Problem Set 2

Matrix Theory & Linear Algebra II

In this problem set, \mathbb{F} denotes either \mathbb{R} or \mathbb{C} (i.e. if \mathbb{F} is in the question, then the solution should be agnostic to whether it was \mathbb{R} or \mathbb{C}) and V denotes a vector space over \mathbb{F} .

(1) Which of the following lists are linearly independent?

(a)
$$\mathbf{v}_1 = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 4\\5\\6 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 7\\8\\9 \end{pmatrix}$, as vectors of \mathbb{R}^3 .
(b) $p_1 = -1$, $p_2 = x - 1$, $p_3 = (x - 1)^2$, as vectors of $\mathcal{P}(\mathbb{C})$.
(c) $\sigma_x = \begin{pmatrix} 0&1\\1&0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0&-i\\i&0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1&0\\0&-1 \end{pmatrix}$ as vectors of $M_{2,2}(\mathbb{C})$.

- (2) A matrix is called *anti-symmetric* if $A^{\intercal} = -A$. Write down two (distinct!) bases in the space of symmetric 2 × 2 matrices. How many elements are in each basis?
- (3) A polynomial $p \in \mathcal{P}(\mathbb{F})$ is even if p(x) = p(-x). Prove that even polynomials form a subspace $U \subseteq \mathcal{P}(\mathbb{F})$ and find a basis for even polynomials in $\mathcal{P}_7(\mathbb{F})$.
- (4) Let $U = \{(z_1, z_2, z_3, z_4, z_5) \in \mathbb{C}^4 \mid 6z_1 = z_2 \text{ and } z_3 + 2z_4 = 0\}$ Find a basis for U, then extend this basis to a basis of \mathbb{C}^4 .
- (5) Let $U = \{p \in \mathcal{P}_4(\mathbb{F}) \mid p(6) = 0\}$. Find a basis for U, then extend this basis to $P_4(\mathbb{F})$.
- (6) Prove or give a counterexample: if v_1, v_2, v_3 spans V, then the vectors $w_1 = v_1 v_2, w_2 = v_2 v_3$ and $w_3 = v_3 v_1$ also span V.
- (7) Suppose that v_1, \ldots, v_n is linearly independent in V and $w \in V$. Prove that if $v_1 + w, \ldots, v_n + w$ is linearly dependent, then $w \in \operatorname{span}(v_1, \ldots, v_n)$.
- (8) Prove that \mathbb{F}^{∞} is infinite-dimensional. Find a non-zero finite-dimensional subspace.
- (9) Prove that the space $C(\mathbb{R})$ of continuous functions $f : \mathbb{R} \to \mathbb{R}$ is infinite-dimensional. *Hint:* you know an infinite-dimensional subspace.
- (10) Are the polynomials

$$x^3 - x^2 + 1, x^3 - x^2 + 3, 5x^3 - x^2 + 1, 17x^3 - x^2 + 1$$
 and $x^2 + 6$

are linearly independent? *Hint:* dimension.

Now go to chatgpt.com and ask ChatGPT if these polynomials are linearly independent. It will probably get it wrong. When it does, have a conversation with it, and see if you can get it to correct its mistakes.

Note: ChatGPT does not include a logic engine. It tries to answer math questions just by pattern-matching the language, and it tends to agree with whatever you tell it.