Midterm 1

Matrix Theory & Linear Algebra II

Your name:

Banner ID:

Assume that you have to explain your reasoning even if the question doesn't explicitly asks you to.

- 1. (40 points) In this question you are presented with three statements. *Each one of them is wrong.* For each one, give a short (one or two sentences) explanation of why.
 - (a) A set of vectors that contains the zero vector can form a basis.

Solution Let V be a vector space over \mathbb{F} . A set containing the zero vector $\mathbf{0} \in V$ is linearly independent, because $c \cdot \mathbf{0} = 0$ for all $c \in \mathbb{F}$.

(b) The unit sphere $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ is a subspace of \mathbb{R}^3 .

Solution

- The sphere doesn't contain the zero vector $(0,0,0) \in \mathbb{R}^3$.
- Vectors in \mathbb{S}^2 are not closed under addition. For instance, (1,0,0) and (0,1,0) are vectors in \mathbb{S}^2 , but their sum (1,0,0) + (0,1,0) = (1,1,0) is not (it has length $\sqrt{2}$).
- Vectors in S² are not closed under scalar multiplication. Indeed, if you scale the vector (1,0,0) in S² by a factor of 2 you obtain the vector (2,0,0), which is not in S² (it has length 2).

(c) If v_1, v_2, v_3 spans V, then v_1, v_2, v_3 is a basis for V.

Solution A basis must also be linearly independent. For instance, the vectors (1,0), (1,1) and (0,1) span \mathbb{R}^2 , but they are not a basis.

- 2. (30 points) Draw a sketch and find the matrix for each of the following operations on \mathbb{R}^2 .
 - (a) The linear transformation that rotates every vector by an angle of 90°. errata: counterclockwise

Solution The transformation is so the corresponding matrix is $[T] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

(b) The linear transformation that reflects every vector about the line y = -x. Solution The transformation is

so the corresponding matrix is $[U] = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$.

(c) The linear transformation that performs the operation described in (b), followed by the operation described in (a).

Solution The matrix of $T \circ U$ is the matrix multiplication

$$[T][U] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

From this we can read the transformation visually: *Remark:* this question can also

be done in the reverse order, by first finding the $U\circ T$ visually, then its corresponding matrix. \blacksquare

3. (30 points) A linear transformation $P: V \to V$ is a **projection** if $P^2 = P$. Let $\mathcal{P}_3(\mathbb{R})$ denote the complex vector space of real polynomials with degree at most 3, and consider the linear transformation $U: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ defined by

$$U(a + bx + cx^{2} + dx^{3}) = \frac{a+b}{2} + \frac{a+b}{2}x.$$

(a) Check that U is a projection.

Solution

$$U^{2}(a+bx+cx^{2}+dx^{3}) = U\left(\underbrace{\frac{a+b}{2}}_{\text{new }a} + \underbrace{\frac{a+b}{2}}_{\text{new }b} \cdot x\right)$$
$$= \left(\frac{a+b}{2} + \frac{a+b}{2}\right) + \left(\frac{a+b}{2} + \frac{a+b}{2}\right) \cdot x$$
$$= \frac{a+b}{2} + \frac{a+b}{2}x$$
$$= U(a+bx+cx^{2}+dx^{3}).$$

Alternative solution: find the matrix of U in some basis and check that $[U]^2 = [U]$.

(b) Find the matrix of U with respect to the basis $1 + x, -1 + x, x^2, x^3$.

Solution we find *U* applied to each basis vector:

$$U(1+x) = \frac{1+1}{2} + \frac{1+1}{2}x = 1+x$$
$$U(1-x) = \frac{1-1}{2} + \frac{1-1}{2}x = 0.$$
$$U(x^2) = U(x^3) = 0.$$

(c) What is the dimension of the null space of U? What is the dimension of its range?

Solution The range is spanned by 1 + x, so the range has dimension 1. Since $4 = \dim \mathcal{P}_3(\mathbb{R}) = \dim U + \dim \operatorname{range} U$, the null space has dimension 3. Alternative solutions:

- The vectors $1 x, x^2, x^3$ are a basis for the null space, so the null space has dimension 3. etc.
- The matrix of U has rank 1, so the range has dimension 1. etc.
- The matrix of U has three zero columns, so the null space has dimension 3. etc.