Multiple Linear Regression

- is used to relate a *continuous* response (or dependent) variable Y to several explanatory (or independent) (or predictor) variables X₁, X₂,..., X_k
- assumes a linear relationship between mean of Y and the X's with additive normal errors
- X_{ij} is the value of independent variable *j* for subject *i*.
- Y_i is the value of the dependent variable for subject i, i = 1, 2, ..., n.
- Statistical model

 $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} + \epsilon_i$

the additive errors are assumed to be a random sample from ${\cal N}(0,\sigma^2)$

• the mean of Y at X_1, \ldots, X_k is

 $\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_k X_{ik}$

- as before β_0 is the intercept, the value of the mean when all other predictors are zero
- β_j, j = 1,..., k, is the partial slope for predictor X_j, giving the change in the mean for a unit change in X_j when all other predictors are held fixed

Types of (Linear) Regression Models

- there are many possible model forms
- choosing the best one is a complicated process
- the predictors can be continuous variables, or counts, or indicators
- indicator or "dummy" variables take the values 0 or 1 and are used to combine and contrast information across binary variables, like gender
- some examples are shown below

Curve

• $Conc = \beta_0 + \beta_1 t + \beta_2 t^2$

One continuous, one binary predictor Two parallel lines

• $Conc = \beta_0 + \beta_1 time + \beta_2 X$, where X = 0 for Males, 1 for Females

3

Two nonparallel lines

• $Conc = \beta_0 + \beta_1 time + \beta_2 X + \beta_3 time * X$, where X = 0 for Males, 1 for Females

Two continuous predictors First order

- $Conc = \beta_0 + \beta_1 time + \beta_2 Dose$
- effect of dose constant over time

Interaction

- $Conc = \beta_0 + \beta_1 time + \beta_2 Dose + \beta_3 * time * dose$
- effect of dose changes with time

Estimation and ANOVA

- The regression parameters are estimated using least squares.
- That is, we choose β₀, β₁,..., β_k to minimize

$$SSE = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_k x_{ik})^2$$

- Minitab can fit multiple regression models easily
- we will soon learn a formula for these estimates using matrices
- the error variance is estimated as before

$$s^2 = \frac{SSE}{n-k-1} = MSE$$

 The ANOVA table similar to that for simple linear regression, with changes to degrees of freedom to match the number of predictor variables.

Source	d.f.	SS	MS
Regression	k	SSR	MSR=SSR/k
Residual	n-k-1	SSE	MSE=SSE/(n-k-1)
Total	n-1	SST	

• later we will see that SSR can be partitioned into a part explained by one set of predictors, $SSR(\mathbf{X_1})$ and the remainder, $SSR(\boldsymbol{X_2}|\boldsymbol{X_1}),$ explained by the rest of the variables

• the coefficient of determination R^2 is

$$R^2 = \frac{SSR}{SST}$$

as before, and is the fraction of the total variability in y accounted for by the regression line

- \bullet it ranges between $0 \mbox{ and } 1$
- $R^2 = 1.00$ indicates a perfect (linear) fit
- $R^2 = 0.00$ is a complete lack of linear fit.