiplied by r
- similarly for r confidence intervals, use of α_* will give simultaneous confidence level $1-\alpha$
- These simultaneous confidence intervals for the differences of two means are of the form

$$\left(\bar{x}_{i.} - \bar{x}_{k.} - t_{\alpha*/2, N-a}\sqrt{MSE}\sqrt{\frac{1}{n_i} + \frac{1}{n_k}}, \bar{x}_{i.} - \bar{x}_{k.} + t_{\alpha*/2, N-a}\sqrt{MSE}\sqrt{\frac{1}{n_i} + \frac{1}{n_k}}\right)$$

Example: for the golf balls, the summary statistics are

i	\bar{x}_i	s_i^2	n_i
1	251.28	33.487	5
2	261.98	18.197	5
3	269.66	27.253	5

- the value for MSE is 26.312
- there are 3 possible pairwise comparisons between the groups
- the denominator of the test statistics is

$$\sqrt{MSE}\sqrt{\frac{1}{n_i} + \frac{1}{n_k}} = 5.1295(.6325) = 3.24$$

- the degrees of freedom are 12
- with $\alpha = .05$, $\alpha_* = .05/3 = .0167$, $\alpha_*/2 = .00833$, and $t_{.00833,12} = 2.7794$,
- found, for example, as

```
MTB > invcdf .00833;
SUBC> t 12.
```

Inverse Cumulative Distribution Function

Student's t distribution with 12 $\ensuremath{\mathsf{DF}}$

P(X<=x) x 0.00833 -2.77969

• the test statistics are

$$t_{12} = \frac{251.18 - 261.98}{3.24} = -3.329$$
$$t_{13} = \frac{251.18 - 269.66}{3.24} = -5.697$$

and

$$t_{23} = \frac{261.18 - 269.66}{3.24} = -2.367$$

- the first two comparisons are significant at the .05 level but the third one is not
- confidence intervals for the differences in means are

$$-10.8 \pm 2.78(3.24)$$
 or $(-19.81, -1.79)$
 -18.48 ± 9.01 or $(-27.49, -9.47)$
 -7.68 ± 9.01 or $(-16.69, 1.33)$

and

Example: for the liver weights, the means in ascending order are

diet	В	С	А	D
n_i	8	6	7	8
mean	3.43	3.598	3.803	3.935

- the estimated standard deviation is $\sqrt{MSE} = .1899$
- there are 6 comparisons, so the appropriate table value for $\alpha = .05$ is $t_{25}^{.025/6} = 2.8649$, from MINITAB
- the pairwise differences in the means are

i/k	В	С	D
Α	.373	.205	132
В		168	505
С		337	

• the absolute difference in means must exceed $t_{25}^{.025/6}\sqrt{MSE}\sqrt{\frac{1}{n_i}+\frac{1}{n_k}}$, which depends on the two sample sizes.

n_i/n_k	7	8
6	.3025	.2938
7		.2818
8		.2720

• using this table, we find that B and C, C and A and A and D are not statistically significant, the other 3 comparisons are significant