Problem Set 6

Matrix Theory & Linear Algebra II

Winter 2025

In this problem set, any vector space V comes equipped with an inner product.

- (1) Choose one of the inner products defined in Example 6.3 of the book. Check that they are indeed inner products, i.e. show that the axioms are satisfied.
- (2) Let e_1, \ldots, e_n be an orthonormal basis, and $v = a_1e_1 + \cdots + a_nv_n$. Show that $a_i = \langle v, e_i \rangle$.
- (3) Suppose that $u, v \in V$ and ||u|| = ||v|| = 1 and $\langle u, v \rangle = 1$. Prove that u = v.
- (4) Recall that in \mathbb{R}^3 it's true that

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \alpha,$$

where α is the angle between the vectors. There is no "angle" between vectors in a general vector space V, but in the presence of an inner product we can use this formula to define the angle between two vectors:

$$\cos(u, v) = \arccos\left(\frac{\langle u, v \rangle}{\|u\| \|v\|}\right).$$

- (a) Show that this formula is well-defined. (What is the domain of arccos?)
- (b) Using the inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$ on $C^0([0,1])$, calculate the angle between x, e^x , and $\sin x$.
- (5) Let $\mathcal{B} = e_1, \ldots, e_n$ be an orthonormal basis for V, and define the matrix A whose entries are $a_{ij} = \langle e_i, e_j \rangle$. Show that, for $u, v \in V$,

$$\langle u, v \rangle = [u]_{\mathcal{B}}^{\mathsf{T}} \cdot A \cdot \overline{[v]}_{\mathcal{B}},$$

where $\overline{[v]}_{\mathcal{B}}$ denotes the vector with the conjugate of coordinates of v as its entries.

(6) In \mathbb{R}^3 with the usual dot product, find an orthonormal basis for

$$U = \operatorname{span}\left(\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\6\\0 \end{bmatrix} \right).$$

(7) Consider the inner product space C([0,2]) with the inner product given by

$$\langle f,g \rangle = \int_0^2 f(x)g(x)dx$$

Use Gram-Schmidt to find an orthogonal basis for $\{1, x, x^2\}$.

(8) Consider the vector space $V = C([0, 2\pi], \mathbb{C})$ of continuous functions $f : [0, 2\pi] \to \mathbb{C}$. An element of V is a function of the form

$$f(x) = u(x) + iv(x),$$

where u and v are real valued functions $[0, 2\pi] \to \mathbb{R}$. Suppose f = u + iv and g = s + it. Define an inner product of V by

$$\langle f,g\rangle = \int_0^{2\pi} u(x)s(x)dx + i\int_0^{2\pi} v(x)t(x)dx$$

Calculate the inner product between the functions $e^{ix} = \sin x + i \cos x$, 1, and x.

(9) In \mathbb{C}^3 with the complex dot product, find an orthonormal basis for

$$U = \operatorname{span}\left(\begin{bmatrix}0\\i\\2\end{bmatrix}, \begin{bmatrix}1\\i+1\\3i+2\end{bmatrix}\right).$$