Permutation Test for the Two Sample Problem

- we wish to compare results for two groups of experimental units
- the first group could be some subjects who have been given a treatment, whereas the second group has not
- in some cases we are unable to assume that
	- the two samples of sizes n_1 and n_2 are from normal populations and/or
	- the populations have the same variance
- however we may be able to assessume that the groups were obtained by randomly splitting the subjects $n = n_1 + n_2$ into two groups
- with only this assumption, we are able to base the test on the permutation distribution, described below
- the hypotheses are

 H_o : no effect of the treatment H_a : there is an effect

• a reasonable test statistic is

$$
T = \bar{X}_1 - \bar{X}_2
$$

which measures the effect of the treatment

- if H_o is true the observed differences in the data are due only to variation among the subjects
- with a different random allocation of subjects, a different value for T would be obtained

• there are exactly

$$
\binom{n_1 + n_2}{n_1} = \frac{(n_1 + n_2)!}{n_1! n_2!}
$$

ways of randomly allocating n_1 of the subjects to group 1 and the remaining n_2 to group 2

- each of these is equally likely, and each can lead to a different value of the test statistic T
- the permutation distribution describes the possible values for T for all possible allocations of the subjects
- the P value is the fraction of values for T which are as least as extreme as contrary to the null hypothesis as is the observed value T_{obs}
- for a one-sided alternative the P value is the proportion in one tail of the permutation distribution
- for a two-sided alternative the P value is double the probability in one tail of the permutation distribution
- If the alternative is that the population 2 measurements are smaller than in population 1, and if the test statistic is $T = \bar{X}_1 - \bar{X}_2$, then the p-value is the proportion of possible values of T which are at least as large as T_{obs} . (If your test statistic was $T = \bar{X}_2 - \bar{X}_1$ then the p-value would be the proportion of possible values of T which are at least as small as $T_{obs.}$
- If the alternative is that the population 2 measurements are greater than in population 1, and if the test statistic is $T = \bar{X}_1 - \bar{X}_2$, then the p-value is the proportion of possible values of T which are at least as small as T_{obs} . (If your test statistic was $T = \bar{X}_2 - \bar{X}_1$ then the p-value would be the proportion of possible values of T which are at least as large as $T_{obs.}$

• If the alternative is two sided - that the distribution in the two populations are different, then the test statistic is $T = |\bar{X}_1 - \bar{X}_2|$, and the p-value is the proportion of possible values of T which are at least as large as T_{obs} .

Example: A simple study has only $n_1 = n_2 = 3$ subjects in each group

Two of the three largest smallest observations are in the treatment group, so it looks as though the treatment may be effective. What is the p-value?

- the test statistic is $T = 228.33 276.67 = -48.33$
- there are only $\sqrt{ }$ $\overline{ }$ $3 + 3$ 3 \setminus $= 20$ possible allocations of subjects to the two groups
- these are shown in the table below, along with the value for T

- For the one sided alternative (treatment leads to smaller observations), T_{obs} = -48.33 , and there is 1 possible sample (the configuration [1,1,1,2,2,2]) which provides greater evidence against the null hypothesis than T_{obs} . Therefore, the p-value is $2/20 = .1$.
- For the two sided alternative (unspecified difference between treatment and control), $T_{obs} = 48.33$, and there are 4 samples which provide at least as much evidence against H_0 than does T_{obs} , and so the p-value is $4/20 = .2$.

Example: The data below is from the example of soil surface pH which was used to illustrate the (pooled) two sample t test.

• the test statistic is

$$
T_{obs} = 8.038 - 7.442 = .596
$$

- note that only one value (7.85) from Location 2 is larger than two of the values from Location 1
- exchanging this value with one of the smaller values in Location 1 increases the mean for Location 1 and decreases the mean for Location 2, giving a larger $T = \bar{X}_1 - \bar{X}_2$
- the same value for T_{obs} is obtained if the value 7.85 from Location 2 is switched with the value 7.85 from Location 1
- so there are 4 permutations (including the original data) for which T is as large or larger than T_{obs} , and 8 permutations for which T is as extreme or more extreme
- there are

$$
\left(\frac{18}{9}\right) = \frac{18!}{9!9!} = 48620
$$

permutations in total

• if we test the hypotheses

 H_0 : no difference between locations $H_a:$ there is a difference

using the permutation test, the P value is $P = 8/48620 = .0001645$

- so there is very strong evidence of a difference in the mean surface soil pH at the two locations
- this is consistent with the result obtained earlier using the t distribution, which requires the assumptions of normality and equal variances
- in this example we are fortunate that it is straightforward to determine how extreme T_{obs} is relative to the permutation distribution
- it would be difficult to list all 48620 possible permutations
- one approach in this situation is to approximate the permutation distribution using random permutations chosen by the computer
- 50,000 such permutations give the following histogram, for this example

- \bullet one can see that there are very few values of T beyond T_{obs}
- \bullet the computer found 5 cases as extreme or more extreme
- \bullet the approximate P value using this approach is $P=5/50000 = .0001$
- this is quite close to the exact value