Matrix Theory & Linear Algebra II

Given a vector $v \in V$ and a basis $\mathcal{B} = \{e_1, \ldots, e_n\}$ for v, we can find unique coefficient such that

$$v = a_1 e_1 + \dots + a_n e_n. \tag{1}$$

The numbers a_1, \ldots, a_n are the *coordinates* of v and depend on \mathcal{B} . We also use the notation

$$[v]_{\mathcal{B}} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

Given a linear transformation $T: V \to W$ and a basis $\mathcal{A} = \{f_1, \ldots, f_m\}$ for W, the matrix of T is the $m \times n$ matrix

$$[T]_{\mathcal{B},\mathcal{A}} = [[T(e_1)]_{\mathcal{A}} \mid \cdots \mid [T(e_1)]_{\mathcal{A}}].$$

The coordinates of the vector T(v) can be found via matrix-vector multiplication:

$$[T(v)]_{\mathcal{A}} = [T]_{\mathcal{B},\mathcal{A}}[v]_{\mathcal{B}}$$

- Read the handout available at https://people.math.harvard.edu/~knill/teaching/ math19b_2011/handouts/lecture08.pdf, then do questions 1 and 2b.
- (2) Out of the fours functions from $M_{2,2}(\mathbb{C})$ to $M_{2,2}(\mathbb{C})$, two are linear transformations, and the other two are not. For the ones that are, check the conditions for a linear transformation. For the ones that are not, give a reason: explain one of the axioms for linear transformations that fails. (There might be more than one!)
 - (a) The function $f: M_{2,2}(\mathbb{C}) \to M_{2,2}(\mathbb{C})$ defined by $f(A) = A^{\intercal}$.
 - (b) The function $f: M_{2,2}(\mathbb{C}) \to M_{2,2}(\mathbb{C})$ defined by $f(A) = MAM^{-1}$, where M is an invertible matrix.
 - (c) The function $f: M_{2,2}(\mathbb{C}) \to M_{2,2}(\mathbb{C})$ defined by $f(A) = A^2$.
 - (d) The function $f: M_{2,2}(\mathbb{C}) \to M_{2,2}(\mathbb{C})$ defined by f(A) = A + I.
- (3) Let $\mathcal{B} = \left\{ \begin{bmatrix} 2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\2 \end{bmatrix} \right\}$ be a basis of \mathbb{R}^2 and let $x = \begin{bmatrix} 5\\-7 \end{bmatrix}$. Find $[x]_{\mathcal{B}}$. (4) Let $B = \left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\0\\2 \end{bmatrix} \right\}$ be a basis of \mathbb{R}^3 and let $x = \begin{bmatrix} 5\\-1\\4 \end{bmatrix}$ be a vector in \mathbb{R}^3 . Find $[x]_B$.
- (5) Let $T:\mathbb{R}^2\to\mathbb{R}^2$ be a linear transformation defined by

$$T\left(\begin{bmatrix}a\\b\end{bmatrix}\right) = \begin{bmatrix}a+b\\a-b\end{bmatrix}$$

- (a) What is the null space of T? What is its range?
- (b) Consider the two bases

$$B_1 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$$
 and $B_2 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}.$

Find the matrix M_{B_2,B_1} of T with respect to the bases B_1 and B_2 .

(6) Let $M = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$, and consider the linear transformation $T: M_{2,2}(\mathbb{C}) \to M_{2,2}(\mathbb{C})$ given by T(A) = MAM. Find the matrix of T with respect to the basis

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

What is the null space of T? What is its range?

- (7) Consider the linear transformation $T : \mathcal{P}_3(\mathbb{F}) \to \mathcal{P}_3(\mathbb{F})$ given by T(p(x)) = p(x+1). Find $[T]_{B,B}$, where $B = \{1, x, x^2, x^3\}$.
- (8) Describe the null spaces of the transformations defined in the previous three questions. What is the dimension of their ranges?
- (9) Recall that the *n*-th Taylor polynomial of a differentiable function $f : \mathbb{R} \to \mathbb{R}$, centered around a point $a \in \mathbb{R}$, is the polynomial

$$p_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots$$

Let $g(x) = 2\sin(x - \pi)$.

- (a) Write down an expression for $p_2(x)$ of g centered around π .
- (b) What are the coordinates of $p_2(x)$ in the basis $\{1, x, x^2\}$?
- (c) What are the coordinates of $p_2(x)$ in the basis $\{1, (x-1), (x-1)^2\}$?
- (10) Define an integration linear transformation $\int : \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_{n+1}$ such that $\frac{d}{dx} \circ \int$ is the identity transformation on \mathcal{P}_n .